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Abstract: Chronic kidney disease (CKD) is a dangerous ailment that can last a person’s entire 

life and is caused by either kidney malignancy or decreased kidney function. It is feasible to 

halt or slow the progression of this chronic disease to an end-stage wherein dialysis or surgical 

intervention is the only method to preserve a patient’s life. Earlier detection and appropriate 

therapy can increase the likelihood of this happening. Throughout this research, the potential 

of several different machine learning approaches for providing an early diagnosis of CKD has 

been investigated. In recent years, machine learning (ML) algorithms have become a powerful 

tool in medical diagnosis, offering the potential to predict kidney disease with high accuracy. 

This paper investigates the application of various ML techniques, including Decision Trees, 

Support Vector Machines (SVM), Random Forests, Gradient Boost Classifier, Xgboost, KNN, 

and Logistic Regression, in predicting kidney disease using clinical data. Therefore, in our 

approach, we investigate the link that exists between data factors as well as the characteristics 

of the target class. We are capable of constructing a collection of prediction models with the 

help of machine learning and predictive analytics. The performance of these algorithms is 

evaluated based on metrics such as accuracy, sensitivity, specificity, and receiver operating 

characteristic (ROC).    

 

Keywords: . Kidney disease, Machine learning, Prediction, Decision trees, Support vector 

machines, Random forests,  GradientBoost, Logistic Regression, Early detection,  Clinical data. 
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1. Introduction    

 Chronic Kidney Disease (CKD) is a long-term pathological condition marked by a persistent 

decline in renal function, typically measured by a reduction in glomerular filtration rate (GFR) 

and/or the presence of kidney damage, such as albumin, for three months or more.[3] It 

represents a global public health issue, with rising incidence and prevalence driven largely by 

aging populations and the increasing burden of chronic noncommunicable diseases, 

particularly diabetes mellitus and hypertension, the two leading etiological factors[4].   

CKD progresses through five stages, ranging from mild functional impairment (Stage 1) to 

complete kidney failure (Stage 5, also known as end-stage renal disease or ESRD), which often 

necessitates renal replacement therapy in the form of dialysis or kidney transplantation[7]. The 

disease exerts systemic effects far beyond the kidneys, including disturbances in fluid and 

electrolyte homeostasis, acid-base imbalance, hormonal regularization (such as erythromycin 

and vitamin D metabolism), [6]and a heightened risk for cardiovascular morbidity and 

mortality, which remains the leading cause of death among CKD patients[2].   

Early stages of CKD are often asymptomatic, making timely diagnosis challenging. 

Consequently, many individuals are diagnosed only in the later stages, when therapeutic 

options become more limited and prognosis worsens. Risk factors for CKD are multifactorial 

and include genetic predisposition[3], lifestyle factors, socioeconomic status, and comorbid 

conditions. Notably, CKD also disproportionately affects certain populations, highlighting 

significant health disparities across racial, ethnic, and socioeconomic groups[4]. CKD is a 

long-term condition where the kidneys gradually lose their function over time. It’s diagnosed 

and staged primarily based on glomerular filtration rate (GFR), a measure of how well the 

kidneys filter waste from the blood. CKD is usually irreversible but manageable, especially if 

detected early.   

Stages of CKD 

Stage 1 CKD is the earliest stage, where kidney function is still normal, with a glomerular 

filtration rate (GFR) of 90 mL/min/1.73 m² or higher[6]. Although the kidneys are filtering 

blood adequately, there are signs of damage, such as protein or blood in the urine, or 

abnormalities seen on imaging. Patients are often asymptomatic, and CKD at this stage is 

typically found incidentally. Management focuses on treating underlying conditions like 

diabetes or high blood pressure, adopting a healthy lifestyle, and regular monitoring to slow 

progression[8].   

Stage 2 CKD involves a mild reduction in kidney function, with a GFR between 60–89 

mL/min/1.73 m². There may still be no noticeable symptoms, but laboratory signs of kidney 

damage persist[7]. Early diagnosis and proactive measures—such as maintaining blood 

pressure and blood sugar within target levels, avoiding nephrotoxic drugs, and adopting a 

kidney-friendly diet—are essential to prevent further deterioration[2].   

Stage 3 CKD is a moderate decline in kidney function, split into two sub-stages: 3a (GFR 45– 

59) and 3b (GFR 30–44). At this point,[3] symptoms may begin to appear, such as fatigue, 

swelling   



ISSN 2347–3657 

Volume 13, Issue 2, 2025 

 

 

1035 

 

(edema), changes in urination, and signs of anemia due to reduced erythropoietin production. 

Bone mineral disorders and elevated blood pressure may also occur. Regular lab monitoring  

becomes more critical, and patients may need medication for complications like anemia[10]  

.   

Stage 4 CKD is characterized by a severe reduction in kidney function, with a GFR of 

15–29 mL/min/1.73 m². Symptoms become more prominent and may include nausea, 

poor appetite, itching, difficulty concentrating, and disturbed sleep[9]. This stage 

requires close medical supervision, dietary restrictions, and preparations for renal 

replacement therapy (dialysis or transplant), including discussions with a nephrologist.   

Stage 5 CKD, also known as End-Stage Renal Disease (ESRD), occurs when GFR falls 

below 15 mL/min/1.73 m². The kidneys can no longer maintain fluid, electrolyte, and 

waste balance, leading to dangerous toxin buildup (uremia). Symptoms may include 

severe fatigue, shortness of breath, confusion, and swelling[4]. At this stage, survival 

depends on initiating dialysis or undergoing a kidney transplant. Palliative care may 

also be considered in certain cases.   

However, CKD continues to pose a substantial burden on healthcare systems 

worldwide. A multidisciplinary approach involving nephrologists, primary care 

providers, dietitians, and patient education is critical to managing the disease 

effectively and improving quality of life for those affected[6].   

2. Literature Review   

In recent years, researchers have increasingly turned to machine learning (ML) and 

artificial intelligence (AI) techniques for CKD risk prediction and diagnosis. For 

example, studies by Khedun et al. (2020) and Makino et al. (2019) utilized ML 

algorithms such as random forests and support vector machines to predict CKD 

progression based on clinical and demographic data, achieving promising results in 

terms of accuracy and early detection. Moreover, deep learning models like 

conventional neural networks (CNNs) and [10]recurrent neural networks (RNNs) have 

been employed to analyze electronic health records (EHRs) and time series data, 

enabling personalized risk stratification.  

 

Several researchers have contributed to the domain of CKD prediction using machine 

learning, exploring various algorithms and data processing techniques. S. Bincy et al. 

implemented Random Forest and Naïve Bayes models, reporting high accuracy, but 

their work lacked a proper ensemble approach and did not consider model 

interpretability. Anjali Ratnakar and M. Nikitha applied KNN and Logistic Regression, 

showing promising results; however, their model performance dropped due to 

inadequate preprocessing of missing values and class imbalance. T. Rajeswari and Dr. 

S. Vasantha used Decision Trees and reported decent classification, yet overfitting was 

a significant issue due to shallow dataset diversity. R. Chandrika and K. R. Shankar 

explored Support Vector Machines for CKD detection, but their method suffered from 

long training times and difficulty handling nonlinear boundaries effectively.  
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S. Shilpa and S. Kavitha developed a Gradient Boosting model, which improved 

prediction accuracy but did not incorporate interpretability tools like SHAP or LIME 

for clinical insights. Rohit Sharma and Dr. R. S. Rajput utilized ensemble learning 

methods but failed to evaluate their system on real-world clinical datasets, leading to 

limited applicability in practical settings. Rutuja Dange et al. proposed a Decision Tree 

model for CKD detection but ignored feature correlation and scaling, which affected 

the model's stability and performance. K. Rajeswari and J. Indumathi applied artificial 

neural networks, achieving high accuracy, yet the black-box nature of the model posed 

concerns for clinical adoption. Finally, Rajesh R. and R. Kumar presented a 

comparative analysis of multiple ML models, but their study lacked a hybrid ensemble 

approach and did not explore the synergistic effect of combining different classifiers. 

These limitations across various studies highlight the need for a more robust and 

interpretable model, such as the proposed hybrid model combining Random Forest, 

Decision Tree, and Gradient Boosting, which addresses performance, reliability, and 

clinical utility. 

The primary objective of this project is to develop an accurate and efficient machine 

learning-based system for the early prediction of chronic kidney disease (CKD) using 

patient clinical and diagnostic data. By employing a range of classification 

algorithms—including Logistic Regression, K-Nearest Neighbors (KNN), Support 

Vector Machine (SVM), Decision Tree, Random Forest,  Gradient Boosting, and a 

Hybrid Ensemble model—the project aims to identify the most effective model for 

reliable disease detection. The goal is to assist healthcare professionals in making 

timely decisions by minimizing false negatives and ensuring high sensitivity and 

specificity in diagnosis. Additionally, the project seeks to compare model performance, 

analyze feature significance, and highlight the advantages of ensemble and hybrid 

methods in medical data classification. 

 

3. Proposed Method   

 
The proposed method involves designing a machine learning-based predictive system 

for chronic kidney disease (CKD) classification using clinical and laboratory data. The 

approach begins with data preprocessing steps, including handling missing values, 

encoding categorical features, and splitting the dataset into training and testing sets. A 

range of supervised learning algorithms—Logistic Regression, KNN, SVC, Decision 

Tree, Random Forest, and Gradient Boosting—are trained and evaluated. To enhance 

performance and robustness, a hybrid ensemble model is constructed by combining the 

predictions of Decision Tree, Random Forest, and Gradient Boosting classifiers 

through a majority voting mechanism. The performance of each model is assessed 

using metrics such as accuracy, precision, recall, F1-score, and ROC-AUC. The hybrid 

model is proposed as the final solution, demonstrating superior accuracy and reliability 

for early CKD detection. 
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               Fig 1 Proposed model utilizing several machine learning algorithms 

 

 

3.1 Experimental Data Set 

 
This approach makes use of a dataset from the UCI Machine Learning Repository 

[11]referred to as CKD. A total of 24 features and 1 target variable are included in the 

CKD Dataset. It can be broken down into 2 categories, yes or no.The dataset has 25 

attributes, 11 of which are numerical and 14 of which are nominal. For the purposes of 

training machine learning algorithms to make predictions, the entire dataset of 400 

instances is utilized. Out of a total of 400 cases, 250 are classified as having CKD, and 

the remaining 150 are classified as having non-CKD 

 

 
                    Fig 2 Features of Dataset 

3.2 Data processing 

 
Data preprocessing plays a critical role in the success of any machine learning-based 

medical prediction system, especially in the context of chronic kidney disease (CKD) 

detection, where clinical data often includes missing values, inconsistent formats, and 

mixed data types. In this project, preprocessing ensures that the input data is clean, 

structured, and suitable for learning algorithms. Initially, missing values—common in 

real-world medical datasets—are handled through appropriate imputation techniques 
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to prevent information loss and biased predictions. Categorical variables such as "red 

blood cells" or "hypertension" are converted into numerical form using label encoding 

to enable compatibility with algorithms that require numerical input. Feature scaling 

is applied where necessary, especially for models like KNN and SVC that are sensitive 

to the scale of features. Outlier detection and removal further enhance the robustness 

of the model by eliminating noise that could distort training 

 

Some features like pcv (packed cell volume), wc (white blood cell count), and rc (red 

blood cell count) are originally stored as text and must be converted to numerical types. 

In this study, missing values were handled using appropriate imputation techniques, 

and categorical variables were encoded using label encoding to make them compatible 

with machine learning algorithms. The dataset’s heterogeneity, class imbalance, and 

variety of data types make it a suitable benchmark for evaluating the performance of 

classification models in health care prediction tasks.Ultimately, data preprocessing 

ensures the integrity, consistency, and relevance of the dataset, which is essential for 

building a reliable and interpretable CKD prediction system that can assist healthcare 

professionals in making timely and informed decisions. 

 

Effective data processing was a crucial step in preparing the kidney disease dataset for accurate 

machine learning model training[6]. The dataset included a combination of numerical and 

categorical features relevant to kidney function and general health indicators. Initially, the 

dataset was inspected for missing values and inconsistencies. Missing entries were handled 

using mean or mode imputation, depending on whether the attribute was numerical or   

categorical, to preserve the integrity and distribution of the dataset[9].  

    
                Fig 3 Categorical column values  

  

Following imputation, categorical variables were converted into numerical format using Label 

Encoding, ensuring compatibility with scikit-learn algorithms. This transformation was 

essential for models like Logistic Regression, Random Forest, and Gradient Boosting, which 

require numerical input. Subsequently, [10]the entire dataset was split into features (X) and 

target (y) variables, where the target represented the presence or absence of kidney disease. 

Following imputation, categorical variables were converted into a numerical format using 

Label Encoding, ensuring compatibility with scikit-learn algorithms. This transformation was 

essential for models like Logistic Regression, Random Forest, and Gradient Boosting, which 
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require numerical input. Subsequently, the entire dataset was split into features (X) and target 

(y) variables, where the target represented the presence or absence of kidney disease[12].  

  

As part of the data preprocessing phase, correlation analysis was conducted to evaluate the 

strength and direction of relationships between input features in the kidney disease dataset. 

This step was essential for identifying highly correlated variables that could lead to 

multicollinearity, especially in linear models like Logistic Regression[7]. By generating a 

correlation matrix, patterns such as strong positive or negative associations between clinical 

variables—like serum creatinine and blood urea, were examined. This analysis not only 

facilitated a deeper understanding of the underlying data structure but also informed feature 

selection decisions. In cases where features were found to be strongly correlated, redundant 

variables were considered for removal or transformation to enhance model stability and 

interpretability[13]. Overall, correlation analysis served as a valuable tool in refining the input 

space for efficient and accurate model training.   

          
Fig. 4 Correlation   

3.3 Training 
  

 The implementation of a CKD prediction system using machine learning involves 

several critical steps, from data preprocessing to model evaluation and deployment. 

Goal: Implement a system for chronic kidney disease from text data. Various 

traditional machine learning models  and a Hybrid ensemble  approach can be used to 

train and test the CKD   

 

 

classifiers 
 

   

1. Support Vector Machine (SVM)  

Support Vector Machine (SVM) is a supervised learning algorithm that constructs an 

optimal hyperplane to separate data points into different classes with the maximum 

margin. The main idea is to find a boundary that not only separates the classes but also 

is farthest from the nearest data points of each class, known as support vectors[9]. This 
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approach maximizes generalization and minimizes the risk of misclassification. SVM 

can also handle non-linearly separable data using kernel functions like RBF, 

polynomial, or sigmoid, making it highly adaptable to complex datasets. In the context 

of kidney disease prediction, SVM proves useful due to its ability to work well with 

high-dimensional data, even when the sample size is small. It is particularly effective 

when the decision boundary is complex but well-separated in a transformed feature 

space. By adjusting the regularization parameter (C) and selecting appropriate kernels, 

SVM can deliver high classification accuracy[10]. However, it is sensitive to feature 

scaling, and hence, preprocessing like normalization is essential for its success.  

2. K-Nearest Neighbors (KNN)  

 

K-Nearest Neighbors (KNN) is a nonparametric, instance-based learning algorithm 

that classifies data points based on the majority class among the k-nearest neighbors 

in the feature space. It does not assume any underlying distribution of the data, making 

it simple and versatile. KNN uses distance metrics like Euclidean, Manhattan, or 

Minkowski to determine closeness between data points, which makes the choice of 'k' 

and distance function critical for model performance. [12] For kidney disease 

prediction, KNN is particularly helpful in capturing local patterns in the data without 

requiring a learning phase. It adapts naturally to multiclass problems and performs well 

with a well-scaled dataset. However, it is computationally expensive for large datasets 

due to its lazy learning nature and requires careful tuning of ‘k’ to avoid underfitting 

or overfitting. Despite these limitations, KNN often delivers robust results when the 

feature space is appropriately prepared[6].  

3. Decision Tree  

 

A Decision Tree is a flowchart-like structure in which internal nodes represent decision rules 

based on feature values, branches denote outcomes of those decisions, and leaf nodes signify 

class labels. It recursively splits the data [13]to create homogeneous subsets using criteria like 

Gini impurity or entropy. The resulting tree is easy to interpret and visualize, making it a 

favored choice in healthcare settings. In kidney disease classification, decision trees are 

advantageous due to their transparency and ability to handle both numerical and categorical 

data. They can capture non-linear relationships and are unaffected by feature scaling[7]. 

However, decision trees are prone to overfitting, especially when grown deep. Techniques like 

pruning or setting minimum leaf size help mitigate this issue, but alone they may not provide 

the best generalization, thus motivating their use in ensembles.   

 

4. Logistic Regression  

 

Logistic Regression is a statistical model that estimates the probability of a binary 

outcome based on one or more predictor variables[5]]. Unlike linear regression, it uses 

the logistic (sigmoid) function to constrain output between 0 and 1, suitable for 

classification tasks[12]. The coefficients in logistic regression are interpreted as the 

log-odds, providing insights into the impact of each feature on the target class.  
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In kidney disease prediction, logistic regression serves as a strong baseline model. It is 

computationally efficient, easy to interpret, and performs well when the relationship 

between the features and the target variable is linear. Moreover, its probabilistic output 

allows for threshold tuning and performance optimization in imbalanced datasets. 

However, its assumptions of linearity and independence of errors may limit its 

effectiveness in capturing complex, nonlinear interactions[11].   

5. Gradient Boosting  

 

Gradient Boosting is an ensemble technique that builds weak learners (typically decision trees) 

in a sequential manner[8]. Each learner attempts to reduce the errors of the previous one using 

a gradient descent-like procedure to minimize the loss function. It is flexible in handling 

different types of loss functions and can model complex data relationships.  

In medical diagnosis tasks such as kidney disease prediction, gradient boosting is known for 

its high predictive power and adaptability. Though slower to train than some other models, it 

excels in capturing non-linear trends and feature interactions. It can be sensitive to overfitting 

if not properly tuned; thus, controlling learning rate and using early stopping or subsampling 

are recommended strategies during training[6].  

6. Random Forest  

Random Forest is an ensemble of decision trees built using bootstrapped subsets of the 

training data and a random selection of features for each split[7]. By averaging or 

voting the results of these individual trees, the model improves accuracy and reduces 

overfitting. It is robust to noise and outliers and performs well across a wide range of 

datasets.  

In the case of kidney disease detection, Random Forest offers high accuracy and 

interpretability, especially through feature importance scores[6]. It is less sensitive to 

outliers and missing values[3] and can handle high-dimensional data effectively. 

However, its predictions are harder to interpret compared to a single decision tree, and 

training can be computationally intensive with a large number of trees.  

7. Hybrid Model (RF + DT + GB using Soft Voting)  

 

The hybrid model in this study combines Random Forest, Decision Tree, and Gradient 

Boosting using a soft voting ensemble. Soft voting averages the predicted probabilities 

of the individual models to produce a final prediction,[8] thus leveraging the strengths 

of each base classifier. This ensemble approach is designed to enhance robustness, 

reduce model variance, and improve generalization. In the context of kidney disease 

prediction, this hybrid strategy yields improved performance by balancing bias and 

variance. Decision Trees provide interpretability, Random Forest contributes stability, 

and Gradient Boosting enhances accuracy by focusing on hard-to-classify cases[11].  
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4.Performance metrics  

 
Accuracy is a key performance metric used to evaluate the effectiveness of a 

classification model in predicting Chronic Kidney Disease (CKD). It is defined as the 

ratio of correctly predicted cases—both CKD and non-CKD—to the total number of 

cases evaluated[8].Precision is an important performance metric for evaluating a 

classification model's effectiveness in predicting Chronic Kidney Disease (CKD). It 

measures the proportion of true positive predictions (correctly identified CKD cases) 

out of all instances that the model predicted as CKD. High precision indicates that the 

model makes few false positive errors, meaning it rarely misclassifies non-CKD 

patients as having the disease. This is particularly crucial in medical applications, 

where a false positive can lead to unnecessary stress, additional testing, and treatment 

for healthy individuals.  

 

Recall, also known as sensitivity or true positive rate, is a critical performance metric 

for evaluating a classification model's ability to identify Chronic Kidney Disease 

(CKD) cases accurately. It measures the proportion of actual CKD patients that are 

correctly predicted by the model. In medical diagnosis, recall is especially important 

because it reflects the model’s effectiveness in detecting the presence of disease and 

minimizing the risk of missed diagnoses[7].The F1-score is a valuable performance 

metric for evaluating the prediction of Chronic Kidney Disease (CKD), especially in 

cases where there is an imbalance between positive and negative classes. It is the 

harmonic mean of precision and recall, combining both metrics into a single score that 

balances the trade-off between false positives and false negatives[4]. Support is a 

metric that refers to the number of actual occurrences of each class in the dataset—in 

the case of Chronic Kidney Disease (CKD), it represents how many instances in the 

dataset truly belong to the CKD and non-CKD categories 

 

5. Results and Discussion  

  
The Results and Discussion section is a critical component of this research, as it bridges 

the gap between experimental analysis and real-world interpretation. It provides a 

detailed evaluation of how each machine learning model performed, highlighting the 

practical effectiveness of the proposed hybrid model in accurately predicting chronic 

kidney disease[4]. This section not only validates the performance of the models 

through quantitative metrics like accuracy, precision, recall, and F1-score but also 

offers insights into the implications of these findings for clinical decision-making. 

Discussing misclassifications, model behavior on imbalanced data, and comparative 

strengths of different algorithms enables a deeper understanding of model reliability 

and applicability in healthcare. Ultimately, the results screening systems[3]. 

  

The kidney disease prediction system was implemented using  machine learning 

models[10]: Logistic Regression, K-Nearest Neighbors (KNN), Support Vector 

Classifier (SVC), Decision Tree, Random Forest, Gradient Boosting, and a Hybrid 

Ensemble model[12]. The models were evaluated using standard classification 

metrics including accuracy, precision, recall, and F1-score, along with ROC-AUC 
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scores and visualizations such as ROC curves and bar plots. Among all classifiers, 

the Hybrid model demonstrated superior performance, achieving a testing accuracy 

of 98.75% and an F1-score of 0.99, indicating a well-balanced and highly reliable 

model[11]. The  Gradient boost, Random Forest classifiers also yielded strong 

results, closely matching Hybrid model in performance.

 
  

Fig. 5. Model comparision  

 

Model  Training 

accuracy  

Testing 

Accuracy  

F1 score  Precision  Recall  

Gradient boost  100%  98.75%  98%  96%  96%  

Hybrid(DT+GB+RF)  100%  98.75%  99%  98%  99%  

Random forest  99.37%  97.5%  97%  98%  96%  

Decision tree  98.75%  96.25%  96%  97%  95%  

Logistic Regression  88.75%  92.5%  92%  92%  92%  

Supportvector 

machine  

99.68%  81.25%  79%  80%  78%  

KNN  78.43%  71.25%  70%  70%  71%  

XgBoost  61.87%  65%  39%  33%  50%  

                                               Table1  Experimental results  

6. Conclusion   

 
This study demonstrated the application of multiple machine learning algorithms for the early 

prediction of chronic kidney disease, using clinical and laboratory features from patient data. 
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Among all the models evaluated, the Hybrid Ensemble Model, which combines Decision Tree, 

Random Forest, and Gradient Boosting classifiers, achieved the highest accuracy, 

outperforming individual models. This approach leveraged the strengths of each base learner, 

resulting in improved generalization and predictive stability. The superior performance of the 

hybrid model highlights the potential of ensemble-based techniques in clinical decision support 

systems, where early and accurate disease detection is critical. These results emphasize the 

importance of model diversity and voting mechanisms in medical diagnostics and support the 

use of hybrid ensemble learning as a reliable tool for kidney disease prediction.  

 

References: 

.1. Almasoud M., Ward T.E. Detection of chronic kidney disease using machine learning 

algorithms with the least number of predictors. Int J Soft Comput Appl. 2019; 

 

2. Arora M., Sharma E.A. Chronic kidney disease detection by analyzing medical datasets in 

weka. Int J Comput Mach Learn Algor New Adv Mach Learn. 2016;3:19–48 

 

3. Banik S., Ghosh A. Prevalence of chronic kidney disease in Bangladesh: a systematic 

review and meta-analysis. Int Urol Nephrol. 2021;53:713–718. doi: 10.1007/s11255-020-

02597-6.  

 

4..Charleonnan A., Fufaung T., Niyomwong T., Chokchueypattanakit W., Suwannawach S., 

Ninchawee N. 2016 Management and Innovation Technology International Conference 

(MITicon) IEEE; 2016. Predictive analytics for chronic kidney disease using machine learning 

techniques. pp. MIT–80.  

 

5..Chen Z., Zhang X., Zhang Z. Clinical risk assessment of patients with chronic kidney 

disease by using clinical data and multivariate models. Int Urol Nephrol. 2016;48:2069–2075. 

doi: 10.1007/s11255-016-1346-4.  

 

6..Chittora P., Chaurasia S., Chakrabarti P., et al. Prediction of chronic kidney disease machine 

learning perspective. IEEE Access. 2021;9:17312–17334.  



ISSN 2347–3657 

Volume 13, Issue 2, 2025 

 

 

1045 

 

.7. Cueto-Manzano A.M., Cortés-Sanabria L., Martínez-Ramírez H.R., Rojas-Campos E., 

Gómez-Navarro B., Castillero-Manzano M. Prevalence of chronic kidney disease in an adult 

population. Arch Med Res. 2014;45:507 513. doi: 10.1016/j.arcmed.2014.06.007.  

 

8. Qin J., Chen L., Liu Y., Liu C., Feng C., Chen B. A machine learning methodology for 

diagnosing chronic kidney disease. IEEE Access. 2019. 

 

9.Fatima M., Pasha M. Survey of machine learning algorithms for disease diagnosis. J Intel 

Learn Syst Appl. 2017;9(01):1.  

 

10. Gudeti B., Mishra S., Malik S., Fernandez T.F., Tyagi A.K., Kumari S. 2020 4th 

International Conference on Electronics, Communication and Aerospace Technology 

(ICECA) IEEE; 2020. A novel approach to predict chronic kidney disease using machine 

learning algorithms; pp. 1630–1635.  

 

11. Heung M., Chawla L.S. Predicting progression to chronic kidney disease after recovery 

from acute kidney injury. Curr Opin Nephrol Hypertens. 2012;21:628–634. doi: 

10.1097/MNH.0b013e3283588f24. ] 

 

12 Saringat Z., Mustapha A., Saedudin R.R., Samsudin N.A. Comparative analysis of 

classification algorithms for chronic kidney disease diagnosis. Bull Elect Eng Inform. 

2019;8:1496–1501 

 

13.Zhang L., Wang F., Wang L., et al. Prevalence of chronic kidney disease in china: a cross-

sectional survey. The Lancet. 2012. 

 


