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ABSTRACT 
Cyber security confronts a tremendous 
challenge of maintaining the 
confidentiality and integrity of user’s 
private information such as password and 
PIN code. Billions of users are exposed 
daily to fake login pages requesting secret 
information. There are many ways to trick 
a user to visit a web page such as, phishing 
mails, tempting advertisements, click-
jacking, malware, SQL injection, session 
hijacking, man-in-the-middle, denial of 
service and cross-site scripting attacks. 
Web spoofing or phishing is an electronic 
trick in which the attacker constructs a 
malicious copy of a legitimate web page 
and request users’ private information 
such as password. To counter such 
exploits, researchers have proposed 
several security strategies but they face 
latency and accuracy issues. To overcome 
such issues, we propose and develop 
client-side defence mechanism based on 
machine learning techniques to detect 
spoofed web pages and protect users from 
phishing attacks. As a proof of concept, a 
Google Chrome extension dubbed as 
PhishCatcher, is developed that 
implements our machine learning 
algorithm that classifies a URL as 
suspicious or trustful. The algorithm takes 
four different types of web features as 
input and then random forest classifier 
decides whether a login web page is 
spoofed or not. To assess the accuracy and 
precision of the extension, multiple 
experiments were carried on real web 
applications.  
The experimental results show remarkable 
accuracy of 98.5% and precision as 98.5% 

from the trials performed on 400 classified 
phished and 400 legitimate URLs. 
Furthermore, to measure the latency of 
our tool, we performed experiments over 
forty phished URLs. The average recorded 
response time of PhishCatcher was just 
62.5 milliseconds.  
 
Keywords: (Phishing attacks, Web 
spoofing, Machine Learning, Client-side 
detection, Cybersecurity, URL features, 
HTML structure, Visual similarity, Random 
Forest, SVM, CNN, Detection accuracy). 
 

I.INTRODUCTION 
This paper demonstrates how such a 
solution can be implemented effectively, 
laying the groundwork for a new 
generation of intelligent cybersecurity tools 
that protect users directly at the source of 
interaction—their own device.  
Identification of clusters or groups of 
similar patterns within the data. This allows 
for the identification of hotspot areas with 
higher accident probabilities or specific 
risk profiles, aiding in the strategic 
placement of ambulances 4 to minimize 
response times and maximize coverage. 
Additionally, this method has the potential 
to accommodate diverse data sources, 
including traffic accident data, road 
segment characteristics, weather 
conditions, and other relevant factors. 
In Oct 2022,1 the members/users of the 
National Institute for Research in Digital 
Science and Technology (Inria) in France 
received an email in French asking the users 
to confirm their webmail account with the 
direct link:    
https://www.educationonline.nl/Cliquez.ici
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.cas.inria.fr.cas.login/login.html. When 
clicked on this link, it takes to a fake but 
appearing genuine central authentication 
login page of Inria. As this fake login page 
resembles the real login page of Inria from 
https://cas.inria.fr/cas/login?service=, users 
will mistakenly enter username and 
password of the Inria to a fake website 
which the attacker can later submit to the 
real Inria login page. This is a phishing 
attack on the Inria and users/members 
registered with Inria. The real and fake 
login pages of Inria are given in the Figures 
1. Both of the web pages are exactly the 
same and it is easy for the users to fall 
victim of this phishing attack. We have 
tested our tool PhishCatcher against this 
and few other attacks as detailed in the 
Section V[1].  
By considering multiple data dimensions, 
the approach can provide a holistic view of 
the problem, enhancing the precision and 
effectiveness of ambulance positioning 
strategies. The dataset includes information 
on traffic accidents that occurred, road 
segment information, and weather details 
of Nairobi, Kenya[2].  
Performing Exploratory Data Analysis on 
the dataset of the road surveys, and weather 
dataset, the paper identifies possible 
features and attributes affecting the 
accidents and patterns of risk across the 
city. To preserve such relationships and 
patterns of the data we apply a deep 
learning-based embedding approach called 
Cat2Vec while converting categorical 
attributes in the data pre-processing stage. 
To validate the predicted locations using 
DEC, the distance from that crash site to 
the nearest ambulance locations predicted 
is calculated using a novel Distance 
Scoring Algorithm. For further evaluation 
of the algorithm, different clustering 
metrics have been used and compared with 
other traditional clustering algorithms[3].  
With the tremendous advancement in 
modern technologies, there has been a great 
escalation in the online world, such as e-
commerce, online banking, distant 
learning, e-health and e-governance. Since 

social networking applications, such as 
Facebook and Twitter, are performing 
leading role in the globalization of the 
modern era, billions of users have adopted 
this increasing trend. Numerous websites 
provide the web-users with an opportunity 
to create an account for a customized 
experience. To obtain online specialized 
services from the web-sites, users are 
required to create a personalized account. 
Conventionally, users are exposed to login 
web pages for this purpose where they have 
to set up an account by creating and 
registering an identification (e.g., 
username) and secret (e.g., password). 
Next time, when the user needs to access 
the remote resource or service, she/he 
sends a web requests and receives a login 
form for submitting the identification along 
with the secret. At this point, the users’ 
privacy is at high risk in terms of identity 
theft and confidential information. A 
phishing attack scenario, as described in 
Figure 2, begins with receiving an email 
with a link to malicious website. The email 
message might contain text convincing or 
luring the user to click and follow the 
pointer. When the unsuspecting user clicks 
and opens the web page, it appears genuine 
as the honest website where the user has an 
account. After the victim user enters his/her 
secret information, such as the username 
and password and presses the submit/login 
button, they are sent to the attacker. The 
attacker who sat up the phishing attack 
receives the secret credentials and logins to 
the legitimate website upon submitting the 
credentials to it[4].  
To deceive the victims, the attackers 
normally include logos, either by storing 
copies or adding links to logos, from the 
honest site onto their spoof sites to imitate 
their appearance. In addition to logos, the 
attacker may also include HTML from the 
honest site and make some necessary 
changes. The phishing attack vectors used 
by the attackers for tricking the users 
include email, trojan horse, key loggers and 
manin-the-middle proxies. The favourite 
attack targets of the attackers are online 



     ISSN 2347–3657 

Volume 13, Issue 2, 2025 

 

1153 
 

banking sites, third party payment systems 
(the most targeted industry sector) and e-
commerce sites. As the phisers target the 
non-cryptographic components, the 
cryptographic security protocols SSL/TLS 
do not provide a complete solution. To 
depend against spoofing attacks, these 
protocols must be complemented with 
additional protection mechanisms. These 
mechanisms may be enforced at the server-
side or client-side or both. The server-side 
solutions requires changes to the websites 
which is a tedious job and is often ignored 
by most of the developers. The client-side 
solutions, on the other hand, provide 
protection to users without the server 
support. Server-side solutions may be 
effective in identifying spoofed site, 
however, the focus of this paper is on 
clientside solutions. Most of the anti-
spoofing tools are based on either the third 
party certificaton , password[5].  
Anti-spoofing tools are sometimes 
categorized as stateful or stateless. They 
may also be classified based on the 
automatic phishing detection mechanism 
used: blacklists and heuristics. Tools that 
rely on black/white lists generate almost 
zero false positives (accuracy) and can 
recognize almost 90% of the phishing sites 
, however, they miss zero-day attacks . 
Furthermore, black-listing methodologies 
come with several drawbacks as they 
cannot control the changing domain and 
new attacks and can easily be fooled by the 
spam URLs. To capture phish sites not 
included in the black lists, the heuristic-
based techniques have been very 
encouraging. The heuristic  (content) 
based  tool  such as CANTINA  and  
poofCatch can identify 90% phishing sites 
with 1% false positives. The latency of the 
tool SpoofCatch is in the order of seconds 
and it further increases with passage of 
time. While the stateful anti-phish 
techniques are good in accuracy, they 
quickly fill the local storage and the 
performance degrades with passage of 
time. In SpoofCatch, the visual similarity 
is initially compared with few login page 

images, but as the user browse further 
websites, the number of login page images 
increases in the local storage. In addition, 
this increases the time to compare the 
image of a received login page with every 
login image in the storage. Following this 
line of research, we design and develop a 
stateless anti-phish tool based on the 
Machine Learning (ML) technique[6].  
From the last decade, many renowned 
researchers have proposed mach ne 
learning techniques for the detection of 
malicious URLs to avoid any kind of scam 
in future. Many sets of URLs are treated as 
training data in the ML approaches. On the 
basis of the statistical properties obtained 
by the training sets, it is proposed that 
whether the requested URL is a scam or 
scam free. Training data is the primary 
concern for the URL identification using 
ML. Once training data is obtained then it 
is further processed to obtain a 
mathematical model. The primary concern 
is to collect the features from the training 
data because simple strings may not help to 
predict the status of the URL under test. At 
final stage, an actual model is obtained 
through predicted model from the training 
data. Machine learning techniques, such as 
Naïve Bayes, Support Vector Machines 
(SVM) and Logistic Regression (LR), are a 
few algorithms being used for this purpose 
by many scholars but there are several 
issues which make them vulnerable[7].  
 

II RELATED WORK 
A. Existing research and solution  
Currently, there are several open source 
techniques to prevent users from phishing 
attacks but most of them have some 
limitations such as latency, limited features 
set and generic database. This Section 
provides an insight into the existing anti-
phishing tools and frameworks used to 
discover and block phishing attacks. These 
anti-phishing tools and techniques are 
categorized into seven major schemes 
listed in the Table 1 and described in the 
following sub-sections. TABLE 1 
Summary of the Anti-Phishing Schemes  
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Table 1- Summary of the Anti-Phishing 
Schemes 

 
A.Visual Similarity and Page Content 
Investigation  

An anti-phishing technique based on the 
visual similarity relies on the visual content 
of the web page received. Wilayat et al.  
designed and developed a phish 
identification tool, called SpoofCatch, 
based on visual similarity. Using 
SpoofCatch, when the user first time visits 
a website, its login web page is identified 
and its screenshot is stored locally. When 
the user browse to the same website next 
time, the screenshot of its login page is 
compared with the locally stored ones. If a 
match is found with a local login page and 
the hosts of the login page received and 
previously visited are the same, the host is 
declared as genuine, otherwise, it is marked 
as phished. A promising strategy is offered 
in  for the visible distinction among a 
suspected phishing website and the legal 
one. This strategy utilizes three web 
features that play a key role to decide 
whether the two pages are suspiciously 
identical. These characteristics are the 
fragments of the text and their layout, 
pictures inserted inside the page, including 
the general visual presentation of the 
website presented by the browser. An 
experimental test, using a data collection 
consisting of 41 real-world phishing sites 
besides their respective genuine 
destinations, displayed remarkable returns 
regarding the error rate. Authors in the  
suggest a novel way of phishing prevention 
based on the detailed spatial design 
features of the web pages. In this regard, 
two ways are suggested to extract the 
spatial arrangement attributes from a 
specified website as rectangle sections. A 

page similarity description is implied by 
considering the two web pages with their 
individual spatial layout attributes that take 
characteristics of their spatial architecture 
into account. An R-tree is created to list all 
the spatial layout characteristics of a valid 
page collection. Consequently, phishing 
identification based on the similarities of 
the spatial layout element is facilitated by 
appropriate spatial inquiries through the R-
tree.Zhang et al. applied a content focused 
strategy to detect malicious phishing 
techniques. In the proposed methodology 
based on the Term Frequency-Inverse 
Document Frequency (TFIDF) filter, 95% 
of the phishing URLs were detected 
accurately. A browser extension 
PWDHASH++ was proposed in the for 
client-side protection against phishing. The 
authors suggested a method to identify 
visual similarities between the two web 
sites. The suggested solution, based on 
Gestalt philosophy , acknowledges a web 
page as a single indivisible entity. These 
indivisible super signals are explicitly 
evaluated using algorithmic complexity 
analysis.  
 
B. Hybrid Approach for Phishing 
detection  
A multidimensional spoofing and phishing 
detection feature has been modeled by the 
authors in . This bi-step approach is 
primarily based on the deep learning 
algorithm. The authors proposed a Dynamic 
Category Decision Algorithm (DCDA) 
based on deep learning. More than a million 
malicious URLs were proceeded through 
this model. Results showed that their 
protection mechanism based on the 
proposed algorithm consumed less time to 
detect web-spoofing. A hybrid machine 
learning approach against phishing threats 
has been proposed by the authors in. To 
build an effective model, five machine 
learning techniques have been used. The 
four-layered suggested model was then 
compared with the existing models after 
training on the necessary data set which 
included a significant number of URLs. 
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Results demonstrated that the developed 
strategy was more efficient and effective. 
Kaur and Sharma implemented the 
Repeated Incremental Pruning to Produce 
Error Reduction (RIPPER)  algorithm for 
malicious e-mail detection. An interesting 
feature of their implementation is that, after 
a phished URL is detected, it automatically 
generates a mail and sends it to the victim 
server. The email message includes the IP, 
location and contact info of the attacker 
server and blocks all the traffic coming 
from the server with malicious intentions. 
The authors in  have combined the machine 
learning and Resource Description 
Framework (RDF) to reduce false positives 
and enhance accuracy of their proposed 
model. Several machine learning 
approaches have been applied by the 
authors in [25] such as Linear Model (LM), 
Decision Tree (DT), Random Forest (RF) 
and Neural Networks (NNs) on the test data 
to detect phishing and malicious sites.  
 
C. Anti-Phishing MachineLearning 
Techniques  
Many researchers have designed effective, 
reliable and robust solutions for malicious 
URL detection based on machine learning 
techniques. Mao et al.  have described few 
attributes of web page that can be 
implemented to recognize phished URLs. 
They designed a logistic regression 
classifier and used it as a filter to 
distinguish phishing sites. It was observed 
that out of millions of URLs, 
approximately 777 phishing web sites were 
visited per day and almost 8.24% users 
were affected. In , the authors have 
evaluated nine techniques based on 
machine learning methodologies such as 
LR, RF, AdaBoost, SVM, NN, Naıve 
Bayes, Bagging and Bayesian additive 
regression. The trained data set was based 
on 1500 phishing URLs and it was 
classified by machine learning. The authors 
in  applied a new tactic for phishing 
detection by designing a scalable classifier 
based on the machine learning. They 
trained their proposed model on the noisy 

data-sets. Their results showed that about 
90% of the malicious URLs were detected 
using this approach.  
 
A PART-algorithm is used for spoof 
detection in by the authors. They have 
implemented MAP-REDUCE  technique to 
boost-up the detection procedure. Jain et al.  
carried out a comprehensive survey on 
existing techniques used for phishing 
detection across the globe. A Natural 
Language Processing (NLP) model based 
on machine learning has been described in  
for identifying the illegitimate social media 
accounts. An SVM tool is used to speed up 
the over all process. Xiang et al., proposed 
an anti-phishing approach based on 
CANTINA+ model. A filtering algorithm 
has been adopted to lower FP ratios. 
Moreover, the designed model was trained 
on linear and non-linear phishing test-beds. 
Lakshmi and Vijaya applied supervised 
machine learning techniques including 
multi-layer perceptron, Naıve Bayes 
classifier and decision tree classifier to 
classify and predict malicious websites. 
Different features were extracted from a 
collection of 200 URLs and the HTML 
source codes of the bogus and legal 
websites. The two performance standards, 
predictive precision and quick learning 
combined with 10-fold cross validation 
determined the efficiency of the model. 
Their findings showed that the decision 
tree classifier outperformed the rest of the 
classifiers.  
A detailed analysis and systematic 
interpretation of the adopted machine 
learning approaches for the malicious URL 
identification is proposed by the authors in 
. The article further demonstrates the 
enhancement of literature studies that 
address different aspects of this issue 
(feature description, algorithm 
architecture, etc.). Random Forest Tree-
based (RFT) algorithm is common in the 
computer vision and facial identification. 
The SVM is a form of machine learning 
used for the classification of facial 
recognition. Authors in the evaluated the 
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efficiency of facial recognition, output of 
the random forest and SVM by using the 
kernel parameters for optimization. Yu et 
al.  proposed a strategic advanced 
persistent threats (APT) detection approach 
that utilizes deep learning in industrial 
internet of things (IIoT) . In this approach, 
researchers used a well-known deep 
learning model called bidirectional encoder 
representations from transformers (BERT) 
, to detect APT attack patterns. The 
empirical findings confirm that the BERT 
system has high precision and a less error 
rate for spotting APT attack sequences than 
existing statistical models.  
 
D. Online Training Procedures 
Preventing Phishing  
While web spoofing and phishing attacks 
have sever effects on the users, several 
browser and server based techniques have 
been proposed to protect against such 
attacks. A comprehensive study on the 
login pages’ security has been carried out 
in . In this study, the authors have designed 
an efficient attacker model to check login 
security. To evaluate their model, a large 
number of login pages were tested and 
found that almost 63% of the pages were 
vulnerable to the attackers. In another study 
, the authors conducted a survey to identify 
fraudulent websites using online learning 
strategies that utilize lexical and host-based 
attributes of the corresponding URLs. They 
highlighted that this program is specifically 
relevant to online algorithms because the 
scale of the training data is larger. A real-
time method was designed to capture URL 
attributes, together with a real-time source 
of labelled URLs, from a wide web mail 
provider. According to this research, newly 
established online algorithms are precise 
enough, such as batch strategies, delivering 
classification accuracy of 99% covering a 
diverse data collection. Authors in 
demonstrated that phishing emails can be 
identified with great precision by applying 
a specific filter that utilizes parameters 
relevant to phishing attacks, rather than 
commonly used spam filters. In their study, 

the data set included 860 phishing and 6950 
non-phishing emails. The results showed 
correct recognition rate of 96% with only 
0.1% classification error. A phishing 
identification method was suggested in  
that classifies website protection by testing 
the source code of the website. Certain 
phishing features, given by the World Wide 
Web Consortium (W3C) guidelines were 
extracted to determine website security. 
The source code of the website was tested 
for a phishing parameter and the initial 
secure weight was reduced if a phishing 
parameter was found. Ultimately, the 
security percentage was measured based on 
the final weight: the higher the percentage, 
the more stable a website would be.  
 
 F. URL Analysis for Detecting Phishing  
A lightweight URL based phishing 
detection approach was introduced by the 
authors in . The data set consists of 1000 
genuine and 1000 bogus URLs, whose 
evaluation is done by SVM. The suggested 
method only requires six URL 
characteristics to execute the identification. 
The most significant feature is the 
similarity index which is used first time 
ever. Another study  proposes an approach 
for the automated classification of fake and 
real URLs by implementing supervised 
learning over lexical and host based 
features. This scheme is complementary to 
the earlier techniques such as blacklisting. 
The status of the previously non-visited 
URLs cannot be predicted through 
blacklisting. Moreover, it is necessary to 
visit the potentially hazardous sites for the 
models which work on evaluating site 
content and behaviour.  
Khonji et al. initiated a research that seeks 
to test the functional efficacy of the website 
classification by lexical evaluation of URL 
tokens in enhancement to an innovative 
tokenization method to improve the 
prediction efficiency. This research implies 
an experimental HTTP proxy server to 
investigate over 70,000 valid and phishing 
URLs gathered during six months from 
PhishTank, Khalifa University HTTP logs 
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and some volunteers. A predictive 
classification model is developed to 
determine the operative potency of the 
lexical URL study provided. As most of the 
phishing emails contain malicious URLs, 
magnifying website detection procedures 
can directly help the performance of anti-
phishing email classifiers. Khonji et al.  
expanded their study on enhancing the 
classification accuracy of the anti-phishing 
email filters with the suggested lexical 
URL analysis methodology.  
 
G. Significant Anti-Phishing Tools  
A browser extension Spoofguard was 
designed and developed by the authors in. 
According to their proposed model, the 
browser extension was capable of 
displaying a window where photographic 
password displayed the credentials of the 
user. In this model, the user can select 
multiple images, against all the websites 
being visited by him/her, which are stored 
in the server. For efficient clientside-
protection, a separate password is assigned 
by the extension to every URL under test. 
Furthermore, the browser extension, 
Spoofguard, informs the user in case of any 
scam. Yue et al.  developed an anti-phishing 
client side tool BOGUSBITER that 
operates on offensive defence strategy. It 
feeds bogus data to the malicious phishing 
site which makes it extremely hard for that 
bogus site to distinguish between actual 
and fake data-sets. In another attempt, the 
authors revealed the gravity of the threats 
based on the large scale web crawling. 
They found that hundreds of publisher 
pages were compromised by these attacks 
and breached major ad networks like 
DoubleClick . Their perspectives obtained 
through the analysis led to create a new 
detection tool named as MadTracer. The 
assessment of MadTracer indicates that it 
successfully operates against malvertising 
and has captured 15 times more harmful 
domain tracks than Google’s Safe 
Browsing and Microsoft Forefront 
combined.  

Another tool, called Prophiler , aims to 
provide a filter capable of reducing the 
number of web pages that need to be 
automatically evaluated to recognize 
harmful websites. This framework acts as a 
front-end for Wepawet: a well known 
public complex analytics platform for 
network malware. The findings indicate 
that Prophiler is capable of significantly 
lowering the Wepawet  load with very low 
error level. Imran et al. developed DAISY , 
a simple lightweight identification and 
prevention system, to defend software 
defined networks (SDN)  against DoS 
assaults by restricting malicious activity 
from the hackers. In contrast to techniques 
that only restrict a host or a port, the 
suggested scheme is able to reactivate a 
port or a host when it is no longer receiving 
malicious traffic. The simulation findings 
demonstrate improved performance of 
SDN with DAISY in terms of CPU 
consumption, reaction speed, channel 
bandwidth and data rate.  
 

III. METODOGLIES 
 As part of our research methodology, we 
initially studied relevant literature to 
understand state of the art work on phishing 
attacks, web spoofing, machine learning 
and multiple mechanisms used for the 
detection of suspicious login pages with 
their pros and cons. In the next stage, 
several machine learning based frameworks 
for the detection of malicious login pages 
were investigated in the Section II. The 
comparison of these anti-phishing tools 
with our plug-ins is showcased in the 
Section VI. Furthermore, the Document 
Object Model (DOM) analysis, practice of 
JavaScript and Python were executed in 
order to develop a novel and sophisticated 
Google Chrome extension for the detection 
of spoofing attacks. The main idea was to 
develop a Google Chrome add-on to act as 
a classifier of fake and authentic login pages 
and show phishing warnings on the user 
screen. Before choosing a suitable classifier 
model, selection of the desirable features is 
necessary. For this, we have focused 
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primarily on the set of features widely 
implemented in the existing frameworks as 
elaborated in the related work section. 
Eventually we tried to carve out the most 
eminent, effective and easy to integrate 
features for our classifier. Our feature set 
includes the following features.  
 

• Set of fake and their legitimate 
login page image pairs (visual 
similarity based)  

• URL parameters (URL based)  
• Web page content (content based), 

and  
• Blacklist  

 
Traditional classifiers used techniques like 
whitelisting, blacklisting, online learning 
strategies, lexical and hostbased analysis of 
URLs as indicated in the Section II. 
Blacklisting, alone is not efficient as it does 
not anticipate the status of prior non-visited 
URLs. Moreover, classifiers based on 
online strategies were not accurate, while 
whitelisting and lexical based models had 
high latency. After web page feature 
extraction, a random forest classifier model 
is selected on the basis of the performance 
metrics such as latency, accuracy and 
efficiency. Subsequently, the classifier was 
trained using the supervised machine 
learning technique. The extracted features 
were then fed to the selected model in order 
to complete the learning process. After the 
completion of the learning process, the 
model is ready for testing and simulation. 
In other words, it can make prediction of 
whether the login web page response is 
spoofed or not. The main objective is to 
achieve efficiency in terms of latency, false 
positives and false negatives. The classifier 
tends to show better results after testing as 
illustrated in the Table 5.  
TABLE 2 Prominent Features of the 
Phishing URLs  

  
  
TABLE 3 Test Case 2  

  
  

TABLE 4 Test Case 3  

  
  
TABLE 5 Confusion Matrix  

  
  

A. Model Selection  
Among the various methods proposed in 
the literature, data mining based methods 
are very handy in identifying phishing 
attacks. Subasi et al.  usd various data 
mining tactics to categorize the web pages 
as valid or phished. Multiple classifiers 
were used to build an efficient phishing 
detection scheme. The random forest 
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classifier seems to beat other techniques in 
detecting phishing attempts. These 
techniques, however, use machine learning 
libraries written in Python and hence they 
cannot be executed inside most of the 
browsers in real-time. The main objective 
of this research is to design a client-side 
tool to expose phishing attacks in real-time. 
One conventional strategy is that the 
prediction is made at server and then the 
plug-in is allowed to approach the server to 
check the status for each web page. This 
kind of server-based approach is good but 
web developers often do not follow 
standard practices and a web server 
compromise affects all the visiting users . 
Unlike the classical approach, we propose 
to run the classification algorithm inside 
the browser rather than the server. This 
approach has numerous benefits like better 
privacy (the user’s browsing data is not 
required to leave the machine) and it is 
independent of the network latency. As in , 
we have implemented our technique using 
the scripting language JavaScript in a 
browser plug-in. Since JavaScript does not 
have sufficient ML libraries support and 
the client machines have limited 
processing abilities, the implementation 
needs to be made lightweight. The 
PhishCatcher enables the feature 
extraction process and classification inside 
the client’s browser and shows the warning 
on the user screen if there is a phishing 
threat.  
  
B. Pre-Processing  
This step involves the choice of the 
relevant data-set for the purpose of 
extracting suitable features. Our data-set 
comprises of the data from the following 
four different resources.  

• Mohammad et al.  highlighted very 
effective and adequate features 
which clearly demonstrated their 
efficiency in terms of detecting 
phishing attacks. This data-set is 
made available at the UCI Machine 
Learning Repository .  

• Jalalian et al. published the most 
detailed collection of 90 hijacked 
journal websites  We have used this 
collection for the testing and 
evaluation of our classifier.  

• The set of 310 blacklisted URLs 
from the PhishTank   

• The set of 310 genuine URLs from 
moz.com/top500  
  

C. Features Collection  
This is the most tricky and difficult phase 
of this study. We confronted several 
challenges such as the absence of 
appropriate and well fitting data-sets. A 
number of authors have proposed the anti-
phishing mechanisms based on data mining 
and ML techniques. But most of those 
training data-sets are not sound, have no 
free access and are based on mere 
generalized set of rules. There is a 
disagreement in the literature regarding the 
ultimate attributes that distinguish phished 
websites. This makes it complicated to 
formulate a data-set that incorporates all 
the relevant features. Regardless of this 
fact, we tried to make a set of best suited 
features for our model by tactful analysis of 
existing strategies mentioned in the 
literature review. The most eminent among 
those techniques is the data-set suggested 
in.  
We have categorized our features set into 
four groups.  
 

1. Group-1: Address bar based  
2. Group-2: Abnormal based  
3. Group-3: HTML and JavaScript 

based  
4. Group-4: Domain based  

  
D. Classification and Classifier 
Selection  
For the classification process, which is 
known to be the foundation of the machine 
learning, we use the supervised learning 
approach in our model. Researchers have 
implemented various tools and machine 
learning techniques to validate their 
performance in identifying phishing 
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attacks. An interesting contrast of the most 
frequently used machine learning 
techniques for network intrusion detection 
is proposed in. The standard machine 
learning classifiers are assessed using two 
openly available datasets, KDD99 and 
UNSW-NB15 . The period required to 
develop a model for each classifier is also 
calculated in order to determine its 
efficiency. The research results reveal that 
the Decision Tree (DT), Random Forest 
(RF), Hoeffding Tree (HT) and K-Nearest 
Neighbors (KNN) classifiers outperform 
the other machine learning classifiers in the 
10-fold cross validation test mode. Upon 
careful analysis of the existing strategies 
used for phishing attack identification, the 
random forest algorithm seems to surpass 
the rest of the techniques. The random 
forest creates and merges several decision 
trees to render a more reliable and sound 
forecast. It is a versatile, convenient-touse 
and perhaps the most popular supervised 
machine learning algorithm. The random 
forest delivers a perfect result most of the 
time even without the hyper-parameter 
optimization. Along with its flexibility and 
versatility, it is applicable for both 
regression and classification problems (it 
covers 90% of the modern ML systems). 
The forest generated by the algorithm is an 
ensemble of decision trees generally 
practised with the bagging technique . The 
basic principle for the bagging strategy is 
that the cumulative outcome is improved 
by a blend of learning models. By 
integrating several trees into one ensemble 
model, the random forest significantly 
reduces deviation from a stable design like 
a decision tree. It prevents data over-fitting 
and performs quicker training with the 
data-set. Furthermore, it can accommodate 
a high dimensional broad range of results 
which improves accuracy. Figure 3 depicts 
our proposed model for the lightweight 
phish identification method using random 
forest classifier.  

  

  
  
Our proposed model for the lightweight 
phish identification method using random 
forest classifier is depicted in the Figure 3. 
Initially, a suitable data-set is selected as 
mentioned in the sub-section III-B. 
Subsequently, the desired features from the 
data-set are extracted based on their 
performance and compatibility. These 
features are grouped into four categories, as 
explained in the sub-section III-C, where 
each group acts as a decision tree. Finally, 
these groups of features are fed to the 
random forest classifier for the 
identification and classification of the 
phished URLs. In other words, the 
classifier informs the user about a potential 
phish attack. In the PhishCatcher browser 
extension, this is implemented through an 
alert notification to the user.  
   

IV.RESULT & DISCUSSION  
  
The proposed model was tested over a 
succession of trials to assess the accuracy 
and latency of our tool. The results of 
latency experiments are given and 
discussed in the sub-section VI-B. The 
other findings related to the performance 
were recorded in the form of a confusion 
matrix for further calculation of precision, 
recall and accuracy of the model.  
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A. Performance Metrics  
A confusion matrix is a tabular 
configuration utilised to characterize the 
performance of a classifier. It tends to 
anticipate the efficiency of a supervised 
learning algorithm over a collection of 
testing data for which the valid values are 
known. All matrix rows denote the 
occurrences in a projected class, while 
every column signifies the cases in an 
original class. The performance metrics 
such as precision, recall and accuracy of 
our plug-in have been calculated by the 
Equations 1, 2 and 3, respectively.  
The values of variables have been assigned 
from a confusion matrix given in the Table 
5, where TP stands for True Positive, FP 
stands for False  
Positive, TN denotes True  
Negative and FN represents False 
Negative. The letters P and N indicate 
Positive and Negative, respectively. True 
positive is a case when the phished URL is 
correctly identified, while in case of false 
positive, a legitimate URL is mistakenly 
identified as phished. Similarly, true 
negative is the scenario when a legitimate 
URL is correctly identified as genuine, 
while in the case of false negative, a 
phished URL is mistakenly declared as 
genuine. We performed the experiments 
over a dataset of 800, which included 400 
phished and 400 benign, URLs for the 
classification of fake and authentic URLs. 
The scores have been recorded after 
multiple iterations and careful analysis of 
the extension. Consequently, the 
PhishCatcher exhibited phenomenal 
accuracy of 98.5%, precision of 98.5% and 
recall turned out to be 98.5%.  
Zhang et al.  developed an automated 
inspection plot for the evaluation of anti-
phishing tools. In , the performance of ten 
common anti-phishing tools was measured 
using 200 tested phished URLs (from two 
sources) and 516 valid URLs. Just one tool 
SpoofGuard was able to accurately classify 
more than 90% of phishing URLs; 
nevertheless, 42% of genuine URLs were 
still mistakenly marked as a phish. The 

efficiency of other tools diversified 
considerably depending on the origin of the 
phishing URLs. Among these remaining 
tools, only one tool IE7 correctly classified 
more than 60% among phishing URLs from 
both sources, however, it still failed to spot 
25% of the Anti-Phishing Working 
Group(APWG) phishing URLs and 32% of 
phished URLs from phishtank.com. Table 6 
represents a comparison of eminent anti-
phishing tools from with our plug-in 
PhishCatcher in terms of identifying a 
phishing URL. The results are evaluated 
using 100 bogus URLs from.  
  
TABLE 6 Comparison Between 
PhishCatcher & Other Anti-Phishing Tools  
  

  
  

B. Latency  
Latency can be defined as the speed or how 
fast an antiphishing tool can detect a phish. 
It depends on a number of aspects such as the 
algorithm implemented, computing power, 
network speed and the nature of the tool 
(stateless or stateful). Assuming the 
computational resources are common, the 
decision by a stateful tool is made upon the 
current web page as well as the previous data 
stored locally or at a remote server. The 
latency of such tools depend on the 
algorithm implemented, the network speed 
as well as the size of the data. In a stateless 
tool such as the PhishCatcher, no previous 
data is required and hence the decision is 
dependent on the algorithm implemented. To 
measure the latency of the PhishCatcher, we 
performed experiments by running it over 
forty phished URLs. Before loading and 
running the extension in the browser, we 
updated the code to record the time when it 
start s the computation and the decision time 
when it announces the result. The start is the 
time just before it starts the computation to 
extract features and then run the classifier to 
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identify phishing attack. When the 
computation to identify the phishing attack 
ends, the decision time decision is captured. 
Finally, the difference between the decision 
and start time is the time it takes to decide 
whether or not a URL is phished. For a set of 
forty URLs, the average latency of our tool 
was 62.5 milliseconds. These experiments 
were performed on a Windows 10 powered 
64 bit Intel   Core i7 CPU @ 3.40GHz with 
8GB RAM.  
Clearly, the stateless tools are faster and 
hence the PhishCatcher leads the stateful 
tools in terms of latency. To experimentally 
compare the latency of PhishCatcher with a 
stateful tool, we run a  
tool SpoofCatch over a small set of URLs on 
the the same machine. The experimental 
requirements of the tool SpoofCatch and 
PhishCatcher are different. The former 
requires that a legit URL is opened at least 
once in the browser before the phished URL 
is accessed. As with PhishCatcher, we added 
instructions in the source code of the 
SpoofCatch to capture the start and decision 
times. The average latency of the 
SpoofCatch was 512 milliseconds and it 
further raised when the number of 
experiments were increased. The reason for 
this latency degrade is that each time the 
SpoofCatch captures a login web page, it 
stores it in the local storage. As with passage 
of time, the number of web pages in the local 
storage increases, it increases the number of 
comparisons of a current web page with all 
the previously visited pages stored in the 
local storage.  
 

V. CONCLUSION 
Users have become dependent on the online 
applications as they provide significant 
quality of service in many domains i.e., 
online banking, e-commerce, social 
connectivity, digital libraries, online health 
services, virtual education, digital marketing 
and multi-player gaming applications. 
Commonly, an authentication procedure is 
followed by the users for the creation of their 
online account to access the private web 
content. The security and privacy of users is 

at stack amid highly sophisticated web 
spoofing attacks. Several research and 
commercial tools have been developed to 
fight against web spoofing attacks but most 
of them appear with a few lapses. We have 
developed an optimized user-friendly 
browser plug-in dubbed as PhishCatcher for 
the smart disclosure of phishing attacks 
based on supervised machine learning. 
Contrary to the traditional approaches, our 
scheme offers to run the classification in the 
browser itself. It addresses the loopholes in 
the existing web applications by fixing the 
latency issues and improving the efficiency 
of the tool. The user interface of our plug-in 
is made simple for the better understanding 
of the user. When a user enters a phished 
URL, it displays a phishing alert on the 
screen and highlights the corresponding 
phishing features of that URL in a drop-
down menu. The feature-set contains thirty 
features which are categorized into four 
groups where each group is acknowledged as 
a decision tree. Random forest classifier 
employs the aggregated outcome of the 
decision trees to identify the bogus and 
genuine login web pages. The dataset for 
testing and evaluation comprises of 400 
malicious and 400 legitimate URLs. The 
criteria for testing and evaluation is based on 
a confusion matrix which enlists the true 
positives, true negatives, false positives and 
false negatives. Our plug-in displayed 
remarkable classification results with the 
precision and recall, both to be 98.5% and 
accuracy of 98.5%. Furthermore, the average 
latency of the plug-in was just 62.5 
milliseconds which was measured by 
running it over forty phished URLs.  
The feature set contains thirty features, 
though, the addition of more automated 
features might be a great idea to improve the 
overall performance. Some other 
discriminative classifiers such as SVM can 
also be implemented for the prediction of 
fake or real URL by training larger data-sets. 
Evaluation metrics may also be evolved by 
using different tools for a better performance 
analysis.  
  



     ISSN 2347–3657 

Volume 13, Issue 2, 2025 

 

1163 
 

VI.REFERENCE 
1.W. Khan, A. Ahmad, A. Qamar, M. 
Kamran and M. Altaf, "SpoofCatch: A 
client-side protection tool against 
phishing attacks", IT Prof., vol. 23, no. 2, 
pp. 65-74, Mar. 2021.  
 
2.B. Schneier, "Two-factor 
authentication: Too little too late", 
Commun. ACM, vol. 48, no. 4, pp. 136, 
Apr. 2005.  
 
3.S. Garera, N. Provos, M. Chew and A. 
D. Rubin, "A framework for detection and 
measurement of phishing attacks", Proc. 
ACM Workshop Recurring malcode, pp. 
1-8, Nov. 2007.  
  
4.R. Oppliger and S. Gajek, "Effective 
protection against phishing and web 
spoofing", Proc. IFIP Int. Conf. Commun. 
Multimedia Secur., pp. 32-41, 2005. 
  
 5.T. Pietraszek and C. V. Berghe, 
"Defending against injection attacks 
through context-sensitive string 
evaluation", Proc. Int. Workshop Recent 
Adv. Intrusion Detection, pp. 124-145, 
2005.  
 
 6.M. Johns, B. Braun, M. Schrank and J. 
Posegga, "Reliable protection against 
session fixation attacks", Proc. ACM 
Symp. Appl. Comput., pp. 15311537, 
2011.  
 
 7.M. Bugliesi, S. Calzavara, R. Focardi 
and W. Khan, "Automatic and robust 
client-side protection for cookie-based 
sessions", Proc. Int. Symp. Eng. Secure 
Softw. Syst., pp. 161-178, 2014.  
 
 8.A. Herzberg and A. Gbara, Protecting 
(even naıve) web users from spoofing 
and phishing attacks, 2004.  
 
 9.N. Chou, R. Ledesma, Y. Teraguchi 
and J. Mitchell, "Client-side defense 
against web-based identity theft", Proc. 
NDSS, 2004.  

 10.B. Hämmerli and R. Sommer, 
Detection of Intrusions and Malware and 
Vulnerability Assessment: 4th 
International Conference DIMVA 2007 
Lucerne Switzerland July12-132007 
Proceedings, vol. 4579, 2007.  
  

  


