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ABSTRACT 

Human life has changed from real-world to 

virtual worlds due to recent advancements in 

computer technology.  Malware is 

superfluous software that is often used to 

initiate cyberattacks.  Advanced packaging 

and obfuscation techniques are still being 

used by malware strains to evolve.  These 

methods complicate the categorisation and 

detection of malware.  To successfully battle 

emerging malware strains, new methods that 

vary from traditional systems should be 

used.  All complicated and novel malware 

strains cannot be detected by machine 

learning (ML) techniques.  The deep 

learning (DL) approach may be a viable way 

to identify every kind of malware.  In this 

research, the Optimal Ensemble Learning 

Approach for Cybersecurity (AAMD-

OELAC) approach for Automated Android 

Malware Detection is presented.  The 

automatic categorisation and detection of 

Android malware is the main goal of the 

AAMD-OELAC approach.  The AAMD-

OELAC approach preprocesses data at the 

preliminary stage in order to do this.  Three 

machine learning models—the Regularised 

Random Vector Functional Link Neural 

Network (RRVFLN), the Kernel Extreme 

Learning Machine (KELM), and the Least 

Square Support Vector Machine (LS-

SVM)—are used in the AAMD-OELAC 

technique's ensemble learning process for 

Android malware detection.  Lastly, the 

three DL models' optimum parameter tuning 

is achieved by using the hunter-prey 

optimisation (HPO) technique, which also 

contributes to better malware detection 

outcomes.  A thorough experimental 

investigation is carried out to demonstrate 

the superiority of the AAMD-OELAC 

approach.  The simulation results 

demonstrated the AAMD-OELAC 

technique's superiority over other methods 

already in use. 

1. INTRODUCTION  

Network engineers and computer scientists 

are increasingly concerned about cyber 

security, thus finding satisfactory answers to 

a number of issues is necessary [1].  As a 

result, different malware programs and 

targets are well-identified and researched, as 

are the rapid advancements in technology 

and their intrinsic integration into all facets 

of lives [2].  The malware kind that attracted 

the most attention in the online community 

is Android malware.  Android is a popular 

operating system that leads the market for 

operating systems [3].  

 

             Since few malware programs 

contain more than 50 characteristics, making 
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detection challenging, intrusive malware 

techniques are developed to evade detection 

[4].  Therefore, it is crucial to develop 

methods to address the ongoing proliferation 

of Android malware in order to effectively 

detect, deactivate, or eliminate it.  All of 

these challenges motivate researchers in the 

field to carry out further studies in order to 

identify malware and effectively handle it 

[5].  Thus, three mechanisms—dynamic, 

static, and hybrid analytic methods—have 

been established by researchers to detect 

Android malware.  Without requiring a real 

application deployment, static analysis 

retrieves the elements that help discover 

detrimental performance for applications 

[6].  However, this kind of analysis was 

hampered by code obfuscation techniques, 

which aid virus authors in avoiding static 

approaches.  App malware may be identified 

during runtime via dynamic analysis [7].  

The capacity to locate the malware element 

using source code is often provided by the 

static analysis function, while the ability to 

locate malware in a runtime context is 

provided by the dynamic analysis feature.  

Malware may expose Android users and 

developers to needless risks and hazards [8].  

Malware detection techniques are covered in 

this paper.  Android Application Packages 

(APKs) are used to derive a suitable 

collection of characteristics for malware 

detection using the machine learning model.  

Malicious APKs may be identified using 

machine learning (ML) and deep learning 

(DL) techniques [9].  Similar to malware 

detection, software code vulnerability 

detection involves two steps: feature 

development using code analysis and 

training machine learning on derived 

characteristics to identify susceptible code 

segments [10]. 

  

                    In this research, the Optimal 

Ensemble Learning Approach for Cyber 

Security (AAMD-OELAC) approach for 

Automated Android Malware Detection is 

presented.  At the first step, data preparation 

is done using the AAMDOELAC approach.  

Three machine learning models—the 

Regularised Random Vector Functional 

Link Neural Network (RRVFLN), the 

Kernel Extreme Learning Machine (KELM), 

and the Least Square Support Vector 

Machine (LS-SVM)—are used in the 

AAMD-OELAC technique's ensemble 

learning process for Android malware 

detection.  Lastly, the three DL models' 

optimum parameter tuning is achieved by 

using the hunter-prey optimisation (HPO) 

technique, which contributes to better 

malware detection outcomes.  To 

demonstrate the superiority of the AAMD-

OELAC method, a thorough experimental 

investigation is conducted.  The following is 

a brief summary of the major contributions. 

            • For Android malware detection, an 

intelligent AAMD-OELAC method that 

combines ensemble learning, data 

preparation, and HPO-based hyperparameter 

tweaking is provided.  The AAMD-OELAC 

approach has never been documented in the 

literature, as far as we are aware. 

              LS-SVM, KELM, and RRVFLN 

models are used in an ensemble learning-

based classification process for Android 

malware detection. The HPO algorithm and 

ensemble learning process work together to 
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increase the detection accuracy of Android 

malware.  Malicious patterns and behaviours 

in Android apps may be successfully 

identified by the model via the use of several 

classifiers and optimisation techniques. 

 

2. LITERATURE SURVEY 

"Adversarial superiority in Android 

malware detection: Insights from evasion 

attacks and defences based on 

reinforcement learning," 

 With billions of users now, Android devices 

have become a lucrative target for malware 

developers.  It is thus more of a need than a 

desire for the anti-malware community and 

malware authors to stay one step ahead in 

this zero-sum game of malware detection.  

In order to create adversarially better 

Android malware detection models, our 

study focusses on a proactive adversary-

aware framework.  First, we examine the 

adversarial robustness of 36 different 

malware detection models built with 18 

classification algorithms and two static 

features (intent and permission).  To take 

advantage of flaws in the aforementioned 

malware detection models, we created two 

reinforcement learning-based Targeted 

Type-II Evasion Attacks (TRPO-

MalEAttack and PPO-MalEAttack).  In 

order to trick the malware detection 

algorithms, the attackers try to cause as little 

disruption as possible to each malicious 

program.  With an average fooling rate of 

95.75% (with 2.02 mean perturbations), the 

TRPO-MalEAttack lowers the average 

accuracy of 36 malware detection models 

from 86.01% to 49.11%.  In contrast, the 

PPO-MalEAttack reduces the average 

accuracy from 86.01% to 48.65% in the 

same 36 detection models by achieving a 

greater average fooling rate of 96.87% (with 

2.08 mean perturbations).  Additionally, we 

create a list of the TEN most susceptible 

Android permissions and intents that an 

attacker may exploit to create additional 

malicious apps.  In order to combat the 

adversarial assaults on malware detection 

algorithms, we subsequently provide a 

defence approach (MalVPatch).  Higher 

detection accuracy and a significant increase 

in the adversarial resilience of malware 

detection models are both attained by the 

MalVPatch defence.  Lastly, we draw the 

conclusion that in order to achieve 

adversarial supremacy in Android malware 

detection, it is essential to examine the 

adversarial robustness of models prior to 

their practical implementation. 

 "You are what I was told by the 

permissions!"  detection of Android 

malware using hybrid strategies, 

 The usage of Android smartphones in many 

facets of our lives has significantly increased 

in recent years.  Nevertheless, customers 

have the option to acquire Android 

applications via unaffiliated channels, which 

gives malware a lot of options.  Attackers 

get sensitive user private information by 

using unsolicited permissions.  There is an 

urgent need for effective and flexible 

antiviral solutions, particularly in novel 

versions, since signature-based solutions are 

no longer practicable.  We suggest a hybrid 

Android malware detection method that 

blends static and dynamic strategies as a 

solution.  First, using a machine-learning-

based approach, we use static analysis to 
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infer distinct permission consumption 

patterns between malicious and benign 

applications.  We create a dynamic feature 

base by extracting the object reference 

associations from the RAM heap in order to 

further identify the suspicious applications.  

Next, we provide an enhanced DAMBA-

based state-based algorithm.  Our method 

surpasses the popular detector with 97.5% 

F1-measure, according on experimental 

findings on a real-world dataset of 21,708 

apps.  Furthermore, it has been shown that 

our system is resistant to obfuscation tactics 

and permission abuse behaviours. 

 "Deep learning model-based 

metaheuristics for cybersecurity and 

Android malware classification and 

detection," 

 Since information systems have advanced 

over the past ten years, cybersecurity has 

grown to be a major worry for several 

institutions, groups, and organisations.  One 

of the most popular tools and strategies for 

carrying out an assault on Android devices 

is malware programs, and it's becoming 

harder to find new methods to detect them.  

To defend the Android operating system 

from these kinds of assaults, there are many 

malware detection methods available.  

Based on the patterns found in the 

characteristics of Android applications, 

these malware detectors classify the target 

apps.  The defence systems of Android are 

adversely affected by the growing amount of 

analytics data.  Feature selection strategies 

are proven to be useful since a high number 

of undesired characteristics causes a 

performance bottleneck for the detection 

system.  A deep learning-based Android 

malware detection model called Rock Hyrax 

Swarm Optimisation with Deep Learning 

(RHSODL-AMD) is presented in this paper.  

This method effectively distinguishes 

between malicious and legitimate apps by 

identifying the most important permissions 

and Application Programming Interfaces 

(API) calls.  To enhance the classification 

outcomes, an RHSO-based feature subset 

selection (RHSO-FS) method is developed.  

Additionally, Android malware detection 

uses the Adamax optimiser with attention 

recurrent autoencoder (ARAE) model.  With 

a maximum accuracy of 99.05%, the 

RHSODL-AMD technique's experimental 

validation on the Andro-AutoPsy dataset 

demonstrates its promising performance. 

 "A deep learning and static analysis-

based approach for automatic Android 

malware detection," 

Nowadays, the majority of internet users 

worldwide are switching from desktops to 

smartphones, with Android accounting for 

the largest share of the smartphone market.  

Since more people are using smartphones in 

general and the Android system in 

particular, there is a greater need to 

safeguard Android since malware authors 

are using complex and disguised malicious 

apps to target Android.  As a result, several 

research were conducted to provide a 

reliable technique for identifying and 

categorising dangerous software (malware) 

for Android.  Using datasets that have 

become obsolete and include programs for 

older Android versions that are seldom used 

today, some of them were successful, while 

others were not; some had accuracy below 

90%.  This study presents a novel approach 
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that uses static analysis to collect the most 

valuable aspects of Android apps, along 

with two additional features that are 

suggested. These features are then fed into a 

deep learning model that we developed for a 

functional API.  A fresh and categorised 

dataset of Android applications was used to 

test this approach. A total of 14079 malware 

and benign samples were used, with the 

malware samples being divided into four 

malware groups.  This dataset was used in 

two significant experiments: one for 

malware identification, in which samples 

were divided into two groups: benign and 

malicious. The second experiment was 

designed for malware detection and 

classification, using all five classes in the 

dataset.  Consequently, our model 

outperforms the related studies with an F1-

score of 99.5% when just two classes are 

used.  Additionally, the five classes yielded 

strong malware detection and classification 

performance, with an F1-score of 97%. 

 

3. EXISTING SYSTEM 

A novel malware detection technique linked 

to DL is developed by Shaukat et al. [11].  

By combining the advantages of static and 

dynamic analysis, it produced better results 

than traditional techniques.  A portable 

executable (PE) file is first shown as 

coloured pictures.  Second, it used a refined 

DL technique to extract deep features from 

colour photos.  Thirdly, it detects malware 

associated with SVM's deep features.  A 

technique known as innovative multi-view 

Android malware detection, used threefold, 

was introduced by Geremias et al. [12] 

employing image-based DL.  First, 

applications were evaluated based on the 

various feature sets in multi-view settings, 

increasing the amount of data shown for 

categorisation.  Second, the data for the 

classifier job is retained by converting the 

resulting feature set into picture formats 

while maintaining the crucial components of 

data distribution.  Thirdly, DL structure may 

be implemented since created pictures are all 

shown in a single shot inside a preset image 

channel. 

  

 A malware detection system named 

MAPAS, which achieves greater accuracy 

and flexible use of computing resources, 

was simulated by Kim et al. [13].  MAPAS 

used CNN to analyse harmful applications' 

performance based on their API call graphs.  

The proposed MAPAS strategy, on the other 

hand, leverages CNN to identify typical 

characteristics of the malware's API call 

graph rather than a CNN-produced classifier 

method.  Fallah and Bidgoly [14] created an 

LSTM-related malware detection method 

that can distinguish between malware and 

benign samples as well as find and detect 

novel and undiscovered malware kinds.  The 

author of this paper has conducted several 

tests to demonstrate the capabilities of the 

method that is being given, such as 

identifying malware families, detecting new 

malware families, and determining the least 

amount of time required to locate malware. 

 

 Sihag et al. [15] used DYnamic features 

(De-LADY), a robust obfuscation technique, 

to introduce DL-based Android malware 

detection.  Behavioural characteristics from 

dynamic analysis of a program run in the 
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simulated environment were employed.  A 

hybrid approach relating to CNN and DAE 

is presented by Wang et al. [16].  First, the 

author recreated the high-dimensional 

features of applications and used several 

CNNs to identify Android malware in order 

to improve the accuracy of malware 

detection.  Second, the author used DAE as 

a pre-training strategy for CNN in order to 

shorten the training time.  The DAE and 

CNN approach (DAE-CNN) can swiftly 

analyse flexible patterns thanks to the 

consolidation.  

 A performance comparison of 26 pretrained 

CNN techniques currently in use for 

Android malware detection was given by 

Yadav et al. [17].  Based on the results, an 

EfficientNet-B4 CNN-based method was 

developed to detect Android malware using 

an image-based malware representation of 

the Android DEX file.  EfficientNet-B4 

collected pertinent properties from the 

malware pictures.  Droid-NNet is a DL 

structure that Masum and Shahriar [18] 

developed for malware classification.  

However, Droid-NNet is a deep learner that 

outperforms current state-of-the-art machine 

learning techniques.  In order to identify 

Android malicious apps, Idrees et al. [19] 

investigate PIndroid, a novel framework 

based on permissions and intents.  As is well 

known, the main solution is PIndroid, which 

employs a collection of permissions and 

intents in addition to Ensemble techniques to 

accurately identify malware.  The authors of 

[20] demonstrate that after discussing idea 

drift, permissions produce effective and 

long-lasting malware detection techniques.  

Taha and Barukab [21] provide a method for 

classifying Android malware that relies on 

GA and optimiser ensemble learning.  To 

achieve the highest Android malware 

classification accuracy, the GA was used to 

optimise the RF technique's parameter 

values.  Using CNN approaches, Sabanci et 

al. [22] aimed to classify pepper seeds from 

different cultivars.  Two classification 

approaches are provided.  First, pepper seeds 

are used to train the CNN techniques 

(ResNet50 and ResNet18).  The features of 

pre-training CNN techniques are fused, and 

feature selection has been carried out to the 

fused features. The first is secondary and 

diversified.  The authors of [23] look into 

new techniques used for Android malware 

detection.  Consequently, an overview of the 

Android system revealed the fundamental 

mechanisms and issues with its security 

framework. 

 

Disadvantages 

• Data complexity: To identify Android 

malware, the majority of machine learning 

models now in use need to be able to 

correctly analyse large and intricate datasets. 

 • Data availability: In order to provide 

precise predictions, the majority of machine 

learning models need a lot of data.  The 

accuracy of the model may degrade if data is 

not accessible in large enough amounts. 

 • Inaccurate labelling: The accuracy of the 

machine learning models that are now in use 

depends on how well the input dataset was 

used for training.  Inaccurate labelling of the 

data prevents the model from producing 

reliable predictions. 

4. PROPOSED SYSTEM 
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In this research, the Optimal Ensemble 

Learning Approach for Cybersecurity 

(AAMD-OELAC) approach for Automated 

Android Malware Detection is presented.  

At the first step, data preparation is done 

using the AAMDOELAC approach.  Three 

machine learning models—the Regularised 

Random Vector Functional Link Neural 

Network (RRVFLN), the Kernel Extreme 

Learning Machine (KELM), and the Least 

Square Support Vector Machine (LS-

SVM)—are used in the AAMD-OELAC 

technique's ensemble learning process for 

Android malware detection.  Lastly, the 

three DL models' optimum parameter tuning 

is achieved by using the hunter-prey 

optimisation (HPO) technique, which 

contributes to better malware detection 

outcomes.  To demonstrate the superiority of 

the AAMD-OELAC method, a thorough 

experimental investigation is conducted.  

Advantages 

• For Android malware detection, an 

intelligent AAMD-OELAC method that 

combines ensemble learning, data 

preparation, and HPO-based hyperparameter 

tweaking is provided.  The AAMD-OELAC 

approach has never been documented in the 

literature, as far as we are aware. 

 

 • Use LS-SVM, KELM, and RRVFLN 

models in an ensemble learning-based 

classification approach to identify Android 

malware.  The accuracy of Android malware 

detection is increased by combining the 

HPO algorithm with the ensemble learning 

process.  Malicious patterns and behaviours 

in Android apps may be successfully 

identified by the model via the use of several 

classifiers and optimisation techniques. 

5. SYSTEM ARCHITECTURE  

 
 

 

6. IMPLEMENTATION  

Modules 

Service Provider 

The Service Provider must use a working 

user name and password to log in to this 

module. Following a successful login, he 

may do several tasks including training and 

testing data sets, Discover the Predicted 

Android Malware Detection Ratio, 

Download Predicted Datasets, View Trained 

and Tested Accuracy in a Bar Chart, View 

Trained and Tested Accuracy Results, and 

View Predicted Android Malware Detection 

Details View All Remote Users and the 

Android Malware Predicted Ratio Results. 

View and Authorize Users 

The administrator may see a list of all 

registered users in this module. Here, the 

administrator may see the user's 

information, like name, email, and address, 

and they can also grant the user permissions. 

Remote User 

A total of n users are present in this module. 

Before beginning any actions, the user needs 
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register. Following registration, the user's 

information will be entered into the 

database. Following a successful 

registration, he must use his password and 

authorised user name to log in. Following a 

successful login, the user may do tasks 

including registering and logging in, 

predicting the kind of Android malware, and 

seeing their profile. 

 

7. ALGORITHIMS 

Naïve Bayes 

 

The supervised learning technique known as 

the "naive bayes approach" is predicated on 

the straightforward premise that the 

existence or lack of a certain class 

characteristic has no bearing on the 

existence or nonexistence of any other 

feature. 

 However, it seems sturdy and effective in 

spite of this.  It performs similarly to other 

methods of guided learning.  Numerous 

explanations have been put forward in the 

literature.  We emphasise a representation 

bias-based explanation in this lesson.  Along 

with logistic regression, linear discriminant 

analysis, and linear SVM (support vector 

machine), the naive bayes classifier is a 

linear classifier.  The technique used to 

estimate the classifier's parameters (the 

learning bias) makes a difference. 

 

 Although the Naive Bayes classifier is 

commonly used in research, practitioners 

who want to get findings that are useful do 

not utilise it as often.  On the one hand, the 

researchers discovered that it is very simple 

to build and apply, that estimating its 

parameters is simple, that learning occurs 

quickly even on extremely big datasets, and 

that, when compared to other methods, its 

accuracy is rather excellent.  The end users, 

however, do not comprehend the value of 

such a strategy and do not get a model that is 

simple to read and implement. 

 

 As a consequence, we display the learning 

process's outcomes in a fresh way.  Both the 

deployment and comprehension of the 

classifier are simplified.  We discuss several 

theoretical facets of the naive bayes 

classifier in the first section of this lesson.  

Next, we use Tanagra to apply the method 

on a dataset.  We contrast the outcomes (the 

model's parameters) with those from other 

linear techniques including logistic 

regression, linear discriminant analysis, and 

linear support vector machines.  We see that 

the outcomes are quite reliable.  This helps 

to explain why the strategy performs well 

when compared to others.  We employ a 

variety of tools (Weka 3.6.0, R 2.9.2, Knime 

2.1.1, Orange 2.0b, and RapidMiner 4.6.0) 

on the same dataset in the second section.  

Above all, we make an effort to comprehend 

the outcomes. 

 

Logistic regression Classifiers 

 

The relationship between a collection of 

independent (explanatory) factors and a 

categorical dependent variable is examined 

using logistic regression analysis. When the 

dependent variable simply has two values, 

like 0 and 1 or Yes and No, the term logistic 

regression is used. When the dependent 

variable contains three or more distinct 
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values, such as married, single, divorced, or 

widowed, the technique is sometimes 

referred to as multinomial logistic 

regression. While the dependent variable's 

data type differs from multiple regression's, 

the procedure's practical application is 

comparable. 

 

When it comes to categorical-response 

variable analysis, logistic regression and 

discriminant analysis are competitors. 

Compared to discriminant analysis, many 

statisticians believe that logistic regression 

is more flexible and appropriate for 

modelling the majority of scenarios. This is 

due to the fact that, unlike discriminant 

analysis, logistic regression does not 

presume that the independent variables are 

regularly distributed. 

 

Both binary and multinomial logistic 

regression are calculated by this software for 

both category and numerical independent 

variables. Along with the regression 

equation, it provides information on 

likelihood, deviance, odds ratios, confidence 

limits, and quality of fit. It does a thorough 

residual analysis that includes diagnostic 

residual plots and reports. In order to find 

the optimal regression model with the fewest 

independent variables, it might conduct an 

independent variable subset selection search. 

It offers ROC curves and confidence 

intervals on expected values to assist in 

identifying the optimal classification cutoff 

point. By automatically identifying rows that 

are not utilised throughout the study, it 

enables you to confirm your findings. 

 

Decision tree classifiers 

Decision tree classifiers are effectively used 

in a wide range of fields. Their capacity to 

extract descriptive decision-making 

information from the provided data is their 

most crucial characteristic. Training sets 

may be used to create decision trees. The 

following is the process for this kind of 

creation based on the set of objects (S), each 

of which belongs to one of the classes C1, 

C2, …, Ck:  

 

Step 1: The decision tree for S has a leaf 

labelled with the class if every item in S is a 

member of the same class, such as Ci.  

Step 2. If not, let T be a test with the 

potential results O1, O2,..., On. The test 

divides S into subsets S1, S2,… Sn, where 

each item in Si has result Oi for T, because 

each object in S has a single outcome for T. 

T serves as the decision tree's root, and we 

construct a subsidiary decision tree for each 

outcome Oi by recursively applying the 

same process to the set Si.  

 

8. SCREENSHOTS 
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9. CONCLUSION AND FUTURE 

ENHANCEMENT  

 We have developed the AAMD-OELAC 

approach in this work to identify Android 

malware accurately and automatically.  The 

goal of the AAMD-OELAC method was to 

automatically identify and categorise 

Android malware.  The AAMD-OELAC 
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approach uses ensemble classification, data 

preprocessing, and HPO-based parameter 

adjustment to accomplish this.  The AAMD-

OELAC approach uses three machine 

learning models—LS-SVM, KELM, and 

RRVFLN—as part of an ensemble learning 

process for Android malware detection.  

Lastly, the HPO technique is used to 

optimise the three DL models' parameter 

tuning, which leads to better malware 

detection outcomes.  A comprehensive 

experimental investigation is carried out to 

demonstrate the superiority of the AAMD-

OELAC approach.  The simulation results 

demonstrated the AAMDOELAC 

technique's superiority over other methods 

currently in use.  

 In order to improve the detection of 

complex malware, future research might 

concentrate on creating more sophisticated 

methods for capturing and analysing fine-

grained behaviours.  Future research might 

also examine privacy-preserving strategies 

like federated learning or safe multi-party 

computing, which allow for cooperative 

malware detection without jeopardising user 

privacy. 
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