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Abstract— 
Lane recognition, a crucial subtask in autonomous 

driving, has recently shifted from using traditional 

image processing to a neural network technique 

based on deep learning. On the other hand, early deep 

learning approaches failed to match real-time needs 

due to their reliance on pixel-level semantic 

segmentation and therefore massive network 

architectures. A novel network architecture denoted 

by UFAST and built on preset rows is suggested as a 

solution to the real-time challenge. This network 

model's design achieves real-time performance by 

drastically reducing the network parameters. We 

include an attention mechanism into the model based 

on observations of actual human driving behaviors in 

order to enhance the lane recognition performance 

within this framework. Finally, we enhance the 

model framework's performance in less-than-ideal 

conditions by nearly 1.9% and increase the number of 

parameters by less than 0.2% of the UFAST. This is 

done by artificially scheduling the input image data to 

the lower part of the view, where the lanes are 

typically located. But actual road data is complicated, 

and using the same method for all the view data 

would result in duplicate or missing data. While the 

ResNet-18 [6] architecture achieved a classification 

accuracy of 95.87% on the TuSimple dataset [5], the 

CULane dataset [2] achieved just 68.4% accuracy in 

its trials, which is somewhat inadequate. This is 

because, under less-than-ideal circumstances, not 

only do road lane details likely to be missing from the 

CULane datasets because to the datasets' inherent 

complexity and variability, but the system 

framework's architecture also contributes to this 

problem. 

 Keywords—Unmanned Driving, Lane Detection, 

Attention Mechanisms . 

INTRODUCTION 
Recent years have seen tremendous growth in the 

unmanned driving industry, because to the ever-

improving capabilities of computer vision and AI. 

The advancement of lane detection, a crucial 

component of autonomous driving, dictates the future 

of autonomous driving. As deep learning has evolved 

and improved over the last several years, it has 

progressively supplanted the older, more 

conventional lane recognition methods that relied on 

graphical geometry and probability distribution. 

Many new lane identification algorithms based on 

deep learning have appeared in the last few years. 

Much of the work in detection and classification 

algorithms, whether they are based on deep learning 

or more conventional visual information processing 

techniques, is going into collecting ever-more-

complicated data to use as a constraint. As a result, 

both the total structure of detection networks and the 

volume of data handled have grown substantially. It 

is challenging to eliminate the framework complexity 

of pixel-level semantic segmentation, despite the fact 

that the newly suggested networks aim to reduce the 

network size. The secret to fixing the lane detecting 

system's sluggish performance is to eliminate 

unnecessary data while keeping useful data. When we 

look at driving patterns from a human point of view, 

we see that, in normal driving conditions, drivers 

focus on the lane they're in as well as the lanes on 

either side of them, from near to far, and pay less 

attention to the information about the boundaries of 

their field of vision. This procedure also serves as the 

system for distributing focus. What is currently 

missing from most lane detecting systems is a method 

that can simulate human lane inspection in 

challenging environments like poor light and vehicle 

obstacle. Current key attention mechanisms, from 

their inception, center on one or more of the 

following: channel[7], spatial[9], temporal[10], or 

branch [11] components; hybrids that mix several 

attention processes[12] or thirteen. The emphasis of 

the work is on integrating the CAMB [13] attention 

module with UFAST, taking into account the features 

of each attention mechanism and the structure of 

UFAST [4]. 
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Fig.1. Rationale for the role of attentional mechanisms in the UFAST architecture.  

 

While channel attention improves lane recognition by 

zeroing down on individual lane locations and 

shapes, spatial attention employs global feature 

information to help in lane detection in less-than-

ideal situations, as when there is obstruction or bad 

lighting. For optimal system processing performance, 

it is necessary that the whole network learn to zero in 

on the lane detecting component as quickly as 

feasible without sacrificing processing speed. It 

creates a map of all the network's characteristics as 

well as the channels in every grid. In addition to 

capturing the input image's general qualities, the 

network also makes lane predictions in less-than-

ideal situations, such as low light or crowded lanes, 

and partly projects these predictions into the 

network's overall spatial features. We use CBAM, an 

attention mechanism module that is very compatible 

with the UFAST framework, to combine these two 

capabilities. This component integrates channel 

attention with spatial attention. By incorporating the 

CAMB module into the entire network architecture, 

lane detection information may be strengthened and 

lane attentiveness can be improved in real-world 

driving scenarios. Its little stature means that it adds 

only one percent to the first network frame's 

parameter count. Our goal is to increase the UFAST 

framework's performance in complicated conditions, 

and we succeed. Here are two main elements that 

encapsulate our work's contribution to the field as a 

whole. • The system's ability to retrieve lane 

information more precisely thanks to the attention 

mechanism's implementation. • Compared to the 

original UFAST [4] model, the attention mechanism 

improves the model's accuracy in complicated road 

circumstances by an average of almost 1.9%. The 

following is the outline for this paper: Part II 

examines supplementary materials. The process of 

building the model is detailed in Section III. In 

Section IV, we provide not just the findings and 

analysis, but also the pertinent experimental setting. 

Our task is finally concluded in Section V. 

 

RELATED WORK  
Section A. Land Detection Techniques In the early 

days of lane detection, Aly et al. [14] established 

classic detection algorithms based on Markov random 

fields. Both the complexity of lane road 

circumstances and the speed with which deep 

learning has been developing in recent years have led 

to the proposal of deep learning-based lane 

recognition systems, the performance of which has 

been steadily improving. In their study, Davy Neven 

et al. [1] provide a comprehensive approach to 

extracting lane instances from the LaneNet network. 

They then use a least-squares technique to convert the 

lanes back to the original map, after passing the 

transformation matrix H produced by HNet. The 

LaneNet network has been an inspiration for several 

subsequent deep learning-based approaches. The 

SCNN, which was suggested in 2017 by Xingang Pan 

et al. [2], streamlines LaneNet's segmentation process 

and makes the network more succinct in general. 

Additionally, the CULane Datesets provide a large 

data set for lane recognition tests. Concurrently, 

Seokju Lee et al. [3] provide The VPGNet, which, by 

using a multi-branch job, anticipates overall lanes and 

zeroes down on the invisible portion of the lane 

prediction issue. All of the aforementioned 

approaches were quite accurate for their time, but the 

enormous network architecture of the system meant 
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that it couldn't handle the real-time demands of 

autonomous driving. In 2020, Zequn Qin et al. [4] 

designed the UFAST network structure to address 

this issue. They simplified the entire detection 

network's backbone and used global feature pictures 

to creatively build a lane information model. This 

model significantly improved the overall detection 

system's speed while maintaining the state-of-the-art 

accuracy. For lower-speed scenarios, its real-time 

performance has met the needs of autonomous 

vehicles for lane detecting. B. Attention Mechanisms 

and Their Methods As a kind of attentional bias, 

people pay more attention to what piques their 

interest when they notice something. [12]. In their 

proposal, Volodymyr Mnih et al. [7] provide 

convolutional neural networks with the first RAM-

implemented spatial attention. After that, SENet was 

suggested by Jie Hu et al. [8] as an updated model of 

an adaptive channel attention network; this network 

served as a major influence on the attention module 

design process for later convolutional neural 

networks. The CBAM attention module, proposed in 

2018 by Sanghyun Woo et al. [13], combines channel 

and spatial attention for convolutional networks; its 

lightweight design allows for easy insertion between 

any convolutional layers with, and it is heavily 

inspired by SENet. 

  

Fig. 2. Overall architecture with CBAM attention module.  

 

The CBAM module first reads the input picture for 

its channel and spatial information, which it then uses 

to train the residual network using convolutional 

blocks. As shown in the top half, the auxiliary 

segmentation channel is formed by extracting and 

combining the second, third, and fourth convolutional 

blocks from the residual network. In order to get the 

final lane categorization, the convolved network is 

linked to the fully connected layer via the main 

channel. affected its network speed to a lesser extent. 

A number of attention mechanisms that are tailored to 

the architectural structure of the proposed transformer 

have been introduced in recent years. For example, 

ViT [15] has been successful in computer vision by 

using this structure. Nevertheless, we shall refrain 

from delving too deeply into the transformer design 

in this work.  

PROCEDURE In this part, we will go over the 

model's implementation of the attention mechanism 

and the reasoning for its use to enhance network 

performance. Section A. Attentional Features 

Extraction The structural architecture that 

differentiates the UFAST [4] system from the 

semantic segmentation model is the primary cause of 

its large speed gain. The number of channels is 

proportional to the lanes in each data set, and the feed 

picture only intercepts the specified grid size. 

Consequently, compared to the semantic 

segmentation technique, the whole network structure 

is much smaller. We make the system more sensitive 

to lane detection by enhancing the attention to the 

network channel, which is the same as boosting the 

attention to each lane because the channel 

corresponds to each lane. By obtaining the picture 

global characteristics, UFAST is able to forecast the 

obstructed lanes in less-than-ideal scenarios, such as 
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when there is not enough light or when there is a 

close car blocking the view. By paying more 

attention to the spatial characteristics of the whole 

convolutional network, we can better use the image's 

global features for lane prediction and enhance the 

network's feature extraction for the complete grid 

network. We improve the network's lane prediction 

and correction overall by focusing on elements like 

pavement margins and bridge piles. In Fig.1 we can 

see the application of the attention detecting overall 

process. Section B: Lane Detection To extract overall 

lanes utilizing auxiliary channels during training, we 

employ the ResNet-18 [6] neural network, which 

follows the fundamental design of UFAST [4]. 

Extraction of data from ResNet-18's second, third, 

and fourth convolutional layers, and further 

convolving of those layers, yields the lanes. After 

calibrating the lane positions in the picture and 

resizing to the original preset grid size, the main 

branch unfolds the convolutional layers to link the 

classifier and classifies the lanes. Later lane detection 

identification systems benefit from this lane attention 

data. The lane detecting job has been completed. 

While detecting in real-time, we close the secondary 

channel and leave the primary one open for lane 

identification and categorization. Fig.2 shows the 

final network design, which draws inspiration from 

the UFAST [4] and CBAM [13] networks. C. A 

method for detecting lanes That first UFAST loss 

function is still with us. 

 

 

 

TABLE I DATASETS

DESCRIPTION 

 

When the loss coefficients α and β are used, Lcls 

stands for the classified loss, Lstr for the structural 

loss, and Lseg for the segmentation loss. Following 

the article [4] are the specifics of these loss functions. 

 

TABLE II NETWORK TRAINING PARAMETERS 

 

 

Laboratory environment 1) Hardware: Instead of 

using the Nvidia RTX-1080Ti GPU that was used by 

UFAST, we are using a different Nvidia RTX-1070 

GPU. This allows us to re-implement the original 

UFAST framework and get the following data, 

including its performance. 2) Datasets: TABLE I 

displays the features of the two datasets used to 

evaluate whether our model is better than the original 

model from UFAST [4]. We used the same 

benchmark datasets for lane detection as UFAST, 

which are the TuSimple dataset [5] and the CULane 

dataset [2]. 3) Measures of assessment: The two 

datasets are not being evaluated according to the 

same formal standards. Using the TuSimple dataset,  

the primary metrics for assessment are determined 

using the following formula. 

  

 



           ISSN 2347–3657 

         Volume 13, Issue 2, 2025 

 
 
 

908 

 

Sclip is the sum of all ground truth points in a clip, 

and Cclip is the number of lane points that were 

accurately predicted. This is true for the CULane 

dataset: 

 

 

 

in this case = 𝑃𝑓𝑒𝑐𝑖𝑏𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 True positives (TP), 

false positives (FP), and false negatives (FN) are the 

three possible outcomes. Displayed in TABLE II are 

the particulars of the image processing parameters 

and hyperparameters. 4)Setting up the control group: 

We included SENet [8] into the UFAST [4] network 

architecture to measure the extent to which channel 

attenuation alone improved network performance, 

with the goal of better representing the attention 

mechanism's contribution in enhancing overall 

network performance. 

Results  
Two features of the modified UFAST are readily 

apparent from the data shown in TABLES III and IV. 

• The model maintains the same level of accuracy as 

the original model on the TuSimple dataset; there is 

no discernible improvement. • The model improves 

accuracy across the board in the CULane dataset's 

testing domain, leading to an approximately 1.9% 

increase in final average accuracy when compared to 

the original model. The addition of the attention 

mechanism causes a little increase of less than 0.2 

percentage points to our model parameters compared 

to the previous model, whereas the increase in FLOPs 

for convolution is around 0.4 percentage points. 

 

TABLE III COMPARISON WITH OTHER 

METHODS ON TUSIMPLE TEST SET.FLOPS 

REFERS TO FLOATING POINT OPERATIONS 

IN THE CONVOLUTION . PARAM . REFERS TO 

THE TOTAL NUMBER OF PARAMETERS OF 

THE NETWORK 

 

 

TABLE IV COMPARISON OF F1-MEASURE 

AND RUNTIME ON CULANE TESTING SET 

WITH IOU THRESHOLD=0 .5 . 

 

 

 

Analysis We conducted the following analysis in 

light of the aforementioned circumstance. The 

original model's accuracy for the TuSimple dataset 

reached 95.87%, which is 2.32% different from the 

highest-performing SCNN UNet ConvLSTM2 [16] 

model and only 1.09% different from the second-

highest PE RESA [17] model. This effectively 

reaches the optimal measurement accuracy for this 

dataset, and it's hard to ask for much more than that. 

Overall, the network over-fits and performs poorly on 

the test set when the attention mechanism is included. 

Using the CULane dataset, we discovered that, with 

the exception of the No-Line dataset, our model 

outperformed the original model in a number of more 

realistic scenarios. Up to a 3% improvement was the 

norm for the other datasets. We contend that No-

Line's comparatively low model performance on this 

dataset is due to the attention mechanism's inability to 

better capture the attention object. When we apply the 

attention method to the model, we see that it 

improves the system's accuracy across the board by 

better capturing lane information for different 

conditions in the other test datasets. • The original 

model also does a good job of capturing lane 

prediction, but the TuSimple dataset is mostly used 

for lane recognition in a more ideal setting (light, lane 
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line integrity, road vehicle congestion) when the two 

datasets are combined. On the other hand, the original 

model loses a lot of lane information due to the 

complicated and variable road conditions in the 

CULane dataset. However, by introducing the 

attention mechanism, the problem is improved and 

the system's accuracy is increased. This makes it 

more realistic and in line with how humans drive in 

real-life situations, when the environment is more 

This is also more in keeping with how people really 

drive in real-world situations; as things become 

complicated and unpredictable, drivers pay more 

attention to the road as a whole, which improves 

safety. 

CONCLUSION   
 

In order to make the lane detection model more 

accurate representation of how humans really pay 

attention to lane circumstances, we suggest including 

an attention mechanism in this study. We opt to 

enhance the UFAST [4] model and include the 

CBAM [13] attention mechanism module to acquire 

the channel and spatial properties of the lane 

detection model. This allows us to achieve real-time 

lane identification without sacrificing the original 

model's fast speed, which is maintained thanks to its 

compactness. While our improved model did not 

noticeably enhance lane detection in the ideal 

environment of the TuSimple dataset, it did 

generalize improve performance in multi complex 

cases on the CULane dataset, leading to a final 

average accuracy improvement of nearly 1.9%, 

according to our comparison experiments in the 

TuSimple dataset [5] and the CULane dataset [2]. It 

is our intention to get a better attention model design 

for lane recognition by enhancing the current one. 
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