

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

370

AN ENHANCED ENSEMBLE LEARNING FRAMEWORK FOR

AUTOMATED ANDROID MALWARE DETECTION IN

CYBERSECURITY
1 V . Riyaz Ahammmed, MCA Student, Department of MCA

2 Shaik Haseena, M.Tech,(Ph.D), Assistant Professor,Department of MCA
12Dr KV Subba Reddy Institute of Technology,Kurnool

ABSTRACT

Human life has changed from real-world to

virtual worlds due to recent advancements in

computer technology. Malware is

superfluous software that is often used to

initiate cyberattacks. Advanced packaging

and obfuscation techniques are still being

used by malware strains to evolve. These

methods complicate the categorisation and

detection of malware. To successfully battle

emerging malware strains, new methods that

vary from traditional systems should be

used. All complicated and novel malware

strains cannot be detected by machine

learning (ML) techniques. The deep

learning (DL) approach may be a viable way

to identify every kind of malware. In this

research, the Optimal Ensemble Learning

Approach for Cybersecurity (AAMD-

OELAC) approach for Automated Android

Malware Detection is presented. The

automatic categorisation and detection of

Android malware is the main goal of the

AAMD-OELAC approach. The AAMD-

OELAC approach preprocesses data at the

preliminary stage in order to do this. Three

machine learning models—the Regularised

Random Vector Functional Link Neural

Network (RRVFLN), the Kernel Extreme

Learning Machine (KELM), and the Least

Square Support Vector Machine (LS-

SVM)—are used in the AAMD-OELAC

technique's ensemble learning process for

Android malware detection. Lastly, the

three DL models' optimum parameter tuning

is achieved by using the hunter-prey

optimisation (HPO) technique, which also

contributes to better malware detection

outcomes. A thorough experimental

investigation is carried out to demonstrate

the superiority of the AAMD-OELAC

approach. The simulation results

demonstrated the AAMD-OELAC

technique's superiority over other methods

already in use.

1. INTRODUCTION

Network engineers and computer scientists

are increasingly concerned about cyber

security, thus finding satisfactory answers to

a number of issues is necessary [1]. As a

result, different malware programs and

targets are well-identified and researched, as

are the rapid advancements in technology

and their intrinsic integration into all facets

of lives [2]. The malware kind that attracted

the most attention in the online community

is Android malware. Android is a popular

operating system that leads the market for

operating systems [3].

 Since few malware programs

contain more than 50 characteristics, making

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

371

detection challenging, intrusive malware

techniques are developed to evade detection

[4]. Therefore, it is crucial to develop

methods to address the ongoing proliferation

of Android malware in order to effectively

detect, deactivate, or eliminate it. All of

these challenges motivate researchers in the

field to carry out further studies in order to

identify malware and effectively handle it

[5]. Thus, three mechanisms—dynamic,

static, and hybrid analytic methods—have

been established by researchers to detect

Android malware. Without requiring a real

application deployment, static analysis

retrieves the elements that help discover

detrimental performance for applications

[6]. However, this kind of analysis was

hampered by code obfuscation techniques,

which aid virus authors in avoiding static

approaches. App malware may be identified

during runtime via dynamic analysis [7].

The capacity to locate the malware element

using source code is often provided by the

static analysis function, while the ability to

locate malware in a runtime context is

provided by the dynamic analysis feature.

Malware may expose Android users and

developers to needless risks and hazards [8].

Malware detection techniques are covered in

this paper. Android Application Packages

(APKs) are used to derive a suitable

collection of characteristics for malware

detection using the machine learning model.

Malicious APKs may be identified using

machine learning (ML) and deep learning

(DL) techniques [9]. Similar to malware

detection, software code vulnerability

detection involves two steps: feature

development using code analysis and

training machine learning on derived

characteristics to identify susceptible code

segments [10].

 In this research, the Optimal

Ensemble Learning Approach for Cyber

Security (AAMD-OELAC) approach for

Automated Android Malware Detection is

presented. At the first step, data preparation

is done using the AAMDOELAC approach.

Three machine learning models—the

Regularised Random Vector Functional

Link Neural Network (RRVFLN), the

Kernel Extreme Learning Machine (KELM),

and the Least Square Support Vector

Machine (LS-SVM)—are used in the

AAMD-OELAC technique's ensemble

learning process for Android malware

detection. Lastly, the three DL models'

optimum parameter tuning is achieved by

using the hunter-prey optimisation (HPO)

technique, which contributes to better

malware detection outcomes. To

demonstrate the superiority of the AAMD-

OELAC method, a thorough experimental

investigation is conducted. The following is

a brief summary of the major contributions.

 • For Android malware detection, an

intelligent AAMD-OELAC method that

combines ensemble learning, data

preparation, and HPO-based hyperparameter

tweaking is provided. The AAMD-OELAC

approach has never been documented in the

literature, as far as we are aware.

 LS-SVM, KELM, and RRVFLN

models are used in an ensemble learning-

based classification process for Android

malware detection. The HPO algorithm and

ensemble learning process work together to

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

372

increase the detection accuracy of Android

malware. Malicious patterns and behaviours

in Android apps may be successfully

identified by the model via the use of several

classifiers and optimisation techniques.

2. LITERATURE SURVEY

"Adversarial superiority in Android

malware detection: Insights from evasion

attacks and defences based on

reinforcement learning,"

 With billions of users now, Android devices

have become a lucrative target for malware

developers. It is thus more of a need than a

desire for the anti-malware community and

malware authors to stay one step ahead in

this zero-sum game of malware detection.

In order to create adversarially better

Android malware detection models, our

study focusses on a proactive adversary-

aware framework. First, we examine the

adversarial robustness of 36 different

malware detection models built with 18

classification algorithms and two static

features (intent and permission). To take

advantage of flaws in the aforementioned

malware detection models, we created two

reinforcement learning-based Targeted

Type-II Evasion Attacks (TRPO-

MalEAttack and PPO-MalEAttack). In

order to trick the malware detection

algorithms, the attackers try to cause as little

disruption as possible to each malicious

program. With an average fooling rate of

95.75% (with 2.02 mean perturbations), the

TRPO-MalEAttack lowers the average

accuracy of 36 malware detection models

from 86.01% to 49.11%. In contrast, the

PPO-MalEAttack reduces the average

accuracy from 86.01% to 48.65% in the

same 36 detection models by achieving a

greater average fooling rate of 96.87% (with

2.08 mean perturbations). Additionally, we

create a list of the TEN most susceptible

Android permissions and intents that an

attacker may exploit to create additional

malicious apps. In order to combat the

adversarial assaults on malware detection

algorithms, we subsequently provide a

defence approach (MalVPatch). Higher

detection accuracy and a significant increase

in the adversarial resilience of malware

detection models are both attained by the

MalVPatch defence. Lastly, we draw the

conclusion that in order to achieve

adversarial supremacy in Android malware

detection, it is essential to examine the

adversarial robustness of models prior to

their practical implementation.

 "You are what I was told by the

permissions!" detection of Android

malware using hybrid strategies,

 The usage of Android smartphones in many

facets of our lives has significantly increased

in recent years. Nevertheless, customers

have the option to acquire Android

applications via unaffiliated channels, which

gives malware a lot of options. Attackers

get sensitive user private information by

using unsolicited permissions. There is an

urgent need for effective and flexible

antiviral solutions, particularly in novel

versions, since signature-based solutions are

no longer practicable. We suggest a hybrid

Android malware detection method that

blends static and dynamic strategies as a

solution. First, using a machine-learning-

based approach, we use static analysis to

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

373

infer distinct permission consumption

patterns between malicious and benign

applications. We create a dynamic feature

base by extracting the object reference

associations from the RAM heap in order to

further identify the suspicious applications.

Next, we provide an enhanced DAMBA-

based state-based algorithm. Our method

surpasses the popular detector with 97.5%

F1-measure, according on experimental

findings on a real-world dataset of 21,708

apps. Furthermore, it has been shown that

our system is resistant to obfuscation tactics

and permission abuse behaviours.

 "Deep learning model-based

metaheuristics for cybersecurity and

Android malware classification and

detection,"

 Since information systems have advanced

over the past ten years, cybersecurity has

grown to be a major worry for several

institutions, groups, and organisations. One

of the most popular tools and strategies for

carrying out an assault on Android devices

is malware programs, and it's becoming

harder to find new methods to detect them.

To defend the Android operating system

from these kinds of assaults, there are many

malware detection methods available.

Based on the patterns found in the

characteristics of Android applications,

these malware detectors classify the target

apps. The defence systems of Android are

adversely affected by the growing amount of

analytics data. Feature selection strategies

are proven to be useful since a high number

of undesired characteristics causes a

performance bottleneck for the detection

system. A deep learning-based Android

malware detection model called Rock Hyrax

Swarm Optimisation with Deep Learning

(RHSODL-AMD) is presented in this paper.

This method effectively distinguishes

between malicious and legitimate apps by

identifying the most important permissions

and Application Programming Interfaces

(API) calls. To enhance the classification

outcomes, an RHSO-based feature subset

selection (RHSO-FS) method is developed.

Additionally, Android malware detection

uses the Adamax optimiser with attention

recurrent autoencoder (ARAE) model. With

a maximum accuracy of 99.05%, the

RHSODL-AMD technique's experimental

validation on the Andro-AutoPsy dataset

demonstrates its promising performance.

 "A deep learning and static analysis-

based approach for automatic Android

malware detection,"

Nowadays, the majority of internet users

worldwide are switching from desktops to

smartphones, with Android accounting for

the largest share of the smartphone market.

Since more people are using smartphones in

general and the Android system in

particular, there is a greater need to

safeguard Android since malware authors

are using complex and disguised malicious

apps to target Android. As a result, several

research were conducted to provide a

reliable technique for identifying and

categorising dangerous software (malware)

for Android. Using datasets that have

become obsolete and include programs for

older Android versions that are seldom used

today, some of them were successful, while

others were not; some had accuracy below

90%. This study presents a novel approach

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

374

that uses static analysis to collect the most

valuable aspects of Android apps, along

with two additional features that are

suggested. These features are then fed into a

deep learning model that we developed for a

functional API. A fresh and categorised

dataset of Android applications was used to

test this approach. A total of 14079 malware

and benign samples were used, with the

malware samples being divided into four

malware groups. This dataset was used in

two significant experiments: one for

malware identification, in which samples

were divided into two groups: benign and

malicious. The second experiment was

designed for malware detection and

classification, using all five classes in the

dataset. Consequently, our model

outperforms the related studies with an F1-

score of 99.5% when just two classes are

used. Additionally, the five classes yielded

strong malware detection and classification

performance, with an F1-score of 97%.

3. EXISTING SYSTEM

A novel malware detection technique linked

to DL is developed by Shaukat et al. [11].

By combining the advantages of static and

dynamic analysis, it produced better results

than traditional techniques. A portable

executable (PE) file is first shown as

coloured pictures. Second, it used a refined

DL technique to extract deep features from

colour photos. Thirdly, it detects malware

associated with SVM's deep features. A

technique known as innovative multi-view

Android malware detection, used threefold,

was introduced by Geremias et al. [12]

employing image-based DL. First,

applications were evaluated based on the

various feature sets in multi-view settings,

increasing the amount of data shown for

categorisation. Second, the data for the

classifier job is retained by converting the

resulting feature set into picture formats

while maintaining the crucial components of

data distribution. Thirdly, DL structure may

be implemented since created pictures are all

shown in a single shot inside a preset image

channel.

 A malware detection system named

MAPAS, which achieves greater accuracy

and flexible use of computing resources,

was simulated by Kim et al. [13]. MAPAS

used CNN to analyse harmful applications'

performance based on their API call graphs.

The proposed MAPAS strategy, on the other

hand, leverages CNN to identify typical

characteristics of the malware's API call

graph rather than a CNN-produced classifier

method. Fallah and Bidgoly [14] created an

LSTM-related malware detection method

that can distinguish between malware and

benign samples as well as find and detect

novel and undiscovered malware kinds. The

author of this paper has conducted several

tests to demonstrate the capabilities of the

method that is being given, such as

identifying malware families, detecting new

malware families, and determining the least

amount of time required to locate malware.

 Sihag et al. [15] used DYnamic features

(De-LADY), a robust obfuscation technique,

to introduce DL-based Android malware

detection. Behavioural characteristics from

dynamic analysis of a program run in the

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

375

simulated environment were employed. A

hybrid approach relating to CNN and DAE

is presented by Wang et al. [16]. First, the

author recreated the high-dimensional

features of applications and used several

CNNs to identify Android malware in order

to improve the accuracy of malware

detection. Second, the author used DAE as

a pre-training strategy for CNN in order to

shorten the training time. The DAE and

CNN approach (DAE-CNN) can swiftly

analyse flexible patterns thanks to the

consolidation.

 A performance comparison of 26 pretrained

CNN techniques currently in use for

Android malware detection was given by

Yadav et al. [17]. Based on the results, an

EfficientNet-B4 CNN-based method was

developed to detect Android malware using

an image-based malware representation of

the Android DEX file. EfficientNet-B4

collected pertinent properties from the

malware pictures. Droid-NNet is a DL

structure that Masum and Shahriar [18]

developed for malware classification.

However, Droid-NNet is a deep learner that

outperforms current state-of-the-art machine

learning techniques. In order to identify

Android malicious apps, Idrees et al. [19]

investigate PIndroid, a novel framework

based on permissions and intents. As is well

known, the main solution is PIndroid, which

employs a collection of permissions and

intents in addition to Ensemble techniques to

accurately identify malware. The authors of

[20] demonstrate that after discussing idea

drift, permissions produce effective and

long-lasting malware detection techniques.

Taha and Barukab [21] provide a method for

classifying Android malware that relies on

GA and optimiser ensemble learning. To

achieve the highest Android malware

classification accuracy, the GA was used to

optimise the RF technique's parameter

values. Using CNN approaches, Sabanci et

al. [22] aimed to classify pepper seeds from

different cultivars. Two classification

approaches are provided. First, pepper seeds

are used to train the CNN techniques

(ResNet50 and ResNet18). The features of

pre-training CNN techniques are fused, and

feature selection has been carried out to the

fused features. The first is secondary and

diversified. The authors of [23] look into

new techniques used for Android malware

detection. Consequently, an overview of the

Android system revealed the fundamental

mechanisms and issues with its security

framework.

Disadvantages

• Data complexity: To identify Android

malware, the majority of machine learning

models now in use need to be able to

correctly analyse large and intricate datasets.

 • Data availability: In order to provide

precise predictions, the majority of machine

learning models need a lot of data. The

accuracy of the model may degrade if data is

not accessible in large enough amounts.

 • Inaccurate labelling: The accuracy of the

machine learning models that are now in use

depends on how well the input dataset was

used for training. Inaccurate labelling of the

data prevents the model from producing

reliable predictions.

4. PROPOSED SYSTEM

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

376

In this research, the Optimal Ensemble

Learning Approach for Cybersecurity

(AAMD-OELAC) approach for Automated

Android Malware Detection is presented.

At the first step, data preparation is done

using the AAMDOELAC approach. Three

machine learning models—the Regularised

Random Vector Functional Link Neural

Network (RRVFLN), the Kernel Extreme

Learning Machine (KELM), and the Least

Square Support Vector Machine (LS-

SVM)—are used in the AAMD-OELAC

technique's ensemble learning process for

Android malware detection. Lastly, the

three DL models' optimum parameter tuning

is achieved by using the hunter-prey

optimisation (HPO) technique, which

contributes to better malware detection

outcomes. To demonstrate the superiority of

the AAMD-OELAC method, a thorough

experimental investigation is conducted.

Advantages

• For Android malware detection, an

intelligent AAMD-OELAC method that

combines ensemble learning, data

preparation, and HPO-based hyperparameter

tweaking is provided. The AAMD-OELAC

approach has never been documented in the

literature, as far as we are aware.

 • Use LS-SVM, KELM, and RRVFLN

models in an ensemble learning-based

classification approach to identify Android

malware. The accuracy of Android malware

detection is increased by combining the

HPO algorithm with the ensemble learning

process. Malicious patterns and behaviours

in Android apps may be successfully

identified by the model via the use of several

classifiers and optimisation techniques.

5. SYSTEM ARCHITECTURE

6. IMPLEMENTATION

Modules

Service Provider

The Service Provider must use a working

user name and password to log in to this

module. Following a successful login, he

may do several tasks including training and

testing data sets, Discover the Predicted

Android Malware Detection Ratio,

Download Predicted Datasets, View Trained

and Tested Accuracy in a Bar Chart, View

Trained and Tested Accuracy Results, and

View Predicted Android Malware Detection

Details View All Remote Users and the

Android Malware Predicted Ratio Results.

View and Authorize Users

The administrator may see a list of all

registered users in this module. Here, the

administrator may see the user's

information, like name, email, and address,

and they can also grant the user permissions.

Remote User

A total of n users are present in this module.

Before beginning any actions, the user needs

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

377

register. Following registration, the user's

information will be entered into the

database. Following a successful

registration, he must use his password and

authorised user name to log in. Following a

successful login, the user may do tasks

including registering and logging in,

predicting the kind of Android malware, and

seeing their profile.

7. ALGORITHIMS

Naïve Bayes

The supervised learning technique known as

the "naive bayes approach" is predicated on

the straightforward premise that the

existence or lack of a certain class

characteristic has no bearing on the

existence or nonexistence of any other

feature.

 However, it seems sturdy and effective in

spite of this. It performs similarly to other

methods of guided learning. Numerous

explanations have been put forward in the

literature. We emphasise a representation

bias-based explanation in this lesson. Along

with logistic regression, linear discriminant

analysis, and linear SVM (support vector

machine), the naive bayes classifier is a

linear classifier. The technique used to

estimate the classifier's parameters (the

learning bias) makes a difference.

 Although the Naive Bayes classifier is

commonly used in research, practitioners

who want to get findings that are useful do

not utilise it as often. On the one hand, the

researchers discovered that it is very simple

to build and apply, that estimating its

parameters is simple, that learning occurs

quickly even on extremely big datasets, and

that, when compared to other methods, its

accuracy is rather excellent. The end users,

however, do not comprehend the value of

such a strategy and do not get a model that is

simple to read and implement.

 As a consequence, we display the learning

process's outcomes in a fresh way. Both the

deployment and comprehension of the

classifier are simplified. We discuss several

theoretical facets of the naive bayes

classifier in the first section of this lesson.

Next, we use Tanagra to apply the method

on a dataset. We contrast the outcomes (the

model's parameters) with those from other

linear techniques including logistic

regression, linear discriminant analysis, and

linear support vector machines. We see that

the outcomes are quite reliable. This helps

to explain why the strategy performs well

when compared to others. We employ a

variety of tools (Weka 3.6.0, R 2.9.2, Knime

2.1.1, Orange 2.0b, and RapidMiner 4.6.0)

on the same dataset in the second section.

Above all, we make an effort to comprehend

the outcomes.

Logistic regression Classifiers

The relationship between a collection of

independent (explanatory) factors and a

categorical dependent variable is examined

using logistic regression analysis. When the

dependent variable simply has two values,

like 0 and 1 or Yes and No, the term logistic

regression is used. When the dependent

variable contains three or more distinct

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

378

values, such as married, single, divorced, or

widowed, the technique is sometimes

referred to as multinomial logistic

regression. While the dependent variable's

data type differs from multiple regression's,

the procedure's practical application is

comparable.

When it comes to categorical-response

variable analysis, logistic regression and

discriminant analysis are competitors.

Compared to discriminant analysis, many

statisticians believe that logistic regression

is more flexible and appropriate for

modelling the majority of scenarios. This is

due to the fact that, unlike discriminant

analysis, logistic regression does not

presume that the independent variables are

regularly distributed.

Both binary and multinomial logistic

regression are calculated by this software for

both category and numerical independent

variables. Along with the regression

equation, it provides information on

likelihood, deviance, odds ratios, confidence

limits, and quality of fit. It does a thorough

residual analysis that includes diagnostic

residual plots and reports. In order to find

the optimal regression model with the fewest

independent variables, it might conduct an

independent variable subset selection search.

It offers ROC curves and confidence

intervals on expected values to assist in

identifying the optimal classification cutoff

point. By automatically identifying rows that

are not utilised throughout the study, it

enables you to confirm your findings.

Decision tree classifiers

Decision tree classifiers are effectively used

in a wide range of fields. Their capacity to

extract descriptive decision-making

information from the provided data is their

most crucial characteristic. Training sets

may be used to create decision trees. The

following is the process for this kind of

creation based on the set of objects (S), each

of which belongs to one of the classes C1,

C2, …, Ck:

Step 1: The decision tree for S has a leaf

labelled with the class if every item in S is a

member of the same class, such as Ci.

Step 2. If not, let T be a test with the

potential results O1, O2,..., On. The test

divides S into subsets S1, S2,… Sn, where

each item in Si has result Oi for T, because

each object in S has a single outcome for T.

T serves as the decision tree's root, and we

construct a subsidiary decision tree for each

outcome Oi by recursively applying the

same process to the set Si.

8. SCREENSHOTS

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

379

9. CONCLUSION AND FUTURE

ENHANCEMENT

 We have developed the AAMD-OELAC

approach in this work to identify Android

malware accurately and automatically. The

goal of the AAMD-OELAC method was to

automatically identify and categorise

Android malware. The AAMD-OELAC

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

380

approach uses ensemble classification, data

preprocessing, and HPO-based parameter

adjustment to accomplish this. The AAMD-

OELAC approach uses three machine

learning models—LS-SVM, KELM, and

RRVFLN—as part of an ensemble learning

process for Android malware detection.

Lastly, the HPO technique is used to

optimise the three DL models' parameter

tuning, which leads to better malware

detection outcomes. A comprehensive

experimental investigation is carried out to

demonstrate the superiority of the AAMD-

OELAC approach. The simulation results

demonstrated the AAMDOELAC

technique's superiority over other methods

currently in use.

 In order to improve the detection of

complex malware, future research might

concentrate on creating more sophisticated

methods for capturing and analysing fine-

grained behaviours. Future research might

also examine privacy-preserving strategies

like federated learning or safe multi-party

computing, which allow for cooperative

malware detection without jeopardising user

privacy.

REFERENCES

[1] H. Rathore, A. Nandanwar, S. K. Sahay,

and M. Sewak, ‘‘Adversarial superiority in

Android malware detection: Lessons from

reinforcement learning based evasion attacks

and defenses,’’ Forensic Sci. Int., Digit.

Invest., vol. 44, Mar. 2023, Art. no. 301511.

[2] H. Wang, W. Zhang, and H. He, ‘‘You

are that the permissions told me! Android

malware detection based on hybrid tactics,’’

J. Inf. Secur. Appl., vol. 66, May 2022, Art.

no. 103159.

[3] A. Albakri, F. Alhayan, N. Alturki, S.

Ahamed, and S. Shamsudheen,

‘‘Metaheuristics with deep learning model

for cybersecurity and Android malware

detection and classification,’’ Appl. Sci., vol.

13, no. 4, p. 2172, Feb. 2023.

[4] M. Ibrahim, B. Issa, and M. B. Jasser,

‘‘A method for automatic Android malware

detection based on static analysis and deep

learning,’’ IEEE Access, vol. 10, pp.

117334–117352, 2022.

[5] L. Hammood, İ. A. Doğru, and K. Kılıç,

‘‘Machine learning-based adaptive genetic

algorithm for Android malware detection in

auto-driving vehicles,’’ Appl. Sci., vol. 13,

no. 9, p. 5403, Apr. 2023.

[6] P. Bhat and K. Dutta, ‘‘A multi-tiered

feature selection model for Android

malware detection based on feature

discrimination and information gain,’’ J.

King Saud Univ.-Comput. Inf. Sci., vol. 34,

no. 10, pp. 9464–9477, Nov. 2022.

[7] D.Wang, T. Chen, Z. Zhang, and N.

Zhang, ‘‘A survey of Android malware

detection based on deep learning,’’ in Proc.

Int. Conf. Mach. Learn. Cyber Secur. Cham,

Switzerland: Springer, 2023, pp. 228–242.

[8] Y. Zhao, L. Li, H. Wang, H. Cai, T. F.

Bissyandé, J. Klein, and J. Grundy,

‘‘On the impact of sample duplication in

machine-learning-based Android

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

381

malware detection,’’ ACM Trans. Softw.

Eng. Methodol., vol. 30, no. 3, pp. 1–38, Jul.

2021.

[9] E. C. Bayazit, O. K. Sahingoz, and B.

Dogan, ‘‘Deep learning based malware

detection for Android systems: A

comparative analysis,’’ Tehnički vjesnik,

vol. 30, no. 3, pp. 787–796, 2023.

[10] H.-J. Zhu, W. Gu, L.-M. Wang, Z.-C.

Xu, and V. S. Sheng, ‘‘Android malware

detection based on multi-head squeeze-and-

excitation residual network,’’ Expert Syst.

Appl., vol. 212, Feb. 2023, Art. no. 118705.

[11] K. Shaukat, S. Luo, and V.

Varadharajan, ‘‘A novel deep learning-

based approach for malware detection,’’

Eng. Appl. Artif. Intell., vol. 122, Jun. 2023,

Art. no. 106030.

[12] J. Geremias, E. K. Viegas, A. O. Santin,

A. Britto, and P. Horchulhack, ‘‘Towards

multi-view Android malware detection

through image-based deep learning,’’ in

Proc. Int.Wireless Commun. Mobile

Comput. (IWCMC), May 2022, pp. 572–577.

72516 VOLUME 11, 2023 IEEE

Transaction on

MachineLearning,Volume:11,Issue

Date:11.July.2023

[13] J. Kim, Y. Ban, E. Ko, H. Cho, and J.

H. Yi, ‘‘MAPAS: A practical deep learning-

based Android malware detection system,’’

Int. J. Inf. Secur., vol. 21, no. 4, pp. 725–

738, Aug. 2022.

[14] S. Fallah and A. J. Bidgoly, ‘‘Android

malware detection using network traffic

based on sequential deep learning models,’’

Softw., Pract. Exper., vol. 52, no. 9, pp.

1987–2004, Sep. 2022.

[15] V. Sihag, M. Vardhan, P. Singh, G.

Choudhary, and S. Son, ‘‘De-LADY: Deep

learning-based Android malware detection

using dynamic features,’’ J. Internet Serv.

Inf. Secur., vol. 11, no. 2, p. 34, 2021.

https://doi.org/10.62647/ijitce.2025.v13.i2.pp370-381

