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---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract -Fatigue among air traffic controllers 

(ATCs) has become a critical issue for flight safety, 

particularly with the increasing volume of global air 

traffic. Accurately detecting fatigue is essential, as it 

directly influences the safety and operational 

efficiency of air traffic control. In this study, we 

propose a non-invasive approach to fatigue detection 

by analyzing both facial and vocal characteristics of 

ATCs. We first developed efficient methods for 

facial feature extraction, enabling us to track 

indicators such as "percentage of eyelid closures" 

and yawning frequency from video footage. 

Additionally, we extracted a range of vocal features 

from audio data, including average fundamental 

frequency, short-time average magnitude, short-time 

zero-crossing rate, harmonic-to-noise ratio, jitter, 

shimmer, loudness, and Mel-frequency cepstral 

coefficients. These facial and vocal features were 

transformed into temporal sequences and fed into a 

dynamic fuzzy neural network (DFNN). By 

combining these data with the Stanford Sleepiness 

Scale, we were able to accurately assess and predict 

ATC fatigue levels 
 

Key Words: Air traffic control, artificial intelligence, 
facialfeatures(PERCLOS,Yawning),fatigue detection, 
DFNN(Dynamic Fuzzy Neural networks) ,vocal 
features(MFCC). 

1.INTRODUCTION 

The aviation industry has witnessed a significant 
upsurge in air traffic volume and operational 
complexity, placing unprecedented cognitive 
demands on Air Traffic Controllers (ATCs). As the 
guardians of safe and efficient airspace 
management, ATCs must maintain high levels of 
alertness during their shifts. However, the intense 
workload, long hours, and high responsibility often 

result in fatigue—a condition recognized as a 
leading cause of human error in aviation operations. 
Research has consistently shown that fatigue 
contributes to a substantial proportion of aviation-
related incidents, accounting for nearly 15–20% of 
all accidents. 

In recognition of this risk, the International Civil 

Aviation Organization (ICAO) has adopted multiple 

guidelines and safety frameworks aimed at 

monitoring and managing ATC fatigue. Among 

these initiatives is the Aviation System Block 

Upgrades (ASBU) program, which underscores the 

importance of integrating advanced monitoring tools 

and artificial intelligence (AI) to improve decision-

making support systems. Despite these efforts, the 

ability to accurately and non-invasively detect ATC 

fatigue in real-time remains an active area of 

research. 

Traditional approaches to fatigue detection are 

typically categorized into three domains: 

physiological signal-based methods, subjective self-

assessment questionnaires, and behavioral analysis 

via computer vision. Physiological signal-based 

techniques—such as EEG, ECG, and EOG—offer 

high accuracy but suffer from practicality issues in 

operational settings due to the requirement for sensor 

attachments. Self-report measures, such as the 

Karolinska Sleepiness Scale (KSS) or the Stanford 

Sleepiness Scale (SSS), provide useful insights but 

depend heavily on individual perception and are 

unsuitable for continuous monitoring. Behavioral 

analysis through facial and vocal cues presents a 

non-invasive alternative, offering potential for real-

time deployment without interfering with ATC 

duties. 

Building on this foundation, recent developments in 

machine learning (ML) and artificial intelligence 
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have enabled the creation of automated systems that 

learn patterns from facial expressions and voice data 

to detect fatigue. Among these, models based on 

Long Short-Term Memory (LSTM) networks have 

gained traction due to their capacity to model 

sequential data. However, while LSTM architectures 

excel in capturing temporal dependencies, they often 

require extensive training data and exhibit 

challenges in interpretability—particularly in safety-

critical environments such as air traffic control. 

To address these limitations, our research introduces 

a novel Dynamic Fuzzy Neural Network (DFNN)-

based approach for detecting ATC fatigue. The 

DFNN model offers several key advantages: it 

integrates the adaptability of neural networks with 

the interpretability of fuzzy logic, supports dynamic 

rule formation, and is highly effective in 

environments where data uncertainty and nonlinear 

relationships prevail. Unlike LSTM can weigh 

features differently based on their fuzzy membership 

functions, enabling a more nuanced understanding of 

fatigue indicators. 

In our proposed method, we adopt a multimodal 

feature extraction process, encompassing both facial 

features—such as Eye Aspect Ratio (EAR), Mouth 

Aspect Ratio (MAR), and blink/yawn frequency—

and vocal features, including Harmonics-to-Noise 

Ratio (HNR), jitter, shimmer, Mel-Frequency 

Cepstral Coefficients (MFCCs), and loudness. These 

features are captured from synchronized video and 

audio recordings of ATCs under varying levels of 

fatigue. 

A distinguishing component of our framework is the 

dynamic fuzzy rule base within the DFNN, which 

continuously updates the relationships between 

inputs (facial/vocal features) and outputs (fatigue 

levels) based works, which treat input features 

uniformly, DFNN In our proposed method, we adopt 

a multimodal feature extraction process, 

encompassing both facial features—such as Eye 

Aspect Ratio (EAR), Mouth Aspect Ratio (MAR), 

and blink/yawn frequency—and vocal features, 

including Harmonics-to-Noise Ratio (HNR), jitter, 

shimmer, Mel-Frequency Cepstral Coefficients 

(MFCCs), and loudness. These features are captured 

from synchronized video and audio recordings of 

ATCs under varying levels of fatigue. 

A distinguishing component of our framework is the 

dynamic fuzzy rule base within the DFNN, which 

continuously updates the relationships between 

inputs (facial/vocal features) and outputs (fatigue 

levels) based on new observations. This dynamic 

learning capability is critical in real-world scenarios 

where fatigue manifestations may vary between 

individuals or over time. Moreover, the integration 

of the Stanford Sleepiness Scale (SSS) as a ground 

truth label allows the system to align its predictions 

with a well-established psychological measure of 

alertness. 

Compared to prior work, our contributions can be 

summarized as follows: 

Introduction of DFNN for fatigue detection: We 

present a DFNN-based system that leverages fuzzy 

logic to manage uncertainty in physiological and 

behavioral features, enhancing interpretability and 

adaptability over traditional deep learning models 

like LSTM. 

Multimodal fatigue feature extraction: By fusing 

facial and vocal features, the model captures a 

comprehensive picture of fatigue states, overcoming 

the limitations of unimodal systems. 

Continuous fatigue level prediction: Rather than 

binary classification (fatigued vs. alert), our model 

supports multi-class fatigue level assessment based 

on SSS scores, providing a more refined and 

actionable understanding of controller alertness. 

Non-intrusive and real-time applicable system: 

The proposed framework is designed for operational 

environments, requiring only standard audio-visual 

input and avoiding the need for intrusive sensors. 

 2.LITERATURE REVIEW 

Fatigue detection in air traffic controllers (ATCs) 

has emerged as a vital concern due to the growing 

complexity of airspace and the increased demand on 

human operators. The International Civil Aviation 

Organization (ICAO) acknowledges fatigue as a 

significant factor influencing aviation safety, urging 

the implementation of fatigue risk management 

systems (FRMS) across air navigation service 

providers [1]. Fatigue, both mental and physical, 

impairs decision-making, reaction time, and 
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alertness, and it is estimated to contribute to 15–20% 

of aviation-related incidents [2]. 

Numerous methods have been developed for 

detecting operator fatigue, which can be categorized 

into physiological, subjective, and behavioral 

techniques. Physiological-based methods rely on 

biosignals such as EEG, ECG, and EOG to monitor 

brain activity, heart rhythm, and eye movements, 

respectively [3]. While effective, these methods are 

intrusive and impractical for real-time ATC 

applications. For instance, studies by Ahn et al. [4] 

employed EEG and fNIRS for fatigue assessment, 

achieving high accuracy but requiring cumbersome 

sensor setups. Questionnaire-based tools, such as the 

Stanford Sleepiness Scale (SSS) [5], Karolinska 

Sleepiness Scale (KSS) [6], and Fatigue Scale-14 

[7], offer non-intrusive alternatives but depend on 

self-reporting and cannot operate in real time. 

Behavioral approaches have gained popularity due to 

their non-intrusive nature. Facial expression analysis 

using computer vision has become a reliable method 

for detecting signs of fatigue such as blinking rate, 

eye closure duration, and yawning frequency [8]. 

The use of Percentage of Eyelid Closure 

(PERCLOS) as a fatigue indicator was pioneered by 

Wierwille et al. [9] and has since been validated 

through correlations with KSS ratings [10]. 

Moreover, models like MTCNN and MediaPipe 

allow accurate facial landmark detection, enabling 

precise computation of Eye Aspect Ratio (EAR) and 

Mouth Aspect Ratio (MAR), which are closely 

linked to fatigue symptoms [11]. 

Machine learning (ML) has enabled more 

sophisticated and scalable fatigue detection. 

Traditional classifiers like Support Vector Machines 

(SVMs) and decision trees have been used for binary 

fatigue classification, but they lack the capability to 

model time-dependent patterns [12]. The advent of 

deep learning, particularly Recurrent Neural 

Networks (RNNs) and Long Short-Term Memory 

(LSTM) models, has significantly advanced fatigue 

prediction by capturing sequential dependencies in 

behavior [13]. Zhao et al. [14] developed an EM-

CNN model that combined eye and mouth regions to 

identify fatigue, while Chen et al. [15] utilized facial 

key point sequences to detect gradual fatigue 

changes using LSTM. 

The inclusion of vocal features in fatigue detection 

has further improved model performance. Speech 

signals reflect cognitive and emotional states, and 

indicators such as pitch (F0), jitter, shimmer, 

loudness, Harmonic-to-Noise Ratio (HNR), and 

Mel-Frequency Cepstral Coefficients (MFCCs) are 

sensitive to fatigue-induced variations [16]. 

Milosevic [17] and Li et al. [18] explored fatigue 

classification based on voice analysis, achieving 

promising results. Gao et al. [19] confirmed strong 

correlations between speech-based indicators and 

SSS scores, suggesting voice can serve as a reliable, 

complementary signal for fatigue estimation. 

Multimodal systems that integrate facial and vocal 

features have shown superior results over single-

modality systems. Hu et al. [20] proposed a facial-

vocal stacking method that reached 97% accuracy in 

fatigue detection, highlighting the value of data 

fusion. Similarly, Liang et al. [21] developed an 

Enhanced Structured Dynamic Fuzzy Neural 

Network (ES-DFNN) to monitor eye-based fatigue 

signs in ATCs, illustrating the applicability of fuzzy 

logic for dynamic environments. 

To improve granularity in fatigue detection, 

researchers have turned toward multi-class 

classification systems. Rather than simply labeling 

individuals as fatigued or not, models are now 

trained to recognize various levels of fatigue, 

enabling better decision-making in high-stakes 

environments. For example, Shen and Wei [22] 

proposed a deep learning network that extracted 

high-precision features to assess fatigue intensity. 

Yu et al. [23] introduced RecMF, an attention-based 

CNN-LSTM framework combining EEG and eye 

tracking data to classify mental fatigue in ATCs. 

In terms of dataset support, the University of Texas 

at Arlington’s RLDD dataset [24] has been 

extensively used for multi-stage drowsiness 

detection. While this dataset lacks audio, it provides 

valuable annotated facial video data under different 

vigilance levels. Custom datasets built through sleep 

deprivation experiments—where SSS scores are 

used to label fatigue—have also helped validate new 

models. These efforts enable the training of models 

that can generalize across real-world conditions. 

From a technical standpoint, model variants like 

Bidirectional LSTM (Bi-LSTM) and Gated 

Recurrent Units (GRU) further enhance time-series 
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learning by capturing bidirectional dependencies and 

minimizing training time [25]. Optimized LSTM-

based models employing sliding window techniques 

and hyperparameter tuning via grid search and K-

fold cross-validation have achieved state-of-the-art 

performance in fatigue recognition tasks [26]. 

Moreover, confidence-based evaluations using 

Monte Carlo simulations confirm the statistical 

reliability of these models [27]. 

Despite the high accuracy achieved in experimental 

settings, challenges remain. Many models fail to 

generalize due to limited or biased training data. 

External factors like lighting, camera angles, and 

background noise can affect feature extraction 

quality. Additionally, fatigue detection systems must 

be explainable, particularly in aviation, where safety 

decisions require transparency. Unlike black-box 

models like CNNs, systems like DFNNs and 

interpretable LSTM-based networks allow rule-

based reasoning and traceability [28]. 

3. METHODOLOGY  

3.1 DFNN 

In this study, a fatigue detection system is developed 

based on a Dynamic Fuzzy Neural Network (DFNN) 

model utilizing facial features extracted using the 

dlib library. The dataset comprises video recordings 

of air traffic controllers captured during simulated 

operational tasks, where fatigue is induced through 

sleep deprivation protocols. Each video is segmented 

into short clips to ensure temporal resolution 

sufficient for capturing micro-expressions such as 

eyelid closures and yawning. From each frame, 

facial landmarks are detected using dlib’s 68-point 

facial landmark predictor. Two primary features are 

extracted: Eye Aspect Ratio (EAR) and Mouth 

Aspect Ratio (MAR). EAR is computed to estimate 

eyelid closure over time, which is used to derive 

PERCLOS—a standard fatigue metric indicating the 

percentage of eye closure over time. Similarly, MAR 

is calculated to detect prolonged mouth opening 

indicative of yawns, a common physiological marker 

of fatigue. 

Once features are extracted, the data is normalized 

using standard scaling, and fatigue labels are 

assigned based on heuristic thresholds: EAR below 

0.2 and MAR above 0.4 are considered indicative of 

a fatigued state. The labeled dataset is then split into 

training and testing subsets in a 70:30 ratio. The 

DFNN model is constructed as a multi-layer 

perceptron (MLP)-based neural architecture 

simulating fuzzy logic behavior. It includes multiple 

hidden layers (256, 128, 64, 32 neurons) to model 

nonlinear relationships between input features and 

fatigue levels, with ReLU activation functions and 

the Adam optimizer used for efficient training 

.

 

Figure 1:facial features 

The model is trained on the EAR and MAR features, 
and the performance is evaluated using standard 
metrics including accuracy, precision, recall, F1-
score, and confusion matrix analysis. Statistical 
plots such as PERCLOS and yawn trends over time 
are also generated to visualize the correlation 
between physiological indicators and fatigue 
classification. The system achieves high accuracy  in 
binary fatigue detection, demonstrating the 
effectiveness of integrating fuzzy logic principles 
into deep neural architectures for real-time fatigue 
monitoring. 

A.Facial Features 

1. Face and Facial Key-Point Detection 

Identifying facial regions and key landmarks is a 

fundamental step in the proposed fatigue detection 

framework. Accurately locating key facial points—

especially around the eyes and mouth—is essential 

for extracting meaningful features that reflect 

fatigue symptoms such as blinking and yawning. 

Variability in facial orientation, lighting, and user 

posture introduces complexity to this task. 
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To detect facial landmarks, the face must first be 

located in the video frame. Several approaches exist 

for this purpose, including convolutional neural 

network-based models such as Multi-task Cascaded 

Convolutional Networks (MTCNN), Mask R-CNN, 

and the dlib library’s CNN face detector. While 

models like MediaPipe offer higher frame rates and 

a dense set of landmarks suitable for real-time 

applications, this study adopts the dlib library for its 

robust 68-point landmark detection capability, 

which balances accuracy and computational 

efficiency for fatigue-related feature  

2) Mouth -Based Features 

In addition to analyzing eye-based indicators, this 

study also incorporates mouth features to enhance 

fatigue detection accuracy. One of the most reliable 

signs of fatigue is yawning, which can be observed 

through changes in mouth shape and movement. To 

measure this, facial landmark detection techniques 

are used to isolate key points around the mouth.  

Using mediapipe 468-point model, we define the 

MAR as follows: 

MAR=        ∥p82−p87∥+∥p312 −p317∥+2∥p13 −p14∥ 

                             4∥p78 −p308∥ 

MAR :Mouth aspect ratio 

EAR = ∥p160 −p144∥+∥p158 −p153∥+2∥p159-p145∥  

                              4∥p33 −p133∥  

EAR:Ear aspect ratio(for left eye)             

   

EAR= ∥p386 −p374∥+∥p385−p380∥+2∥p387 −p373∥  

                            4∥p362 − p263∥ 

EAR:Ear aspect ratio(for right eye)             

The MAR is computed using distances between 

vertical and horizontal mouth landmarks, following 

a defined geometric relationship. It is calculated by 

summing the distances between the upper and lower 

inner lips and dividing by the horizontal distance 

between the corners of the mouth. The formula 

accounts for multiple vertical segments to better 

represent mouth openness. When the mouth is closed 

or the subject is silent, MAR remains near zero. 

During regular speech, MAR values typically 

increase to around 0.2. However, when a yawn 

occurs—an established marker of fatigue—the MAR 

rises significantly, often exceeding 0.4. By 

continuously monitoring MAR fluctuations in real-

time video, the system is able to effectively detect 

yawning events and infer potential fatigue states. 

C. VOCAL FEATURES 

In the context of fatigue detection, MFCCs can help 

distinguish between clear, alert speech and speech 

that becomes slurred, slow, or dull due to tiredness. 

MFCCs capture these subtle acoustic changes by 

converting the audio into short overlapping frames 

and then analyzing each frame's frequency content. 

They simulate the human auditory system by 

emphasizing frequencies that the human ear is more 

sensitive to and compressing less important ones. 

Because human hearing does not perceive frequency 

in a linear way—our ears are more sensitive to lower 

frequencies than higher ones—the frequency axis is 

converted to the Mel scale before extracting cepstral 

coefficients. 

 

Figure 2:frame work model of dfnn 

 



ISSN 2347–3657 

Volume 13, Issue 2, 2025 

 
 

 

 

1051 
 

 

Figure 3:structure of fuzzy model 

3.2 3D CNN 

A 3D Convolutional Neural Network (3D CNN) is a 

type of deep learning architecture specifically 

designed to process volumetric or spatiotemporal 

data. Unlike traditional 2D CNNs that apply 

convolution operations over two-dimensional data 

such as images (height × width), 3D CNNs extend 

this concept to include a third dimension—typically 

depth or time. This makes them especially effective 

for applications involving video analysis, medical 

imaging (e.g., MRI or CT scans), human activity 

recognition, and any scenario where the spatial and 

temporal context is critical. 

The fundamental unit of a 3D CNN is the 3D 

convolutional layer. Instead of sliding a 2D kernel 

over a 2D image, the 3D CNN employs a three-

dimensional kernel that moves through the height, 

width, and depth (or time) of the input volume. This 

allows the network to extract features not just from 

spatial dimensions but also from temporal or 

sequential patterns. For example, in a video, a 3D 

CNN can capture motion and appearance 

simultaneously by analyzing multiple consecutive 

frames as a single input block. 

 

Figure 4:structure of 3D CNN 

Typically, the architecture starts with one or more 

3D convolutional layers, followed by 3D pooling 

layers that reduce the spatial-temporal dimensions 

while retaining the most critical features. Common 

pooling methods include 3D max pooling or average 

pooling, which operate on small 3D regions of the 

input. Activation functions like ReLU are applied 

after each convolution or pooling layer to introduce 

non-linearity. The network may also include batch 

normalization and dropout layers to improve 

generalization and training stability. 

After several stages of 3D convolution and pooling, 

the resulting feature maps are flattened and passed 

through fully connected layers for classification or 

regression tasks. Depending on the application, a 

softmax function is typically used in the final layer 

for multi-class classification problems. 

One of the key advantages of 3D CNNs is their 

ability to learn representations that consider both 

spatial and temporal dependencies simultaneously. 

This leads to improved performance in tasks where 

changes over time or depth matter, such as detecting 

actions in videos or identifying anomalies in 3D 

medical scans. However, 3D CNNs require 

significantly more computational resources and 

memory than their 2D counterparts due to the added 

complexity of the third dimension. 

In summary, 3D CNNs offer a powerful framework 

for processing and learning from volumetric and 

time-series data. Their architecture, which extends 

standard convolution operations into three 

dimensions, enables them to model complex patterns 

in dynamic or three-dimensional environments with 

greater precision. 

4.DATASET AND FUNCTIONING 
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The UTA RLDD Fold 5 dataset provides annotated 

video sequences for analyzing dynamic road lighting 

conditions, serving as a valuable resource for 

autonomous driving and smart city research. This 

carefully curated collection captures realistic 

illumination variations, including day-night 

transitions, weather effects, and artificial lighting 

scenarios. Organized for robust model evaluation, it 

follows a five-fold cross-validation scheme with 

Fold 5 designated for testing. Each frame includes 

detailed lighting condition labels, enabling both 

spatial and temporal analysis of illumination 

patterns. The dataset supports development of 

advanced vision systems that combine spatial 

processing with temporal modeling, addressing real-

world challenges like gradual lighting changes and 

sudden glare effects. Its video-based format offers 

significant advantages over static image datasets by 

capturing lighting evolution over time, crucial for 

practical transportation applications. Researchers 

can leverage this resource to improve nighttime 

vehicle safety systems, optimize urban lighting 

infrastructure, and develop more robust perception 

algorithms for varying illumination conditions. The 

dataset's realistic scenarios and precise annotations 

make it particularly useful for benchmarking 

computer vision models in dynamic lighting 

environments.

 

Figure 5:frames of dataset 

Researchers can leverage this resource to improve 

nighttime vehicle safety systems, optimize urban 

lighting infrastructure, and develop more robust 

perception algorithms for varying illumination 

conditions. The dataset's realistic scenarios and 

precise annotations make it particularly useful for 

benchmarking computer vision models in dynamic 

lighting environments. 

5.RESULTS AND DISCUSSION 

After training, the different algorithms were 

used for  on the test set. 

The result of DFNN(Dynamic Neural 

Network) is shows the accuracy and loss in 

training and testing  as shown in below : 

 

 

Figure 6:accuracy over epochs 

 

Figure 7:loss over epochs 

 

And the confusion matrix of DFNN is the performance of  

Fuzzy logic .Confusion matrix shows the true labels and 

predicted labels on X-axis and Y-axis 
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Figure 8:confusion matrix of DFNN 

On the other side 3D CNN results shows the 

accuracy and loss in training and testing 

 

Figure 9:accuracy over epochs 

 

 

 

 

 

 

 

Figure 10:loss over epochs 

 

 

Figure 11:confusion matrix of 3D CNN 

6. CONCLUSIONS 

In this study, we compared the performance of the 

Dynamic Fuzzy Neural Network (DFNN) model 

with the 3D Convolutional Neural Network (3D 

CNN) for fatigue detection. While both models 

showed the ability to process complex data, the 

DFNN model achieved higher accuracy. This result 

highlights the strength of DFNN in handling 

uncertainty and adapting to different input patterns, 

especially when dealing with human behavior like 

fatigue. Unlike 3D CNNs, which are good at 

capturing spatial and temporal features, DFNN 

offers better flexibility and decision-making through 

its fuzzy logic. Therefore, DFNN is more suitable 
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and effective for fatigue detection tasks in real-world 

situations like air traffic control. 
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