
 ISSN 2347–3657

Volume 13, Issue 2, 2025

1151

Phiscatcher Client Side Defense Against Web Spoofing
Attacks using Machine Learning

Mohd Safiullah1, Mohammed Muzammil2, Mr. Mohammed Mateen Ahmmed3
1,2B.E. Student, Department of IT, Lords Institute of Engineering and Technology, Hyderabad

3Assistant Professor, Department of IT, Lords Institute of Engineering and Technology,
Hyderabad

mateen.mohd@lords.ac.in

ABSTRACT
Cyber security confronts a tremendous
challenge of maintaining the
confidentiality and integrity of user’s
private information such as password and
PIN code. Billions of users are exposed
daily to fake login pages requesting secret
information. There are many ways to trick
a user to visit a web page such as, phishing
mails, tempting advertisements, click-
jacking, malware, SQL injection, session
hijacking, man-in-the-middle, denial of
service and cross-site scripting attacks.
Web spoofing or phishing is an electronic
trick in which the attacker constructs a
malicious copy of a legitimate web page
and request users’ private information
such as password. To counter such
exploits, researchers have proposed
several security strategies but they face
latency and accuracy issues. To overcome
such issues, we propose and develop
client-side defence mechanism based on
machine learning techniques to detect
spoofed web pages and protect users from
phishing attacks. As a proof of concept, a
Google Chrome extension dubbed as
PhishCatcher, is developed that
implements our machine learning
algorithm that classifies a URL as
suspicious or trustful. The algorithm takes
four different types of web features as
input and then random forest classifier
decides whether a login web page is
spoofed or not. To assess the accuracy and
precision of the extension, multiple
experiments were carried on real web
applications.
The experimental results show remarkable
accuracy of 98.5% and precision as 98.5%

from the trials performed on 400 classified
phished and 400 legitimate URLs.
Furthermore, to measure the latency of
our tool, we performed experiments over
forty phished URLs. The average recorded
response time of PhishCatcher was just
62.5 milliseconds.

Keywords: (Phishing attacks, Web
spoofing, Machine Learning, Client-side
detection, Cybersecurity, URL features,
HTML structure, Visual similarity, Random
Forest, SVM, CNN, Detection accuracy).

I.INTRODUCTION
This paper demonstrates how such a
solution can be implemented effectively,
laying the groundwork for a new
generation of intelligent cybersecurity tools
that protect users directly at the source of
interaction—their own device.
Identification of clusters or groups of
similar patterns within the data. This allows
for the identification of hotspot areas with
higher accident probabilities or specific
risk profiles, aiding in the strategic
placement of ambulances 4 to minimize
response times and maximize coverage.
Additionally, this method has the potential
to accommodate diverse data sources,
including traffic accident data, road
segment characteristics, weather
conditions, and other relevant factors.
In Oct 2022,1 the members/users of the
National Institute for Research in Digital
Science and Technology (Inria) in France
received an email in French asking the users
to confirm their webmail account with the
direct link:
https://www.educationonline.nl/Cliquez.ici

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1152

.cas.inria.fr.cas.login/login.html. When
clicked on this link, it takes to a fake but
appearing genuine central authentication
login page of Inria. As this fake login page
resembles the real login page of Inria from
https://cas.inria.fr/cas/login?service=, users
will mistakenly enter username and
password of the Inria to a fake website
which the attacker can later submit to the
real Inria login page. This is a phishing
attack on the Inria and users/members
registered with Inria. The real and fake
login pages of Inria are given in the Figures
1. Both of the web pages are exactly the
same and it is easy for the users to fall
victim of this phishing attack. We have
tested our tool PhishCatcher against this
and few other attacks as detailed in the
Section V[1].
By considering multiple data dimensions,
the approach can provide a holistic view of
the problem, enhancing the precision and
effectiveness of ambulance positioning
strategies. The dataset includes information
on traffic accidents that occurred, road
segment information, and weather details
of Nairobi, Kenya[2].
Performing Exploratory Data Analysis on
the dataset of the road surveys, and weather
dataset, the paper identifies possible
features and attributes affecting the
accidents and patterns of risk across the
city. To preserve such relationships and
patterns of the data we apply a deep
learning-based embedding approach called
Cat2Vec while converting categorical
attributes in the data pre-processing stage.
To validate the predicted locations using
DEC, the distance from that crash site to
the nearest ambulance locations predicted
is calculated using a novel Distance
Scoring Algorithm. For further evaluation
of the algorithm, different clustering
metrics have been used and compared with
other traditional clustering algorithms[3].
With the tremendous advancement in
modern technologies, there has been a great
escalation in the online world, such as e-
commerce, online banking, distant
learning, e-health and e-governance. Since

social networking applications, such as
Facebook and Twitter, are performing
leading role in the globalization of the
modern era, billions of users have adopted
this increasing trend. Numerous websites
provide the web-users with an opportunity
to create an account for a customized
experience. To obtain online specialized
services from the web-sites, users are
required to create a personalized account.
Conventionally, users are exposed to login
web pages for this purpose where they have
to set up an account by creating and
registering an identification (e.g.,
username) and secret (e.g., password).
Next time, when the user needs to access
the remote resource or service, she/he
sends a web requests and receives a login
form for submitting the identification along
with the secret. At this point, the users’
privacy is at high risk in terms of identity
theft and confidential information. A
phishing attack scenario, as described in
Figure 2, begins with receiving an email
with a link to malicious website. The email
message might contain text convincing or
luring the user to click and follow the
pointer. When the unsuspecting user clicks
and opens the web page, it appears genuine
as the honest website where the user has an
account. After the victim user enters his/her
secret information, such as the username
and password and presses the submit/login
button, they are sent to the attacker. The
attacker who sat up the phishing attack
receives the secret credentials and logins to
the legitimate website upon submitting the
credentials to it[4].
To deceive the victims, the attackers
normally include logos, either by storing
copies or adding links to logos, from the
honest site onto their spoof sites to imitate
their appearance. In addition to logos, the
attacker may also include HTML from the
honest site and make some necessary
changes. The phishing attack vectors used
by the attackers for tricking the users
include email, trojan horse, key loggers and
manin-the-middle proxies. The favourite
attack targets of the attackers are online

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1153

banking sites, third party payment systems
(the most targeted industry sector) and e-
commerce sites. As the phisers target the
non-cryptographic components, the
cryptographic security protocols SSL/TLS
do not provide a complete solution. To
depend against spoofing attacks, these
protocols must be complemented with
additional protection mechanisms. These
mechanisms may be enforced at the server-
side or client-side or both. The server-side
solutions requires changes to the websites
which is a tedious job and is often ignored
by most of the developers. The client-side
solutions, on the other hand, provide
protection to users without the server
support. Server-side solutions may be
effective in identifying spoofed site,
however, the focus of this paper is on
clientside solutions. Most of the anti-
spoofing tools are based on either the third
party certificaton , password[5].
Anti-spoofing tools are sometimes
categorized as stateful or stateless. They
may also be classified based on the
automatic phishing detection mechanism
used: blacklists and heuristics. Tools that
rely on black/white lists generate almost
zero false positives (accuracy) and can
recognize almost 90% of the phishing sites
, however, they miss zero-day attacks .
Furthermore, black-listing methodologies
come with several drawbacks as they
cannot control the changing domain and
new attacks and can easily be fooled by the
spam URLs. To capture phish sites not
included in the black lists, the heuristic-
based techniques have been very
encouraging. The heuristic (content)
based tool such as CANTINA and
poofCatch can identify 90% phishing sites
with 1% false positives. The latency of the
tool SpoofCatch is in the order of seconds
and it further increases with passage of
time. While the stateful anti-phish
techniques are good in accuracy, they
quickly fill the local storage and the
performance degrades with passage of
time. In SpoofCatch, the visual similarity
is initially compared with few login page

images, but as the user browse further
websites, the number of login page images
increases in the local storage. In addition,
this increases the time to compare the
image of a received login page with every
login image in the storage. Following this
line of research, we design and develop a
stateless anti-phish tool based on the
Machine Learning (ML) technique[6].
From the last decade, many renowned
researchers have proposed mach ne
learning techniques for the detection of
malicious URLs to avoid any kind of scam
in future. Many sets of URLs are treated as
training data in the ML approaches. On the
basis of the statistical properties obtained
by the training sets, it is proposed that
whether the requested URL is a scam or
scam free. Training data is the primary
concern for the URL identification using
ML. Once training data is obtained then it
is further processed to obtain a
mathematical model. The primary concern
is to collect the features from the training
data because simple strings may not help to
predict the status of the URL under test. At
final stage, an actual model is obtained
through predicted model from the training
data. Machine learning techniques, such as
Naïve Bayes, Support Vector Machines
(SVM) and Logistic Regression (LR), are a
few algorithms being used for this purpose
by many scholars but there are several
issues which make them vulnerable[7].

II RELATED WORK
A. Existing research and solution
Currently, there are several open source
techniques to prevent users from phishing
attacks but most of them have some
limitations such as latency, limited features
set and generic database. This Section
provides an insight into the existing anti-
phishing tools and frameworks used to
discover and block phishing attacks. These
anti-phishing tools and techniques are
categorized into seven major schemes
listed in the Table 1 and described in the
following sub-sections. TABLE 1
Summary of the Anti-Phishing Schemes

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1154

Table 1- Summary of the Anti-Phishing
Schemes

A.Visual Similarity and Page Content
Investigation

An anti-phishing technique based on the
visual similarity relies on the visual content
of the web page received. Wilayat et al.
designed and developed a phish
identification tool, called SpoofCatch,
based on visual similarity. Using
SpoofCatch, when the user first time visits
a website, its login web page is identified
and its screenshot is stored locally. When
the user browse to the same website next
time, the screenshot of its login page is
compared with the locally stored ones. If a
match is found with a local login page and
the hosts of the login page received and
previously visited are the same, the host is
declared as genuine, otherwise, it is marked
as phished. A promising strategy is offered
in for the visible distinction among a
suspected phishing website and the legal
one. This strategy utilizes three web
features that play a key role to decide
whether the two pages are suspiciously
identical. These characteristics are the
fragments of the text and their layout,
pictures inserted inside the page, including
the general visual presentation of the
website presented by the browser. An
experimental test, using a data collection
consisting of 41 real-world phishing sites
besides their respective genuine
destinations, displayed remarkable returns
regarding the error rate. Authors in the
suggest a novel way of phishing prevention
based on the detailed spatial design
features of the web pages. In this regard,
two ways are suggested to extract the
spatial arrangement attributes from a
specified website as rectangle sections. A

page similarity description is implied by
considering the two web pages with their
individual spatial layout attributes that take
characteristics of their spatial architecture
into account. An R-tree is created to list all
the spatial layout characteristics of a valid
page collection. Consequently, phishing
identification based on the similarities of
the spatial layout element is facilitated by
appropriate spatial inquiries through the R-
tree.Zhang et al. applied a content focused
strategy to detect malicious phishing
techniques. In the proposed methodology
based on the Term Frequency-Inverse
Document Frequency (TFIDF) filter, 95%
of the phishing URLs were detected
accurately. A browser extension
PWDHASH++ was proposed in the for
client-side protection against phishing. The
authors suggested a method to identify
visual similarities between the two web
sites. The suggested solution, based on
Gestalt philosophy , acknowledges a web
page as a single indivisible entity. These
indivisible super signals are explicitly
evaluated using algorithmic complexity
analysis.

B. Hybrid Approach for Phishing
detection
A multidimensional spoofing and phishing
detection feature has been modeled by the
authors in . This bi-step approach is
primarily based on the deep learning
algorithm. The authors proposed a Dynamic
Category Decision Algorithm (DCDA)
based on deep learning. More than a million
malicious URLs were proceeded through
this model. Results showed that their
protection mechanism based on the
proposed algorithm consumed less time to
detect web-spoofing. A hybrid machine
learning approach against phishing threats
has been proposed by the authors in. To
build an effective model, five machine
learning techniques have been used. The
four-layered suggested model was then
compared with the existing models after
training on the necessary data set which
included a significant number of URLs.

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1155

Results demonstrated that the developed
strategy was more efficient and effective.
Kaur and Sharma implemented the
Repeated Incremental Pruning to Produce
Error Reduction (RIPPER) algorithm for
malicious e-mail detection. An interesting
feature of their implementation is that, after
a phished URL is detected, it automatically
generates a mail and sends it to the victim
server. The email message includes the IP,
location and contact info of the attacker
server and blocks all the traffic coming
from the server with malicious intentions.
The authors in have combined the machine
learning and Resource Description
Framework (RDF) to reduce false positives
and enhance accuracy of their proposed
model. Several machine learning
approaches have been applied by the
authors in [25] such as Linear Model (LM),
Decision Tree (DT), Random Forest (RF)
and Neural Networks (NNs) on the test data
to detect phishing and malicious sites.

C. Anti-Phishing MachineLearning
Techniques
Many researchers have designed effective,
reliable and robust solutions for malicious
URL detection based on machine learning
techniques. Mao et al. have described few
attributes of web page that can be
implemented to recognize phished URLs.
They designed a logistic regression
classifier and used it as a filter to
distinguish phishing sites. It was observed
that out of millions of URLs,
approximately 777 phishing web sites were
visited per day and almost 8.24% users
were affected. In , the authors have
evaluated nine techniques based on
machine learning methodologies such as
LR, RF, AdaBoost, SVM, NN, Naıve
Bayes, Bagging and Bayesian additive
regression. The trained data set was based
on 1500 phishing URLs and it was
classified by machine learning. The authors
in applied a new tactic for phishing
detection by designing a scalable classifier
based on the machine learning. They
trained their proposed model on the noisy

data-sets. Their results showed that about
90% of the malicious URLs were detected
using this approach.

A PART-algorithm is used for spoof
detection in by the authors. They have
implemented MAP-REDUCE technique to
boost-up the detection procedure. Jain et al.
carried out a comprehensive survey on
existing techniques used for phishing
detection across the globe. A Natural
Language Processing (NLP) model based
on machine learning has been described in
for identifying the illegitimate social media
accounts. An SVM tool is used to speed up
the over all process. Xiang et al., proposed
an anti-phishing approach based on
CANTINA+ model. A filtering algorithm
has been adopted to lower FP ratios.
Moreover, the designed model was trained
on linear and non-linear phishing test-beds.
Lakshmi and Vijaya applied supervised
machine learning techniques including
multi-layer perceptron, Naıve Bayes
classifier and decision tree classifier to
classify and predict malicious websites.
Different features were extracted from a
collection of 200 URLs and the HTML
source codes of the bogus and legal
websites. The two performance standards,
predictive precision and quick learning
combined with 10-fold cross validation
determined the efficiency of the model.
Their findings showed that the decision
tree classifier outperformed the rest of the
classifiers.
A detailed analysis and systematic
interpretation of the adopted machine
learning approaches for the malicious URL
identification is proposed by the authors in
. The article further demonstrates the
enhancement of literature studies that
address different aspects of this issue
(feature description, algorithm
architecture, etc.). Random Forest Tree-
based (RFT) algorithm is common in the
computer vision and facial identification.
The SVM is a form of machine learning
used for the classification of facial
recognition. Authors in the evaluated the

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1156

efficiency of facial recognition, output of
the random forest and SVM by using the
kernel parameters for optimization. Yu et
al. proposed a strategic advanced
persistent threats (APT) detection approach
that utilizes deep learning in industrial
internet of things (IIoT) . In this approach,
researchers used a well-known deep
learning model called bidirectional encoder
representations from transformers (BERT)
, to detect APT attack patterns. The
empirical findings confirm that the BERT
system has high precision and a less error
rate for spotting APT attack sequences than
existing statistical models.

D. Online Training Procedures
Preventing Phishing
While web spoofing and phishing attacks
have sever effects on the users, several
browser and server based techniques have
been proposed to protect against such
attacks. A comprehensive study on the
login pages’ security has been carried out
in . In this study, the authors have designed
an efficient attacker model to check login
security. To evaluate their model, a large
number of login pages were tested and
found that almost 63% of the pages were
vulnerable to the attackers. In another study
, the authors conducted a survey to identify
fraudulent websites using online learning
strategies that utilize lexical and host-based
attributes of the corresponding URLs. They
highlighted that this program is specifically
relevant to online algorithms because the
scale of the training data is larger. A real-
time method was designed to capture URL
attributes, together with a real-time source
of labelled URLs, from a wide web mail
provider. According to this research, newly
established online algorithms are precise
enough, such as batch strategies, delivering
classification accuracy of 99% covering a
diverse data collection. Authors in
demonstrated that phishing emails can be
identified with great precision by applying
a specific filter that utilizes parameters
relevant to phishing attacks, rather than
commonly used spam filters. In their study,

the data set included 860 phishing and 6950
non-phishing emails. The results showed
correct recognition rate of 96% with only
0.1% classification error. A phishing
identification method was suggested in
that classifies website protection by testing
the source code of the website. Certain
phishing features, given by the World Wide
Web Consortium (W3C) guidelines were
extracted to determine website security.
The source code of the website was tested
for a phishing parameter and the initial
secure weight was reduced if a phishing
parameter was found. Ultimately, the
security percentage was measured based on
the final weight: the higher the percentage,
the more stable a website would be.

 F. URL Analysis for Detecting Phishing
A lightweight URL based phishing
detection approach was introduced by the
authors in . The data set consists of 1000
genuine and 1000 bogus URLs, whose
evaluation is done by SVM. The suggested
method only requires six URL
characteristics to execute the identification.
The most significant feature is the
similarity index which is used first time
ever. Another study proposes an approach
for the automated classification of fake and
real URLs by implementing supervised
learning over lexical and host based
features. This scheme is complementary to
the earlier techniques such as blacklisting.
The status of the previously non-visited
URLs cannot be predicted through
blacklisting. Moreover, it is necessary to
visit the potentially hazardous sites for the
models which work on evaluating site
content and behaviour.
Khonji et al. initiated a research that seeks
to test the functional efficacy of the website
classification by lexical evaluation of URL
tokens in enhancement to an innovative
tokenization method to improve the
prediction efficiency. This research implies
an experimental HTTP proxy server to
investigate over 70,000 valid and phishing
URLs gathered during six months from
PhishTank, Khalifa University HTTP logs

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1157

and some volunteers. A predictive
classification model is developed to
determine the operative potency of the
lexical URL study provided. As most of the
phishing emails contain malicious URLs,
magnifying website detection procedures
can directly help the performance of anti-
phishing email classifiers. Khonji et al.
expanded their study on enhancing the
classification accuracy of the anti-phishing
email filters with the suggested lexical
URL analysis methodology.

G. Significant Anti-Phishing Tools
A browser extension Spoofguard was
designed and developed by the authors in.
According to their proposed model, the
browser extension was capable of
displaying a window where photographic
password displayed the credentials of the
user. In this model, the user can select
multiple images, against all the websites
being visited by him/her, which are stored
in the server. For efficient clientside-
protection, a separate password is assigned
by the extension to every URL under test.
Furthermore, the browser extension,
Spoofguard, informs the user in case of any
scam. Yue et al. developed an anti-phishing
client side tool BOGUSBITER that
operates on offensive defence strategy. It
feeds bogus data to the malicious phishing
site which makes it extremely hard for that
bogus site to distinguish between actual
and fake data-sets. In another attempt, the
authors revealed the gravity of the threats
based on the large scale web crawling.
They found that hundreds of publisher
pages were compromised by these attacks
and breached major ad networks like
DoubleClick . Their perspectives obtained
through the analysis led to create a new
detection tool named as MadTracer. The
assessment of MadTracer indicates that it
successfully operates against malvertising
and has captured 15 times more harmful
domain tracks than Google’s Safe
Browsing and Microsoft Forefront
combined.

Another tool, called Prophiler , aims to
provide a filter capable of reducing the
number of web pages that need to be
automatically evaluated to recognize
harmful websites. This framework acts as a
front-end for Wepawet: a well known
public complex analytics platform for
network malware. The findings indicate
that Prophiler is capable of significantly
lowering the Wepawet load with very low
error level. Imran et al. developed DAISY ,
a simple lightweight identification and
prevention system, to defend software
defined networks (SDN) against DoS
assaults by restricting malicious activity
from the hackers. In contrast to techniques
that only restrict a host or a port, the
suggested scheme is able to reactivate a
port or a host when it is no longer receiving
malicious traffic. The simulation findings
demonstrate improved performance of
SDN with DAISY in terms of CPU
consumption, reaction speed, channel
bandwidth and data rate.

III. METODOGLIES
 As part of our research methodology, we
initially studied relevant literature to
understand state of the art work on phishing
attacks, web spoofing, machine learning
and multiple mechanisms used for the
detection of suspicious login pages with
their pros and cons. In the next stage,
several machine learning based frameworks
for the detection of malicious login pages
were investigated in the Section II. The
comparison of these anti-phishing tools
with our plug-ins is showcased in the
Section VI. Furthermore, the Document
Object Model (DOM) analysis, practice of
JavaScript and Python were executed in
order to develop a novel and sophisticated
Google Chrome extension for the detection
of spoofing attacks. The main idea was to
develop a Google Chrome add-on to act as
a classifier of fake and authentic login pages
and show phishing warnings on the user
screen. Before choosing a suitable classifier
model, selection of the desirable features is
necessary. For this, we have focused

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1158

primarily on the set of features widely
implemented in the existing frameworks as
elaborated in the related work section.
Eventually we tried to carve out the most
eminent, effective and easy to integrate
features for our classifier. Our feature set
includes the following features.

• Set of fake and their legitimate
login page image pairs (visual
similarity based)

• URL parameters (URL based)
• Web page content (content based),

and
• Blacklist

Traditional classifiers used techniques like
whitelisting, blacklisting, online learning
strategies, lexical and hostbased analysis of
URLs as indicated in the Section II.
Blacklisting, alone is not efficient as it does
not anticipate the status of prior non-visited
URLs. Moreover, classifiers based on
online strategies were not accurate, while
whitelisting and lexical based models had
high latency. After web page feature
extraction, a random forest classifier model
is selected on the basis of the performance
metrics such as latency, accuracy and
efficiency. Subsequently, the classifier was
trained using the supervised machine
learning technique. The extracted features
were then fed to the selected model in order
to complete the learning process. After the
completion of the learning process, the
model is ready for testing and simulation.
In other words, it can make prediction of
whether the login web page response is
spoofed or not. The main objective is to
achieve efficiency in terms of latency, false
positives and false negatives. The classifier
tends to show better results after testing as
illustrated in the Table 5.
TABLE 2 Prominent Features of the
Phishing URLs

TABLE 3 Test Case 2

TABLE 4 Test Case 3

TABLE 5 Confusion Matrix

A. Model Selection
Among the various methods proposed in
the literature, data mining based methods
are very handy in identifying phishing
attacks. Subasi et al. usd various data
mining tactics to categorize the web pages
as valid or phished. Multiple classifiers
were used to build an efficient phishing
detection scheme. The random forest

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1159

classifier seems to beat other techniques in
detecting phishing attempts. These
techniques, however, use machine learning
libraries written in Python and hence they
cannot be executed inside most of the
browsers in real-time. The main objective
of this research is to design a client-side
tool to expose phishing attacks in real-time.
One conventional strategy is that the
prediction is made at server and then the
plug-in is allowed to approach the server to
check the status for each web page. This
kind of server-based approach is good but
web developers often do not follow
standard practices and a web server
compromise affects all the visiting users .
Unlike the classical approach, we propose
to run the classification algorithm inside
the browser rather than the server. This
approach has numerous benefits like better
privacy (the user’s browsing data is not
required to leave the machine) and it is
independent of the network latency. As in ,
we have implemented our technique using
the scripting language JavaScript in a
browser plug-in. Since JavaScript does not
have sufficient ML libraries support and
the client machines have limited
processing abilities, the implementation
needs to be made lightweight. The
PhishCatcher enables the feature
extraction process and classification inside
the client’s browser and shows the warning
on the user screen if there is a phishing
threat.

B. Pre-Processing
This step involves the choice of the
relevant data-set for the purpose of
extracting suitable features. Our data-set
comprises of the data from the following
four different resources.

• Mohammad et al. highlighted very
effective and adequate features
which clearly demonstrated their
efficiency in terms of detecting
phishing attacks. This data-set is
made available at the UCI Machine
Learning Repository .

• Jalalian et al. published the most
detailed collection of 90 hijacked
journal websites We have used this
collection for the testing and
evaluation of our classifier.

• The set of 310 blacklisted URLs
from the PhishTank

• The set of 310 genuine URLs from
moz.com/top500

C. Features Collection
This is the most tricky and difficult phase
of this study. We confronted several
challenges such as the absence of
appropriate and well fitting data-sets. A
number of authors have proposed the anti-
phishing mechanisms based on data mining
and ML techniques. But most of those
training data-sets are not sound, have no
free access and are based on mere
generalized set of rules. There is a
disagreement in the literature regarding the
ultimate attributes that distinguish phished
websites. This makes it complicated to
formulate a data-set that incorporates all
the relevant features. Regardless of this
fact, we tried to make a set of best suited
features for our model by tactful analysis of
existing strategies mentioned in the
literature review. The most eminent among
those techniques is the data-set suggested
in.
We have categorized our features set into
four groups.

1. Group-1: Address bar based
2. Group-2: Abnormal based
3. Group-3: HTML and JavaScript

based
4. Group-4: Domain based

D. Classification and Classifier
Selection
For the classification process, which is
known to be the foundation of the machine
learning, we use the supervised learning
approach in our model. Researchers have
implemented various tools and machine
learning techniques to validate their
performance in identifying phishing

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1160

attacks. An interesting contrast of the most
frequently used machine learning
techniques for network intrusion detection
is proposed in. The standard machine
learning classifiers are assessed using two
openly available datasets, KDD99 and
UNSW-NB15 . The period required to
develop a model for each classifier is also
calculated in order to determine its
efficiency. The research results reveal that
the Decision Tree (DT), Random Forest
(RF), Hoeffding Tree (HT) and K-Nearest
Neighbors (KNN) classifiers outperform
the other machine learning classifiers in the
10-fold cross validation test mode. Upon
careful analysis of the existing strategies
used for phishing attack identification, the
random forest algorithm seems to surpass
the rest of the techniques. The random
forest creates and merges several decision
trees to render a more reliable and sound
forecast. It is a versatile, convenient-touse
and perhaps the most popular supervised
machine learning algorithm. The random
forest delivers a perfect result most of the
time even without the hyper-parameter
optimization. Along with its flexibility and
versatility, it is applicable for both
regression and classification problems (it
covers 90% of the modern ML systems).
The forest generated by the algorithm is an
ensemble of decision trees generally
practised with the bagging technique . The
basic principle for the bagging strategy is
that the cumulative outcome is improved
by a blend of learning models. By
integrating several trees into one ensemble
model, the random forest significantly
reduces deviation from a stable design like
a decision tree. It prevents data over-fitting
and performs quicker training with the
data-set. Furthermore, it can accommodate
a high dimensional broad range of results
which improves accuracy. Figure 3 depicts
our proposed model for the lightweight
phish identification method using random
forest classifier.

Our proposed model for the lightweight
phish identification method using random
forest classifier is depicted in the Figure 3.
Initially, a suitable data-set is selected as
mentioned in the sub-section III-B.
Subsequently, the desired features from the
data-set are extracted based on their
performance and compatibility. These
features are grouped into four categories, as
explained in the sub-section III-C, where
each group acts as a decision tree. Finally,
these groups of features are fed to the
random forest classifier for the
identification and classification of the
phished URLs. In other words, the
classifier informs the user about a potential
phish attack. In the PhishCatcher browser
extension, this is implemented through an
alert notification to the user.

IV.RESULT & DISCUSSION

The proposed model was tested over a
succession of trials to assess the accuracy
and latency of our tool. The results of
latency experiments are given and
discussed in the sub-section VI-B. The
other findings related to the performance
were recorded in the form of a confusion
matrix for further calculation of precision,
recall and accuracy of the model.

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1161

A. Performance Metrics
A confusion matrix is a tabular
configuration utilised to characterize the
performance of a classifier. It tends to
anticipate the efficiency of a supervised
learning algorithm over a collection of
testing data for which the valid values are
known. All matrix rows denote the
occurrences in a projected class, while
every column signifies the cases in an
original class. The performance metrics
such as precision, recall and accuracy of
our plug-in have been calculated by the
Equations 1, 2 and 3, respectively.
The values of variables have been assigned
from a confusion matrix given in the Table
5, where TP stands for True Positive, FP
stands for False
Positive, TN denotes True
Negative and FN represents False
Negative. The letters P and N indicate
Positive and Negative, respectively. True
positive is a case when the phished URL is
correctly identified, while in case of false
positive, a legitimate URL is mistakenly
identified as phished. Similarly, true
negative is the scenario when a legitimate
URL is correctly identified as genuine,
while in the case of false negative, a
phished URL is mistakenly declared as
genuine. We performed the experiments
over a dataset of 800, which included 400
phished and 400 benign, URLs for the
classification of fake and authentic URLs.
The scores have been recorded after
multiple iterations and careful analysis of
the extension. Consequently, the
PhishCatcher exhibited phenomenal
accuracy of 98.5%, precision of 98.5% and
recall turned out to be 98.5%.
Zhang et al. developed an automated
inspection plot for the evaluation of anti-
phishing tools. In , the performance of ten
common anti-phishing tools was measured
using 200 tested phished URLs (from two
sources) and 516 valid URLs. Just one tool
SpoofGuard was able to accurately classify
more than 90% of phishing URLs;
nevertheless, 42% of genuine URLs were
still mistakenly marked as a phish. The

efficiency of other tools diversified
considerably depending on the origin of the
phishing URLs. Among these remaining
tools, only one tool IE7 correctly classified
more than 60% among phishing URLs from
both sources, however, it still failed to spot
25% of the Anti-Phishing Working
Group(APWG) phishing URLs and 32% of
phished URLs from phishtank.com. Table 6
represents a comparison of eminent anti-
phishing tools from with our plug-in
PhishCatcher in terms of identifying a
phishing URL. The results are evaluated
using 100 bogus URLs from.

TABLE 6 Comparison Between
PhishCatcher & Other Anti-Phishing Tools

B. Latency
Latency can be defined as the speed or how
fast an antiphishing tool can detect a phish.
It depends on a number of aspects such as the
algorithm implemented, computing power,
network speed and the nature of the tool
(stateless or stateful). Assuming the
computational resources are common, the
decision by a stateful tool is made upon the
current web page as well as the previous data
stored locally or at a remote server. The
latency of such tools depend on the
algorithm implemented, the network speed
as well as the size of the data. In a stateless
tool such as the PhishCatcher, no previous
data is required and hence the decision is
dependent on the algorithm implemented. To
measure the latency of the PhishCatcher, we
performed experiments by running it over
forty phished URLs. Before loading and
running the extension in the browser, we
updated the code to record the time when it
start s the computation and the decision time
when it announces the result. The start is the
time just before it starts the computation to
extract features and then run the classifier to

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1162

identify phishing attack. When the
computation to identify the phishing attack
ends, the decision time decision is captured.
Finally, the difference between the decision
and start time is the time it takes to decide
whether or not a URL is phished. For a set of
forty URLs, the average latency of our tool
was 62.5 milliseconds. These experiments
were performed on a Windows 10 powered
64 bit Intel Core i7 CPU @ 3.40GHz with
8GB RAM.
Clearly, the stateless tools are faster and
hence the PhishCatcher leads the stateful
tools in terms of latency. To experimentally
compare the latency of PhishCatcher with a
stateful tool, we run a
tool SpoofCatch over a small set of URLs on
the the same machine. The experimental
requirements of the tool SpoofCatch and
PhishCatcher are different. The former
requires that a legit URL is opened at least
once in the browser before the phished URL
is accessed. As with PhishCatcher, we added
instructions in the source code of the
SpoofCatch to capture the start and decision
times. The average latency of the
SpoofCatch was 512 milliseconds and it
further raised when the number of
experiments were increased. The reason for
this latency degrade is that each time the
SpoofCatch captures a login web page, it
stores it in the local storage. As with passage
of time, the number of web pages in the local
storage increases, it increases the number of
comparisons of a current web page with all
the previously visited pages stored in the
local storage.

V. CONCLUSION
Users have become dependent on the online
applications as they provide significant
quality of service in many domains i.e.,
online banking, e-commerce, social
connectivity, digital libraries, online health
services, virtual education, digital marketing
and multi-player gaming applications.
Commonly, an authentication procedure is
followed by the users for the creation of their
online account to access the private web
content. The security and privacy of users is

at stack amid highly sophisticated web
spoofing attacks. Several research and
commercial tools have been developed to
fight against web spoofing attacks but most
of them appear with a few lapses. We have
developed an optimized user-friendly
browser plug-in dubbed as PhishCatcher for
the smart disclosure of phishing attacks
based on supervised machine learning.
Contrary to the traditional approaches, our
scheme offers to run the classification in the
browser itself. It addresses the loopholes in
the existing web applications by fixing the
latency issues and improving the efficiency
of the tool. The user interface of our plug-in
is made simple for the better understanding
of the user. When a user enters a phished
URL, it displays a phishing alert on the
screen and highlights the corresponding
phishing features of that URL in a drop-
down menu. The feature-set contains thirty
features which are categorized into four
groups where each group is acknowledged as
a decision tree. Random forest classifier
employs the aggregated outcome of the
decision trees to identify the bogus and
genuine login web pages. The dataset for
testing and evaluation comprises of 400
malicious and 400 legitimate URLs. The
criteria for testing and evaluation is based on
a confusion matrix which enlists the true
positives, true negatives, false positives and
false negatives. Our plug-in displayed
remarkable classification results with the
precision and recall, both to be 98.5% and
accuracy of 98.5%. Furthermore, the average
latency of the plug-in was just 62.5
milliseconds which was measured by
running it over forty phished URLs.
The feature set contains thirty features,
though, the addition of more automated
features might be a great idea to improve the
overall performance. Some other
discriminative classifiers such as SVM can
also be implemented for the prediction of
fake or real URL by training larger data-sets.
Evaluation metrics may also be evolved by
using different tools for a better performance
analysis.

 ISSN 2347–3657

Volume 13, Issue 2, 2025

1163

VI.REFERENCE
1.W. Khan, A. Ahmad, A. Qamar, M.
Kamran and M. Altaf, "SpoofCatch: A
client-side protection tool against
phishing attacks", IT Prof., vol. 23, no. 2,
pp. 65-74, Mar. 2021.

2.B. Schneier, "Two-factor
authentication: Too little too late",
Commun. ACM, vol. 48, no. 4, pp. 136,
Apr. 2005.

3.S. Garera, N. Provos, M. Chew and A.
D. Rubin, "A framework for detection and
measurement of phishing attacks", Proc.
ACM Workshop Recurring malcode, pp.
1-8, Nov. 2007.

4.R. Oppliger and S. Gajek, "Effective
protection against phishing and web
spoofing", Proc. IFIP Int. Conf. Commun.
Multimedia Secur., pp. 32-41, 2005.

 5.T. Pietraszek and C. V. Berghe,
"Defending against injection attacks
through context-sensitive string
evaluation", Proc. Int. Workshop Recent
Adv. Intrusion Detection, pp. 124-145,
2005.

 6.M. Johns, B. Braun, M. Schrank and J.
Posegga, "Reliable protection against
session fixation attacks", Proc. ACM
Symp. Appl. Comput., pp. 15311537,
2011.

 7.M. Bugliesi, S. Calzavara, R. Focardi
and W. Khan, "Automatic and robust
client-side protection for cookie-based
sessions", Proc. Int. Symp. Eng. Secure
Softw. Syst., pp. 161-178, 2014.

 8.A. Herzberg and A. Gbara, Protecting
(even naıve) web users from spoofing
and phishing attacks, 2004.

 9.N. Chou, R. Ledesma, Y. Teraguchi
and J. Mitchell, "Client-side defense
against web-based identity theft", Proc.
NDSS, 2004.

 10.B. Hämmerli and R. Sommer,
Detection of Intrusions and Malware and
Vulnerability Assessment: 4th
International Conference DIMVA 2007
Lucerne Switzerland July12-132007
Proceedings, vol. 4579, 2007.

