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Abstract

In this paper, complete lift of affine connection on the complex manifold M to its tangent bundle

TM are studied.

Introduction:

Several authors have introduced complete
lift on the tangent bundle 7M of a smooth
manifold M using notations of complete lifts
on manifold M, but no natural conjecture
has been presented for study of complex

structure on tangent bundle. This demands
introduction of some new construction,
which we shall prefer to call the construction
of complex analytic tangent bundle of a
complex manifold and in brief complex

tangent bundle by ™,,
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2. Complete Lifts of Affine connection on Where the indices with ~refer to
12 n - .
™,, . VoLV, »V' thenl'’s are connection

component ofVE .
Let V be the covariant differentiation of

, , M Proposition 2.1: If I and R are the torsion
affine connection on complex manifold #* 2., ] i

] ) } and curvature tensor fields of affine
and then there exist a unique affine

i T° R¢
. . connectionV, then and are
connection of 7TM,, whose covariant

respectively the torsion and curvature
differentiation V¢ satisfies .
tensor fields of VE .

Proof: proposition follows from the
Ve (U =(V.U) following formulae

where Z,.U € 34(M,,) |

TC(ZC,US)=(T@ZU) =(V -V -[ZU])"

[0

Let FBY be the connection component forV
with respect to local coordinates system =VCUC -V 7€ —[2€,U°]
< e

A R~ ,Z" with respect to induced co-
ordinate system
22 s NV eV of T, e RE(ZC, UV = (REZUW) (V=Y 1" = VIZUT
set

o _ C C C_ vC C

" —pe -~o —[VZC.VZC]V V[Z(,’UC]V

B pr, gy =
~a _a Proposition 2.2: For any tensor field S and
gy =0, =0 any vector field Z on complex manifold

M, We have

Iy, =o'ty V‘,F(L =T,
ez HVE (S)=(V 5°

To =T¢ Tpi =0
o (i) VE(S€) = (VS)©
(i) V€ (8")=(V 8)”
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(iv) VE(§7) = (VS")

WV (S)=(V 8
() V€ (§)=(V )"

Proof: As usual the suffices to verify these
formulae in the special cases, where

S=fe3'M ,S=df €e3°M andS=Uc3I'M
0 2n 1 0

2n

ifS=r, then
VE(f)=L/ =L fC=L =V NF

z

If S=U, then the formula to be verified is
nothing but the definition of VE . If S =df or

-0
more generally S =W €3/ M, then

(V€ WEYUS) = VE (WEU) - WE(VE TE)
= VS (WU)© - WE(V, U)F

= (V. W) =W (V. U)°

=(V_W(U) =(V W)“(U°)

C CN _ C
Hence V, WH=F. W)

(i) From (i), we have

Ec(VEST)=VL (59)
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=(V.9)°
= VS)©
=& (VS)°
and hence
Ve S = (V8)©

(iii) if S= f,then ,we have

Ve =Le)

=(L.f)
=(V./)
Z =& 0
If S=V,thenwe write oz* and
_T](x i
oz* , then

Ve v o ERERA
ZC(U):L§ 0z +F5y3:",1’]}|6‘—)a—

) 6
_fga ON* +T*EMMY |
- E" By ar
L E )
= (V. U)"

Either by a similar calculation using a
local co-ordinate, we get

VEW)=(v. U
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For every ' € M

(iv) The proof is similar that of 2(ii).

(v) This may be proved in the same
way as 2(i)

VE(SC) =V, (VESOE, (VS)O)

=(&.VS8) =(v.9)"
(vi) The proof is similar that of 2(iii).
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