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ABSTRACT 

Automated emotion recognition from facial expressions has numerous applications in human-computer 

interaction, surveillance, and psychological assessment. This paper presents a hybrid approach that combines 

geometric facial landmark detection with deep convolutional neural networks (CNNs) to enhance emotion 

classification accuracy. We extract 68 facial landmarks using the Dlib library and augment this geometric 

information with grayscale image patches from regions of interest such as the eyes, mouth, and eyebrows. These 

data are input into a CNN trained on two benchmark datasets: CK+ and FER2013. The CNN incorporates both 

raw pixel data and heatmaps derived from the landmark positions. Data augmentation techniques such as random 

rotation, scaling, and horizontal flipping improve the model’s generalization capability. Experimental results show 

an accuracy of 88.3% on CK+ and 82.5% on FER2013, surpassing models using only pixel data or landmark 

coordinates. Ablation studies confirm that combining geometric and appearance-based features results in higher 

robustness, particularly under partial occlusion and varying lighting conditions. These findings suggest that hybrid 

architectures can be effectively deployed in real-world affective computing systems, including mobile applications 

and embedded platforms. 

 

1. INTRODUCTION 

Understanding human emotions through automated systems has become increasingly important in enhancing 

machine intelligence and interaction. Emotion recognition, particularly from facial expressions, offers a non-

invasive and natural means of interpreting user states, thereby improving the adaptability of applications in areas 

such as online education, mental health monitoring, and personalized advertising. Traditional facial expression 

analysis methods have largely relied on either geometric features, which capture spatial relationships between 

facial components, or appearance features derived from pixel-level intensity variations. However, these 

approaches face limitations when used in isolation. Geometric methods often lack detailed texture representation, 

while appearance-based CNN models may struggle with generalizing to unseen faces, occlusions, or 

environmental variations. 

Recent advances in deep learning have shown promise in bridging this gap, yet few approaches have explored the 

synergy between landmark geometry and CNN-based pixel analysis in a unified framework. This paper addresses 

this gap by proposing a dual-channel architecture that processes both facial landmarks and raw pixel patches, 

aiming to leverage the complementary nature of spatial and visual cues. The proposed solution is evaluated on 

two benchmark datasets, CK+ and FER2013, which offer a mix of posed and spontaneous expressions, thus 

providing a comprehensive testbed. Our primary objective is to enhance the robustness and generalizability of 

emotion recognition systems across varied conditions, particularly for deployment in resource-constrained 

platforms such as smartphones and embedded AI devices. 

 

2. LITERATURE REVIEW 
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The field of emotion recognition has undergone substantial evolution over the past two decades. Early techniques 

predominantly utilized hand-crafted features including Gabor wavelets, Histogram of Oriented Gradients (HOG), 

and Local Binary Patterns (LBP), combined with classifiers such as Support Vector Machines (SVM) and Decision 

Trees. These methods achieved moderate success under controlled conditions but often failed to generalize well 

to in-the-wild scenarios due to variability in head pose, facial appearance, and illumination. With the emergence 

of deep learning, convolutional neural networks (CNNs) revolutionized the landscape by enabling end-to-end 

feature learning directly from raw image data. 

Several notable studies exemplify this transition. For example, Tang (2013) applied a deep CNN to the FER2013 

dataset, achieving over 70% accuracy. Mollahosseini et al. (2016) introduced AffectNet, one of the largest facial 

expression datasets, further facilitating the training of deeper architectures. Meanwhile, landmark-based 

approaches such as those by Happy et al. (2015) explored using distances between facial keypoints as 

discriminative features. Despite these advancements, a critical limitation persists: CNNs, while powerful, often 

lack geometric context, and landmark-based systems are insufficiently expressive. 

Hybrid models represent a promising direction, combining appearance and geometry. Burkert et al. (2015) 

proposed DeXpression, a CNN framework that integrates basic geometric priors. Yet, the explicit fusion of facial 

landmark heatmaps with CNN inputs remains underexplored. This study contributes to this gap by designing a 

hybrid architecture that encodes landmarks into spatially structured heatmaps and integrates them into the CNN’s 

feature extraction pipeline. By doing so, it enhances robustness against occlusions and supports more nuanced 

emotion classification, especially for subtle expressions like fear or disgust. 

 

3. HYPOTHESES 

This research is driven by the need to improve the robustness, accuracy, and generalizability of automated facial 

emotion recognition systems through the fusion of geometric and appearance-based data. To evaluate the 

effectiveness of the proposed hybrid model, we frame our investigation around the following hypotheses: 

H1: Feature Fusion Superiority  

We hypothesize that a hybrid model incorporating both geometric features from facial landmarks and pixel-based 

features from grayscale images will outperform models that rely on either modality alone. The rationale for this 

hypothesis lies in the complementary nature of the two feature sets: geometric information provides consistent 

structural cues about facial layout, while pixel data captures subtle textural and shading variations. The 

combination is expected to enable the model to form more robust and discriminative representations for emotion 

classification. 

H2: Enhanced Resilience to Noise and Occlusion  

A significant limitation of appearance-only models is their susceptibility to occlusions, lighting changes, and other 

environmental distortions. We hypothesize that the integration of spatial priors in the form of landmark heatmaps 

will improve the model’s ability to localize emotion-critical regions, making it more resilient to partial occlusion, 

variable lighting, and facial misalignment. The use of heatmaps ensures that the CNN focuses its attention on 

consistent facial zones regardless of background noise or minor perturbations. 

H3: Cross-Dataset Generalizability  

We also hypothesize that the hybrid model will demonstrate strong generalization performance across datasets 

with distinct characteristics. Specifically, CK+ consists of high-resolution images with posed expressions, while 
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FER2013 contains spontaneous, lower-resolution images from diverse environments. The hypothesis posits that 

by learning from both appearance and structure, the model will capture general features of facial emotion that are 

transferable across different settings, demographic profiles, and expression elicitation styles. 

These hypotheses are critical in shaping the architecture of the proposed system, guiding experimental design, 

and framing the analytical methods used to assess performance. 

 

4. METHODOLOGY 

The methodology is designed to rigorously evaluate the proposed hybrid approach, ensuring that the results reflect 

both statistical validity and practical relevance. This section outlines the dataset characteristics, preprocessing 

pipeline, model architecture, training strategy, and evaluation protocols used throughout the study. 

4.1 Datasets  

We employed two well-established benchmarks: the Extended Cohn-Kanade (CK+) dataset and the Facial 

Expression Recognition 2013 (FER2013) dataset. CK+ contains 593 image sequences from 123 participants, each 

progressing from a neutral to a peak expression. Only the apex frames are used for training and testing. FER2013, 

in contrast, includes 35,887 grayscale images labeled across seven emotions, gathered from online image searches. 

These datasets together provide a balance of controlled and in-the-wild scenarios, allowing us to test both precision 

and generalizability. 

4.2 Preprocessing Pipeline  

Each image is first processed using a Histogram of Oriented Gradients (HOG)-based face detector to locate facial 

regions. Subsequently, the Dlib library is used to extract 68 facial landmarks for each detected face. The 

coordinates are normalized and used to generate landmark heatmaps by convolving Gaussian filters at each 

landmark location, producing a spatially interpretable representation. Simultaneously, key regions of interest (e.g., 

eyes, mouth, brows) are extracted as grayscale patches and resized to 48x48 pixels to standardize CNN input. 

4.3 CNN and Fusion Architecture  

The model architecture consists of two branches: one processing raw grayscale images and the other processing 

landmark heatmaps. Each branch comprises four convolutional layers, each followed by batch normalization, 

ReLU activation, and max-pooling. After feature extraction, the outputs of both branches are concatenated and 

fed into two fully connected layers. The final layer is a softmax classifier predicting seven discrete emotion 

categories. This dual-stream configuration allows the model to learn both visual and spatial hierarchies. 

4.4 Training Configuration  

We utilize the Adam optimizer with a learning rate of 0.0001 and mini-batch size of 64. The loss function is 

categorical cross-entropy. Training is conducted for 50 epochs, with early stopping triggered by validation loss 

plateau. Data augmentation is performed on-the-fly and includes random rotations (±20°), translations (±10 

pixels), zoom (90–110%), and horizontal flipping. These augmentations help simulate real-world variances and 

reduce overfitting. 

4.5 Evaluation Protocol  

Performance is evaluated using 10-fold cross-validation for CK+ and an 80-10-10 train-validation-test split for 

FER2013. Metrics include accuracy, precision, recall, F1-score, and confusion matrices. In addition, ablation 

studies are conducted to measure the individual contributions of the grayscale and landmark branches. We also 

simulate occlusion scenarios by masking out specific facial regions to assess the model’s resilience. 
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This comprehensive methodology is intended to ensure not only empirical rigor but also practical relevance, as 

the hybrid model is targeted toward deployment in environments where image quality and face visibility may vary 

significantly. 

 

5. RESULTS 

Emotion CK+ Accuracy (%) FER2013 Accuracy (%) 

Happiness 91 89 

Sadness 84 78 

Anger 87 79 

Fear 86 76 

Surprise 90 84 

Disgust 83 75 

Neutral 85 80 

The results of the evaluation confirm the effectiveness of the hybrid model in emotion classification across both 

the CK+ and FER2013 datasets. Quantitatively, the model achieved a classification accuracy of 88.3% on CK+ 

and 82.5% on FER2013, significantly outperforming models that utilized only grayscale images (83.6% and 

77.9%, respectively) or landmarks alone (75.1% and 68.7%, respectively). These gains were particularly 

noticeable in categories such as fear and disgust, where subtle differences in facial geometry play a crucial role. 

A further breakdown by emotion categories reveals consistent superiority of the hybrid model. On the CK+ 

dataset, the model recorded over 90% accuracy in recognizing happiness and surprise, while maintaining above 

80% accuracy in more ambiguous categories like fear and neutral. Similarly, on FER2013, the hybrid model 

maintained accuracy above 75% across all categories. 

Ablation studies further supported the role of feature fusion. Removing the landmark heatmap input caused a 

performance drop of 4–6% across both datasets. Additionally, the model demonstrated robustness against artificial 

occlusions applied to the eye or mouth regions, retaining classification accuracy within 5% of the original 

performance. These findings confirm the model’s practical applicability in real-world settings where complete 

facial visibility cannot always be guaranteed. 

 

6. Discussion 

The success of the proposed hybrid model can be attributed to its effective integration of geometric and 

appearance-based information, which allows for a more nuanced understanding of facial expressions. By 

leveraging facial landmarks as structural priors, the system benefits from spatial consistency, ensuring that 

emotion-relevant regions such as the eyes and mouth are consistently weighted during feature extraction. 

Simultaneously, the CNN component excels at capturing complex texture variations and subtle expression cues 

embedded in grayscale facial imagery. This dual-modality fusion equips the model with a richer and more 

discriminative feature space, improving classification performance across both controlled and unconstrained 

scenarios. 

A critical factor behind the robustness of the model is the decision to represent landmarks as heatmaps rather than 

coordinate vectors. This design preserves spatial dependencies and facilitates the convolutional layers’ ability to 
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learn localized filters. Consequently, the network can adapt to slight variations in facial shape and alignment, 

which are common in real-world settings. During artificial occlusion tests, where parts of the face were 

deliberately blocked, the model maintained its accuracy far better than baseline CNN models, suggesting that the 

landmark inputs guided the model to extract complementary information from unoccluded regions. 

Furthermore, the model's performance consistency across two datasets—CK+ with its high-resolution posed 

expressions, and FER2013 with its more diverse and spontaneous samples—demonstrates strong generalizability. 

The network does not merely memorize dataset-specific features but learns transferable representations. This trait 

is particularly important for deployment in applications like mobile health monitoring or user sentiment tracking 

in educational environments, where varied lighting, camera angles, and face orientations are common. 

However, certain challenges remain. The added preprocessing steps, including facial landmark detection and 

heatmap generation, increase computational load and latency, which may pose constraints for real-time systems 

on low-power devices. Additionally, the demographic homogeneity in training data could introduce model bias. 

A broader training corpus covering various age groups, ethnic backgrounds, and facial geometries could further 

enhance fairness and generalization. Future extensions might also explore attention-based mechanisms to 

dynamically emphasize emotion-relevant regions or apply domain adaptation to new environments with minimal 

retraining. 

In summary, this discussion affirms that the hybrid approach significantly advances the state-of-the-art in facial 

emotion recognition, particularly through its innovative use of landmark heatmaps as spatial priors. It balances 

accuracy with resilience and provides a promising architecture for real-world, real-time emotion-aware 

applications. 

 

7. Conclusion 

This study proposed and evaluated a hybrid facial emotion recognition model that integrates geometric facial 

landmark data with convolutional neural networks processing grayscale imagery. The fusion of these two 

modalities yielded superior results compared to standalone approaches, validating the hypothesis that spatial and 

visual information together provide a more robust foundation for emotion classification. Extensive experiments 

across CK+ and FER2013 datasets confirmed the model’s strength in both accuracy and generalization, even 

under occlusion and lighting variability. 

Beyond raw performance metrics, the model’s architecture promotes practical benefits. It is modular, making it 

adaptable to a variety of deployment environments, including mobile applications, intelligent tutoring systems, 

and surveillance platforms. The reliance on 68-point landmark features, a standard across many facial analysis 

pipelines, ensures compatibility with existing systems and facilitates integration into broader affective computing 

frameworks. 

Our findings support the viability of combining geometric and appearance cues for robust emotion recognition. 

The model's capability to handle noise and facial obstructions while maintaining high accuracy is a testament to 

the synergy of its dual-stream input. The ablation study reinforces the importance of landmark-guided attention 

in improving classification decisions, especially for subtle emotional states like fear, disgust, or neutrality that are 

often misclassified in simpler systems. 

To further enhance the framework, future research could explore the incorporation of temporal dynamics from 

video data to capture transitions between emotional states. Integration with audio features may also improve multi-
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modal emotion detection. Moreover, leveraging transformers or graph-based neural networks could enhance the 

representation of spatial relationships among landmarks, potentially refining emotion boundaries and inter-class 

distinctions. 

Ultimately, this research contributes a scalable, extensible, and effective model to the field of affective computing, 

paving the way for more human-centered applications that understand and adapt to user emotions in diverse real-

world contexts. 
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