

IJITCE

ISSN 2347- 3657

International Journal of

Information Technology & Computer Engineering

www.ijitce.com

Email : ijitce.editor@gmail.com or editor@ijitce.com

Unlocking The Power of Machine Learning and Deep Learning

¹ *Pilli Isaac Paul*, ² *Angalakuduru Srinivasa Rao*

Abstract:

This Paper explores the concepts and applications of Machine Learning (ML) and Deep Learning (DL) in the realm of artificial intelligence. We delve into the fundamental principles of ML, where algorithms learn from data patterns, and then transition to the specialized domain of DL, focusing on deep neural networks that automatically extract intricate data features. Through this discussion, we aim to provide a clear understanding of these cutting-edge technologies and their potential impact on various fields.

Keywords: Machine Learning (ML), Deep Learning (DL).

I. Introduction

In the age of data-driven decision-making, Machine Learning (ML) and Deep Learning (DL) have emerged as two transformative forces within the realm of artificial intelligence. These technologies are rapidly changing the way we interact with and harness the power of data. In this introduction, we will embark on a journey to demystify these concepts and showcase their significance in today's world.

Machine Learning (ML), as the foundational concept, forms the basis of autonomous learning. Instead of relying on explicit programming, ML employs algorithms that learn from data patterns. It's akin to teaching a computer to recognize patterns and make predictions without telling it exactly how to do so. ML's versatility allows it to be applied across a wide range of domains, such as image and speech recognition, recommendation systems, and anomaly detection.

Deep Learning (DL), a subset of ML, takes this concept to the next level. It involves neural networks with multiple layers, aptly named deep neural networks. These networks have the remarkable ability to automatically extract intricate features from data, making them particularly adept at tasks involving high-dimensional and complex information. The success of DL is evident in applications like image and speech recognition, natural language understanding, and self-driving vehicles.

¹ Associate Professor, Department of CSE, Rise Krishna Sai Gandhi Group of Institutions,
² Associate Professor, Department of CSE, Rise Krishna Sai Gandhi Group of Institutions.

As we delve deeper into this exploration of ML and DL, we will uncover the principles, methodologies, and real-world applications of these technologies. Our goal is to provide a comprehensive understanding of these cutting-edge tools that are reshaping the landscape of artificial intelligence and revolutionizing industries worldwide.

The modern era is defined by the ever-expanding volumes of data generated across various domains. To make sense of this data, harness its potential, and extract valuable insights, the field of artificial intelligence has introduced Machine Learning (ML) and Deep Learning (DL). In this introduction, we set the stage for our exploration into the applications and advancements in ML and DL. We delve into the growing importance of these technologies, which are revolutionizing industries and reshaping how we interact with data.

2. Literature Survey

A thorough literature survey is crucial to comprehend the historical context and evolution of ML and DL. We will review seminal works, research papers, and significant breakthroughs that have paved the way for the current state of these technologies. This survey will provide insights into the various approaches, methodologies, and their applications across diverse fields.

A comprehensive understanding of the landscape of ML and DL is essential for appreciating their transformative potential. This section aims to review

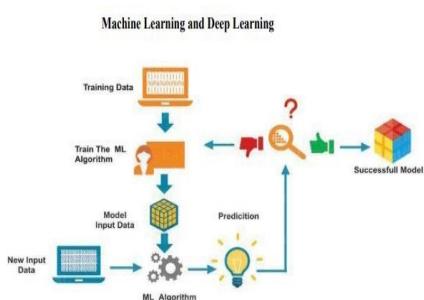
and summarize existing research and applications related to these technologies. By delving into the current state of the field, we can identify trends, challenges, and breakthroughs that inform the direction of our proposed system.

3. Problem Statement

In the wake of rapid advancements in ML and DL, it is evident that these technologies hold immense promise. However, many challenges and unexplored opportunities remain. This section defines the specific problem or set of problems that the proposed system seeks to address. It outlines the existing gaps, limitations, or inefficiencies that our system aims to mitigate or eliminate. By clearly articulating the problem statement, we can establish the foundation for our proposed solution.

4. Proposed System

Building upon the insights gleaned from the literature survey and the identified problem statement, this section outlines the proposed system. It delves into the architecture, methodologies, and techniques that will be employed to leverage ML and DL for addressing the identified challenges. Additionally, the expected benefits and potential impact of the proposed system on the addressed problem will be discussed.


The upcoming sections of this article will provide a detailed exploration of the proposed system, including its implementation, results, and potential future enhancements. Through this comprehensive

examination, we aim to contribute to the growing body of knowledge in the field of ML and DL, ultimately unlocking their transformative power.

Machine learning procedure Machine learning incorporates four steps, given below (shown in the figure First, feature extraction - Second, selection of corresponding machine learning algorithm - Third, training and evaluation the data model's efficiency - Four, using trained model for prediction

Requirements to Create Good Machine Learning Systems:

- Data preparation capabilities
- Basic and Advanced algorithms
- Scalability
- Various processes i.e. Automation and Iterative
- Ensemble modeling

Relationship with Other Fields: Machine learning is considered as the subset of artificial intelligence. In earlier days of AI as academic discipline, researchers were interested in having machine learn. They attempted to solve the problem with various symbolic methods as well as connectionist approach where neural network, pattern recognition are used.

In 1990s, Machine learning is reorganized as a separate field. It shifted focus from symbolic approach to the methods and models of statistics and probability theory.

Relation to data mining: Both of these employ same methods often and overlap with each other. But machine learning focuses on prediction based on known properties while data mining focuses on the discovery of unknown properties. Data mining uses machine learning methods, machine learning also employs data mining methods; but with different goals or to improve the learner accuracy.

Relation to optimization: Machine learning is also intimated with optimization. Learning problems are formulated as minimization of loss function. Loss functions show the discrepancy between prediction of model and actual problem.

Relation to statistics: It is also closely related with statistics. The ideas of machine learning have had a relationship with statistics from methodological principles to theoretical tools such as the modeling paradigm. D. Who's Using Machine Learning? As the industries grow, large volumes of data have been recognized. For handling that data, machine learning technology is required. With the machine learning, organizations are able to work more efficiently.

Machine learning is used in following areas:

Financial services: In financial services, machine learning technology is used to identify the important insight in data and to prevent fraud. The insights help to identify investment opportunities or help investors to know when to trade. Data mining concepts also

identify high risk profiles of clients or to pinpoint warning signs of fraud.

Health Care: This is the major area in which wearable devices and sensors are used to assess patient's health in real time. Machine learning also helps medical experts to analyze the data to identify trends. This may lead to improve diagnoses and treatment.

Government sector: Government agencies use machine learning to mine the data for insight where agencies like public safety and utilities etc. have multiple sources of data. Sensor data analysis increases the efficiency and save money. Machine learning can also be used for security purpose i.e. help to detect fraud and to minimize the identity theft.

Retail sector: In retail sector, machine learning is used to analyze the buying history of customers. Retailers rely on machine learning to capture data, analyze and use it to personalize the shopping experience. It is also helpful to implement the marketing campaign, optimizing price, and for customer insights.

Transportation: Machine learning is used to make routes more efficient and to predict the problems to increase profitability. It can be done after analyzing the data to identify patterns and trends. Data analysis and modeling aspects are key factors to delivery companies and transportation organizations.

Oil and gas: In this sector, machine learning is used to find new energy source and to analyze minerals in ground. It is also used to predict refinery sensor

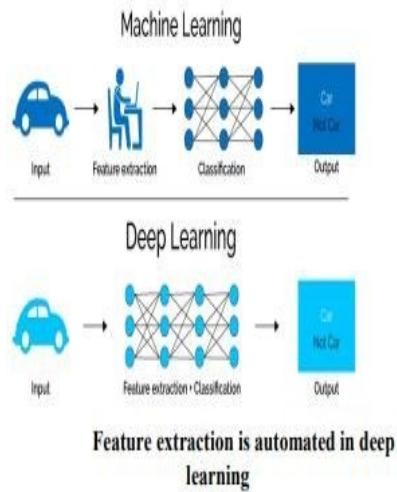
failure. Streamlining oil distribution makes it more efficient and economic. **E. Processes and Techniques** associated with machine learning: A number of processes, techniques and methods can be applied to enhance the performance of machine learning and these are as follows:

- Feature learning
- Sparse dictionary learning
- Anomaly detection
- Decision tree
- Association rules

Applications of Machine learning: There are many applications of machine learning such as:

- Adaptive websites
- Bioinformatics
- Brain-machine interface
- Computer vision
- Data quality
- DNA sequence classification handwriting recognition
- Machine learning control
- User behavior analytics etc...

Deep Learning architecture Deep Learning consists of supervised or unsupervised learning techniques based on many layers of artificial neural networks that are able to learn hierarchical representations in deep architectures. [11] It is extended version of artificial neural network. Deep Learning architectures consist of multiple processing layers. Each layer is able to produce non-linear responses based on the data from its input layer. The


functionality of Deep Learning is imitated from the mechanisms of human brain and neurons for processing of signals. Deep Learning architectures have gained more attention in recent years compared to the other traditional machine learning approaches. Such approaches are considered as being shallow-structured learning architectures versions (i.e., a limited subset) of Deep Learning. A Deep Neural Network consists of an input layer, several hidden layers, and an output layer. Each layer includes several units called neurons. These neurons are also called as artificial neurons. A neuron receives several inputs, performs a weighted summation over its inputs, then the resulting sum goes through an activation function to produce an output. Each neuron has a vector of weights associated to its input size as well as a bias that should be optimized during the training process. Figure 7 below shows the structure of neuron.

5. Result

Deep learning is a new era of machine learning. Deep learning includes both supervised and unsupervised learning paradigm of machine learning. Machine learning and deep learning helps in providing intelligence to the system that can make prediction for future using past data.

Conventional machine learning algorithms can't learn directly from the raw data. They need careful engineering to carefully extract features from raw data and highly classified domain expertise, which are further used to in internal representations to identify these feature's patterns. In Deep Learning,

first step of machine learning procedure is not present. This step is automated in deep learning. Deep Learning can extract new features automatically from raw data. Figure 9 shows this point clearly.

Deep learning algorithms work more accurately on large Data set as compared to conventional machine learning algorithms. While machine learning algorithms outperforms deep learning in case of small or medium size datasets.

Deep learning algorithms take less time to infer a problem as compared to conventional machine learning algorithms

Deep learning performs a high amount of matrix multiple hence it needs powerful engine preferably GPU (Graphical Processing Units) or specially designed TPU (Tensor Processing Units) while other conventional machine learning algorithms can work on low end machines.

Deep learning algorithms are difficult to impossible to interpret. Some of the machine learning algorithms like (logistics, decision tree) can be

interpreted easily while some (like SVM) are almost impossible to interpret. Training time for data to create the model is more in deep learning as compared to other machine learning algorithms.

6. Conclusion

This article examined the concepts of machine learning. Machine learning has gained a lot of attention of researchers nowadays due to its distinct features. Firstly, the article specified the points to make a good machine learning system. Followed by this, the usage and applications of machine learning have been discussed in this article.

However, the road of machine learning is not as simple as it looks to be. There are some challenges in this area to get the expected results such as lack of suitable data, data bias, and lack of resources, privacy problems and evaluation problems. This paper creates a broad view for a researcher for machine learning by categorizing it into two parts, namely: shallow learning and deep learning. Supervised and unsupervised machine learning concepts are supposed to be in the category of shallow learning as these techniques use less number of hidden layers or SVMs. While deep learning is considered as a different category, because of its deep layered architecture discussed in the article. Deep learning is a growing field in a sector of predictive analytics. This paper provides a comparative study of conventional methods of machine learning and deep learning which helps new researchers to choose

which technique would be right to apply in a particular environment. Such as, if one is working on small training data set then he must use machine learning algorithms rather than deep learning while, if dataset needed to choose the features, then one must use machine learning technique because in case of deep learning this feature selection procedure is automated researcher do not have to bother about it. This paper creates base for the researcher who wants to pursue research in field of artificial intelligence or predictive analytics.

References

1. P. Kuang, W.-N. Cao, and Q. Wu, "Preview on structures and algorithms of deep learning," in 2014 11th International Computer Conference on Wavelet Active Media Technology and Information Processing(ICCWAMTIP), Chengdu, China, 2014, pp. 176–179.
2. L. Deng, "Deep Learning: Methods and Applications," *Found. Trends® Signal Process.*, vol. 7, no. 3–4, pp. 197–387, 2014.
3. J. L. Berral-García, "When and How to Apply Statistics, Machine Learning and Deep Learning Techniques," in 2018 20th International Conference on Transparent Optical Networks (ICTON), 2018, pp. 1–4.
4. J. Latif, C. Xiao, A. Imran, and S. Tu, "Medical Imaging using Machine Learning and Deep Learning Algorithms: A Review," in 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 2019, pp. 1–5.
5. N. G. Paterakis, E. Mocanu, M. Gibescu, B.

Stappers, and W. van Alst, “Deep learning versus traditional machine learning methods for aggregated energy demand prediction,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2017, pp. 1–6.

6. M. Sewak, S. K. Sahay, and H. Rathore, “Comparison of Deep Learning and the Classical Machine Learning Algorithm for the Malware

Detection,” in 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2018, pp. 293–296.

7. A. Jabeen, N. Ahmad, and K. Raza, “Machine Learning-based state-of-the-art methods for the classification of RNA-Seq data,” Bioinformatics, preprint, Mar. 2017.