

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1080

SOFTWARE DEFECT PREDICTION USING INTELLIGENT

ENSEMBLE BASED MODEL

1Mrs. Ch. Deepika, Asst.Professor, 2A. CHANDANA LAHARI ,3Y. YASASVY CHOWDHARY,

4 R. RAJITHA, 5V. AKHILA

EMAIL: deepika3062@gmail.com

Vijaya Institute of Technology for Women

(Affiliated to J.N.T.U Kakinada, Approved by A.I.C.T.E, New Delhi)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

ABSTRACT

Software defect prediction is a critical task in software engineering, aiming to identify potential

defects in software modules before deployment. Accurate defect prediction helps in improving

software quality, reducing maintenance costs, and optimizing testing efforts. Traditional

machine learning models have been widely used for this purpose, but their performance often

varies across datasets due to data imbalance and feature complexity. To address these

challenges, this study proposes an intelligent ensemble-based model for software defect

prediction. The ensemble approach integrates multiple base learners, combining their strengths

to enhance prediction accuracy and generalization capabilities. The proposed model

incorporates feature selection techniques to eliminate redundant and irrelevant features,

thereby improving learning efficiency. Various machine learning algorithms, including

decision trees, support vector machines, and deep learning models, are combined using an

optimized weighting strategy to maximize predictive performance. The experimental

evaluation is conducted on publicly available defect datasets, and results demonstrate that the

ensemblebased model outperforms individual classifiers in terms of precision, recall, and

overall classification accuracy. This approach provides a robust and scalable solution for defect

prediction, aiding software developers in making informed decisions. Future research will

focus on further optimizing ensemble strategies and exploring deep learning advancements for

enhanced defect prediction.

1. INTRODUCTION

Software development is a complex process

that involves designing, coding, testing, and

deploying applications to meet user

requirements. Despite rigorous testing and

quality assurance practices, software

defects remain a significant challenge in the

industry.

Defective software can lead to financial

losses, security vulnerabilities, and

customer dissatisfaction. Identifying and

predicting defects early in the development

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1081

lifecycle can help software engineers take

proactive measures to improve software

quality and reliability. Software defect

prediction is an area of research that focuses

on using machine learning and statistical

techniques to analyze historical software

data and predict potential defects in new or

modified code.

Traditional approaches to defect prediction

rely on manual code reviews and static

analysis techniques, which are often time-

consuming and prone to human error.

Machine learning-based models have

emerged as a promising alternative,

leveraging historical defect data to identify

patterns and predict potential issues.

However, the effectiveness of these models

is influenced by factors such as data quality,

feature selection, and model selection.

Single classifier-based models often

struggle with issues like overfitting, class

imbalance, and limited generalization

capabilities, which can affect their

predictive performance. To address these

challenges, ensemble learning techniques

have been proposed as an effective strategy

for software defect prediction. Ensemble

methods combine multiple base learners to

enhance prediction accuracy and

generalization. By leveraging the strengths

of different machine learning algorithms,

ensemble models can mitigate the

weaknesses of individual classifiers and

improve defect prediction performance.

The fundamental idea behind ensemble

learning is that different models capture

different patterns in the data, and by

aggregating their predictions, a more

reliable and accurate outcome can be

achieved. This study proposes an intelligent

ensemble-based model for software defect

prediction. The model integrates multiple

machine learning algorithms, such as

decision trees, support vector machines,

and deep learning models, to enhance

predictive performance. Feature selection

techniques are also incorporated to remove

irrelevant and redundant features, ensuring

that the model focuses on the most

significant factors affecting defect

prediction. The ensemble approach utilizes

an optimized weighting strategy to combine

the predictions of individual The

effectiveness of the proposed model is

evaluated using publicly available software

defect datasets. These datasets contain

historical defect information from various

software projects, including metrics such as

code complexity, lines of code, and

historical defect rates. The performance of

the ensemble model is compared with

individual classifiers using standard

evaluation metrics such as precision, recall,

F1-score, and accuracy. Experimental result

demonstrate that the ensemble-based

approach outperforms traditional single

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1082

classifiers, providing a more reliable and

scalable solution for defect prediction. The

motivation behind this research stems from

the need for more accurate and efficient

defect prediction models in software

engineering. With the increasing

complexity of modern software systems,

traditional testing and debugging

approaches are no longer sufficient to

ensure highquality software. Automated

defect prediction models can significantly

reduce testing efforts, allowing software

developers to allocate resources more

efficiently and prioritize defect-prone

modules. One of the key challenges in

software defect prediction is the presence of

imbalanced datasets, where the number of

defective modules is significantly lower

than non-defective ones. This class

imbalance can lead to biased predictions,

where models tend to favor the majority

class, resulting in poor recall for defective

modules. To address this issue, the

proposed ensemble model incorporates

techniques such as data resampling, cost-

sensitive learning, and balanced training

strategies to improve defect detection in

minority-class instances. Another challenge

is the selection of relevant features for

defect prediction. Software metrics, such as

code complexity, coupling, and cohesion,

play a crucial role in determining

defectprone modules. However, not all

features contribute equally to prediction

accuracy, and some may introduce noise,

leading to decreased model performance.

The proposed model integrates feature

selection techniques, including correlation-

based filtering and wrapper-based methods,

to identify the most informative features

and enhance learning efficiency.

Furthermore, the

choice of base learners in an ensemble

model significantly impacts its

performance. While some classifiers excel

at capturing linear relationships, others are

better suited for complex, nonlinear

patterns. By combining different types of

classifiers, the ensemble approach ensures

that diverse learning perspectives are

considered, leading to improved

generalization. The weighting strategy used

in the ensemble further optimizes the

contribution of each base learner, ensuring

that high-performing models have a greater

influence on the final prediction.

The contributions of this research can be

summarized as follows:

1. The development of an intelligent

ensemble-based model that integrates

multiple machine

learning algorithms to improve software

defect prediction accuracy.

2. The incorporation of feature selection

techniques to enhance learning efficiency

and eliminate

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1083

redundant features.

3. The implementation of an optimized

weighting strategy to combine base learners

effectively.

4. The evaluation of the proposed model

using publicly available defect datasets and

a comparison with traditional single

classifiers.

5. The exploration of strategies to address

class imbalance and improve defect

detection for minority-class instances.

The rest of this paper is organized as

follows. The literature review section

provides an overview of existing defect

prediction techniques and discusses their

limitations. The methodology section

describes the proposed ensemble-based

model, including data preprocessing,

feature selection, and classifier integration.

The experimental results section presents

the evaluation metrics and compares the

performance of the proposed model with

baseline classifiers. Finally, the conclusion

and future work section highlights the key

findings and suggests potential directions

for further research. In summary, this study

aims to enhance software defect prediction

by leveraging an intelligent ensemble-

based model. By integrating multiple

machine learning algorithms and

optimizing feature selection, the proposed

approach provides a robust and scalable

solution for defect prediction.

2. LITERATURE REVIEW

Software defect prediction has been an

active area of research in software

engineering, aiming to enhance software

quality by identifying defect-prone

modules early in the development lifecycle.

The increasing complexity of software

systems and the need for efficient defect

detection methods have driven researchers

to explore various machine learning and

statistical approaches. Traditional

techniques for defect detection, such as

code reviews and static analysis, are often

time-consuming and may not effectively

capture all potential defects. Machine

learning-based models have gained

prominence due to their ability to learn

patterns from historical defect data and

make predictions on new code modules.

Ensemble learning methods, which

combine multiple classifiers, have shown

promise in improving prediction accuracy

and overcoming the limitations of

individual models. This literature survey

reviews existing research on software

defect prediction, covering traditional

techniques, machine learning approaches,

ensemble learning methods, feature

selection strategies, and challenges in

model generalization.

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1084

Fig-1: Existing System

2.1 Traditional Approaches to Software

Defect Prediction

Early defect prediction techniques relied on

rule-based methods, statistical analysis, and

expertdriven heuristics. Static code analysis

tools, such as Find Bugs and PMD, analyze

source code to detect potential defects

based on predefined rules. While these tools

are useful for identifying syntax errors and

common programming mistakes, they often

generate a high number of false positives,

making them less reliable for defect

prediction. Another traditional approach

involves statistical defect prediction

models, where historical defect data is

analyzed to establish correlations between

software metrics and defect-proneness.

Metrics such as cyclomatic complexity,

lines of code, and coupling have been

widely used in statistical models. However,

these models often assume linear

relationships between variables, limiting

their predictive power in complex software

systems.

2.2 Machine Learning-Based

Approaches

The advent of machine learning has

significantly improved defect prediction by

enabling automated learning from historical

defect data. Various machine learning

classifiers have been applied to software

defect prediction, including decision trees,

support vector machines (SVM), neural

networks, and deep learning models.

Decision tree-based classifiers, such as

C4.5 and random forests, have been widely

used due to their interpretability and ability

to handle non-linear relationships. Studies

have shown that random forests outperform

individual decision trees by reducing

overfitting and improving generalization.

Support vector machines (SVM) have also

been explored in defect prediction,

leveraging kernel functions to separate

defective and non-defective modules.

While SVMs perform well on high

dimensional data, their effectiveness

depends on the choice of kernel parameters

and requires extensive tuning for optimal

results. Neural networks and deep learning

models have gained attention in recent

years, with researchers exploring

convolutional neural networks (CNNs) and

recurrent neural networks (RNNs) for

defect prediction. Deep learning models

can automatically extract features from raw

data, reducing the need for manual feature

selection. However, their black-box nature

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1085

and high computational cost remain

challenges for practical adoption.

2.3 Ensemble Learning Techniques for

Defect Prediction

Ensemble learning methods combine

multiple classifiers to enhance prediction

accuracy and robustness. Common

ensemble techniques include bagging,

boosting, and stacking, each with unique

advantages in defect prediction. Bagging

(Bootstrap Aggregating) improves

classification performance by training

multiple base learners on different subsets

of the dataset and aggregating their

predictions. Random forests, a widely used

bagging-based ensemble, have

demonstrated superior accuracy in defect

prediction by leveraging multiple decision

trees. Boosting techniques, such as

AdaBoost and Gradient Boosting Machines

(GBM), assign higher weights to

misclassified instances, allowing

subsequent classifiers to focus on difficult

cases. Boosting has been effective in

improving recall rates for defect prediction

but is prone to overfitting if not properly

regularized a more advanced ensemble

technique, combines multiple base

classifiers using a meta-learner to optimize

overall performance. Researchers have

explored stacking-based defect prediction

models using diverse classifiers, such as

decision trees, SVMs, and neural networks,

demonstrating improvements in predictive

accuracy. Despite the advantages of

ensemble learning, challenges such as

increased computational complexity and

interpretability issues need to be addressed

for practical implementation in software

development environments.

2.4 Feature Selection and Dimensionality

Reduction

Feature selection plays a crucial role in

defect prediction by reducing redundant

and irrelevant attributes while preserving

the most informative ones. High-

dimensional datasets often contain noisy

features that negatively impact model

performance, making feature selection

essential for improving efficiency and

accuracy. Several feature selection methods

have been proposed, including filter,

wrapper, and embedded approaches. Filter

methods, such as correlation-based feature

selection and mutual information analysis,

rank features based on statistical measures.

These methods are computationally

efficient but may not capture interactions

between features. Wrapper methods use

machine learning algorithms to evaluate

feature subsets and select the best

combination for classification. Recursive

feature elimination (RFE) and genetic

algorithms have been applied to defect

prediction, demonstrating improvements in

model accuracy. However, wrapper

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1086

methods are computationally expensive,

limiting their scalability. Embedded

methods integrate feature selection within

the learning algorithm itself. For instance,

decision tree-based models inherently

perform feature selection by selecting the

most informative attributes during training.

Regularization techniques, such as Lasso

regression, have also been used for feature

selection in defect prediction. Combining

multiple feature selection techniques has

been explored to improve robustness, with

hybrid approaches showing promising

results in reducing dimensionality while

maintaining high prediction accuracy.

2.5 Challenges in Model Generalization

and Cross-Project Defect Prediction

A major challenge in software defect

prediction is ensuring that models

generalize well across different software

projects. Many defect prediction models

perform well on specific datasets but fail

when applied to new projects due to

variations in software development

practices, coding styles, and defect

distribution. Cross-project defect prediction

(CPDP) aims to transfer knowledge from

one project to another, reducing the reliance

on project-specific training data.

Researchers have explored transfer learning

techniques, domain adaptation methods,

and unsupervised learning approaches to

improve CPDP performance. Feature

normalization and data transformation

techniques have been proposed to align

feature distributions across different

projects. However, achieving high accuracy

in CPDP remains challenging due to

differences in software characteristics and

dataset availability. Recent studies have

investigated meta-learning approaches,

where models learn from multiple projects

to enhance generalization. By training on

diverse datasets, meta-learning techniques

improve model adaptability to new

projects. Further research is needed to

refine CPDP methodologies and develop

practical solutions for industry adoption.

2.6 Explainability and Interpretability of

Defect Prediction Models

As machine learning models become more

complex, ensuring their interpretability is

essential for gaining trust from software

developers. Traditional machine learning

models, such as decision trees and logistic

regression, provide insights into feature

importance and decisionmaking processes.

However, deep learning and ensemble-

based models are often seen as black boxes,

making it difficult to understand their

predictions. Explainable AI (XAI)

techniques, such as SHAP (Shapley

Additive Explanations) and LIME (Local

Interpretable Model-Agnostic

Explanations), have been explored to

improve the interpretability of defect

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1087

prediction models. These methods provide

explanations for individual predictions,

helping software engineers understand why

certain modules are classified as defect-

prone.

Fig-1:UML DIAGRAM

3. PROPOSED SYSTEM

Software defect prediction plays a crucial

role in improving software quality and

reducing maintenance costs by identifying

defect-prone modules before deployment.

Traditional defect prediction approaches

often rely on individual machine learning

models, which may not always generalize

well across different datasets. To overcome

these limitations, the proposed system

leverages an intelligent ensemble-based

model to enhance prediction accuracy and

robustness.

The proposed system integrates multiple

machine learning algorithms into an

ensemble framework that combines their

strengths to improve defect classification

performance. The system will also feature

automated data preprocessing, feature

selection, model training, performance

evaluation, and user-friendly visualization

tools. By incorporating these advanced

techniques, the system aims to provide a

more reliable and scalable solution for

software defect prediction.

3.1 Objectives of the Proposed System

The primary goal of the proposed system is

to develop an intelligent ensemble-based

software defect prediction model that

addresses the shortcomings of existing

models. The specific objectives include:

• Enhancing defect prediction accuracy

by combining multiple machine

learning algorithms using ensemble

learning techniques such as bagging,

boosting, and stacking.

• Implementing automated data

preprocessing and feature selection to

improve data quality and reduce

computational complexity.

• Providing interpretability features to

explain defect predictions, helping

software developers understand the

reasoning behind classifications.

• Ensuring the system is scalable,

capable of handling large datasets, and

deployable in real world software

development environments.

• Developing a user-friendly interface

that allows developers to upload data,

train models, and visualize prediction

results effectively.

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1088

3.2 Ensemble-Based Model for Defect

Prediction

The core innovation of the proposed

system is the use of an ensemble-based

model for software defect prediction.

Traditional machine learning models, such

as decision trees, support vector machines,

and neural networks, often suffer from

limitations related to overfitting, bias, or

variance. An ensemble approach combines

multiple base models to improve overall

prediction accuracy and stability.

3.3 The proposed system will incorporate

three primary ensemble learning

techniques:

• Bagging (Bootstrap Aggregating):

This technique trains multiple base

models on different subsets of the

training data, averaging their

predictions to reduce variance and

improve generalization. Random

forests will be used as a bagging-based

classifier.

• Boosting: Boosting sequentially trains

models, correcting misclassified

instances in each iteration. Gradient

boosting and AdaBoost will be

implemented to improve classification

accuracy.

• Stacking: Stacking combines multiple

base models using a meta-classifier,

which learns from the predictions of

individual models to make the final

decision. A logistic regression or neural

network classifier will be used as the

meta-learner.

By leveraging ensemble learning, the

system aims to achieve better

generalization performance across

diverse software projects.

Data Preprocessing and Feature

Selection

Accurate defect prediction depends on

high-quality input data. The proposed

system will include an automated data

preprocessing module that performs the

following tasks:

• Handling Missing Values: Missing

data will be imputed using statistical

techniques such as mean, median, or k-

nearest neighbour imputation.

• Noise Removal: Outliers and

inconsistent records will be detected

and removed using anomaly detection

methods.

• Feature Scaling: Numerical features

will be normalized or standardized to

ensure consistency across different

attributes.

Class Imbalance Handling: Many

software defect datasets have

imbalanced class distributions, where

defect-prone modules are significantly

fewer than non-defective ones. The

system will use techniques such as

Synthetic Minority Over-sampling

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1089

Technique (SMOTE) and under

sampling to balance the dataset.

For feature selection, the system will

apply correlation analysis, mutual

information, and feature importance

scores from tree-based models to

identify the most relevant attributes.

Dimensionality reduction techniques

like Principal Component Analysis

(PCA) will be used when necessary to

reduce computational complexity.

3.4 Model Training and

Hyperparameter Optimization

The proposed system will allow users

to train different machine learning

models and compare their

performance. The training module will:

• Support multiple classifiers, including

decision trees, random forests, support

vector machines, neural networks, and

ensemble methods.

• Implement automated hyperparameter

tuning using grid search, random

search, and Bayesian optimization to

find the optimal model settings.

• Perform k-fold cross-validation to

ensure reliable model evaluation,

reducing the risk of overfitting.

• Enable incremental training, where

models can be updated with new data

without retraining from scratch.

The trained models will be stored in a

repository, allowing users to load and

reuse them for future predictions.

3.5 Defect Prediction and

Classification

Once a model is trained, it will be used

to predict software defects based on

new input data. The defect prediction

module will:

• Accept software metrics (e.g., lines of

code, cyclomatic complexity, coupling)

as input and classify software modules

as defect-prone or non-defect-prone.

• Provide probability scores indicating

the confidence level of each prediction.

• Generate batch predictions for multiple

software modules, enabling large-scale

defect analysis.

• Integrate with version control systems

(e.g., GitHub, GitLab) to automatically

analyze software changes and predict

potential defects in new code commits.

This functionality will help software

teams proactively identify and address

defects before they impact production

systems.

3.6 Performance Evaluation and

Model Interpretability

To ensure the reliability of the defect

prediction system, the performance of

trained models will be evaluated using

various metrics, including:

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1090

• Accuracy, Precision, Recall, and F1-

Score: These metrics will be used to

assess classification performance.

• Receiver Operating Characteristic

(ROC) Curve and Area Under Curve

(AUC-ROC):

These will measure the model’s ability

to distinguish between defect-prone

and non-defectprone modules.

• Confusion Matrix: This will visualize

the distribution of true positives, false

positives, true negatives, and false

negatives. To enhance model

interpretability, the system will

incorporate:

• Feature Importance Analysis:

Identifying which attributes contribute

most to defect predictions.

• SHAP (Shapley Additive Explanations)

and LIME (Local Interpretable Model-

Agnostic Explanations): These methods

will provide insights into individual

predictions, helping developers understand

why a software module was classified as

defective.

By providing interpretability tools, the

system ensures that predictions are

transparent and actionable.

4. RESULT

FIG 2: Train-Test Validation

 Model Evaluation

CONCLUSION

Software defect prediction is a critical

aspect of software quality assurance,

aiming to identify defect-prone modules

before deployment. The proposed

intelligent ensemble-based defect

prediction system enhances the accuracy,

efficiency, and interpretability of defect

classification by integrating multiple

machine learning algorithms. By

leveraging ensemble learning techniques

such as bagging, boosting, and stacking, the

system overcomes the limitations of

individual models, ensuring better

generalization across different datasets.

REFERENCE

 ISSN 2347–3657

 Volume 13, Issue 2, 2025

1091

1. Wang, S., Liu, T., Tan, L., & Zhang,

Y. (2018). "Deep learning-based

software defect prediction: A survey."

IEEE Transactions on Reliability,

67(1), 34-49.

2. Rahman, F., Devanbu, P., &

Premraj, R. (2012). "Ensemble-based

defect prediction: A study on the

combination of models." Proceedings

of the 34th International Conference on

Software Engineering (ICSE), 889-

899.

3. Menzies, T., Greenwald, J., & Frank,

A. (2007). "Data mining static code

attributes to learn defect predictors."

IEEE Transactions on Software

Engineering, 33(1), 2-13.

4. Malhotra, R. (2015). "A systematic

review of machine learning techniques

for software defect prediction." Applied

Soft Computing, 27, 504-518.

5. Zhou, Y., Liu, Q., & Chen, Y. (2019).

"An empirical study on deep learning-

based defect prediction models."

Journal of Systems and Software, 157,

110398.

6. Lessmann, S., Baesens, B., Mues, C.,

& Pietsch, S. (2008). "Benchmarking

classification models for software

defect prediction: A proposed

framework and novel findings." IEEE

Transactions on Software Engineering,

34(4), 485-496.

7. Fu, Q., Tantithamthavorn, C.,

Matsumoto, S., & Hassan, A. E.

(2020). "Easy over hard: A case study

on deep learning for software defect

prediction." Empirical Software

Engineering, 25, 2474-2511.

8. Zhang, H., & Zhang, J. (2013).

"Multi-objective ensemble learning for

software defect prediction." Automated

Software Engineering, 20(2), 235-257.

