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ABSTRACT

Automated emotion recognition from facial expressions has numerous applications in human-computer
interaction, surveillance, and psychological assessment. This paper presents a hybrid approach that combines
geometric facial landmark detection with deep convolutional neural networks (CNNs) to enhance emotion
classification accuracy. We extract 68 facial landmarks using the Dlib library and augment this geometric
information with grayscale image patches from regions of interest such as the eyes, mouth, and eyebrows. These
data are input into a CNN trained on two benchmark datasets: CK+ and FER2013. The CNN incorporates both
raw pixel data and heatmaps derived from the landmark positions. Data augmentation techniques such as random
rotation, scaling, and horizontal flipping improve the model’s generalization capability. Experimental results show
an accuracy of 88.3% on CK+ and 82.5% on FER2013, surpassing models using only pixel data or landmark
coordinates. Ablation studies confirm that combining geometric and appearance-based features results in higher
robustness, particularly under partial occlusion and varying lighting conditions. These findings suggest that hybrid
architectures can be effectively deployed in real-world affective computing systems, including mobile applications

and embedded platforms.

1. INTRODUCTION

Understanding human emotions through automated systems has become increasingly important in enhancing
machine intelligence and interaction. Emotion recognition, particularly from facial expressions, offers a non-
invasive and natural means of interpreting user states, thereby improving the adaptability of applications in areas
such as online education, mental health monitoring, and personalized advertising. Traditional facial expression
analysis methods have largely relied on either geometric features, which capture spatial relationships between
facial components, or appearance features derived from pixel-level intensity variations. However, these
approaches face limitations when used in isolation. Geometric methods often lack detailed texture representation,
while appearance-based CNN models may struggle with generalizing to unseen faces, occlusions, or
environmental variations.

Recent advances in deep learning have shown promise in bridging this gap, yet few approaches have explored the
synergy between landmark geometry and CNN-based pixel analysis in a unified framework. This paper addresses
this gap by proposing a dual-channel architecture that processes both facial landmarks and raw pixel patches,
aiming to leverage the complementary nature of spatial and visual cues. The proposed solution is evaluated on
two benchmark datasets, CK+ and FER2013, which offer a mix of posed and spontaneous expressions, thus
providing a comprehensive testbed. Our primary objective is to enhance the robustness and generalizability of
emotion recognition systems across varied conditions, particularly for deployment in resource-constrained

platforms such as smartphones and embedded Al devices.

2. LITERATURE REVIEW
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The field of emotion recognition has undergone substantial evolution over the past two decades. Early techniques
predominantly utilized hand-crafted features including Gabor wavelets, Histogram of Oriented Gradients (HOG),
and Local Binary Patterns (LBP), combined with classifiers such as Support Vector Machines (SVM) and Decision
Trees. These methods achieved moderate success under controlled conditions but often failed to generalize well
to in-the-wild scenarios due to variability in head pose, facial appearance, and illumination. With the emergence
of deep learning, convolutional neural networks (CNNs) revolutionized the landscape by enabling end-to-end
feature learning directly from raw image data.

Several notable studies exemplify this transition. For example, Tang (2013) applied a deep CNN to the FER2013
dataset, achieving over 70% accuracy. Mollahosseini et al. (2016) introduced AffectNet, one of the largest facial
expression datasets, further facilitating the training of deeper architectures. Meanwhile, landmark-based
approaches such as those by Happy et al. (2015) explored using distances between facial keypoints as
discriminative features. Despite these advancements, a critical limitation persists: CNNs, while powerful, often
lack geometric context, and landmark-based systems are insufficiently expressive.

Hybrid models represent a promising direction, combining appearance and geometry. Burkert et al. (2015)
proposed DeXpression, a CNN framework that integrates basic geometric priors. Yet, the explicit fusion of facial
landmark heatmaps with CNN inputs remains underexplored. This study contributes to this gap by designing a
hybrid architecture that encodes landmarks into spatially structured heatmaps and integrates them into the CNN’s
feature extraction pipeline. By doing so, it enhances robustness against occlusions and supports more nuanced

emotion classification, especially for subtle expressions like fear or disgust.

3. HYPOTHESES
This research is driven by the need to improve the robustness, accuracy, and generalizability of automated facial
emotion recognition systems through the fusion of geometric and appearance-based data. To evaluate the
effectiveness of the proposed hybrid model, we frame our investigation around the following hypotheses:
H1: Feature Fusion Superiority
We hypothesize that a hybrid model incorporating both geometric features from facial landmarks and pixel-based
features from grayscale images will outperform models that rely on either modality alone. The rationale for this
hypothesis lies in the complementary nature of the two feature sets: geometric information provides consistent
structural cues about facial layout, while pixel data captures subtle textural and shading variations. The
combination is expected to enable the model to form more robust and discriminative representations for emotion
classification.
H2: Enhanced Resilience to Noise and Occlusion
A significant limitation of appearance-only models is their susceptibility to occlusions, lighting changes, and other
environmental distortions. We hypothesize that the integration of spatial priors in the form of landmark heatmaps
will improve the model’s ability to localize emotion-critical regions, making it more resilient to partial occlusion,
variable lighting, and facial misalignment. The use of heatmaps ensures that the CNN focuses its attention on
consistent facial zones regardless of background noise or minor perturbations.
H3: Cross-Dataset Generalizability
We also hypothesize that the hybrid model will demonstrate strong generalization performance across datasets

with distinct characteristics. Specifically, CK+ consists of high-resolution images with posed expressions, while
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FER2013 contains spontaneous, lower-resolution images from diverse environments. The hypothesis posits that
by learning from both appearance and structure, the model will capture general features of facial emotion that are
transferable across different settings, demographic profiles, and expression elicitation styles.

These hypotheses are critical in shaping the architecture of the proposed system, guiding experimental design,

and framing the analytical methods used to assess performance.

4. METHODOLOGY
The methodology is designed to rigorously evaluate the proposed hybrid approach, ensuring that the results reflect
both statistical validity and practical relevance. This section outlines the dataset characteristics, preprocessing
pipeline, model architecture, training strategy, and evaluation protocols used throughout the study.
4.1 Datasets
We employed two well-established benchmarks: the Extended Cohn-Kanade (CK+) dataset and the Facial
Expression Recognition 2013 (FER2013) dataset. CK+ contains 593 image sequences from 123 participants, each
progressing from a neutral to a peak expression. Only the apex frames are used for training and testing. FER2013,
in contrast, includes 35,887 grayscale images labeled across seven emotions, gathered from online image searches.
These datasets together provide a balance of controlled and in-the-wild scenarios, allowing us to test both precision
and generalizability.
4.2 Preprocessing Pipeline
Each image is first processed using a Histogram of Oriented Gradients (HOG)-based face detector to locate facial
regions. Subsequently, the DIib library is used to extract 68 facial landmarks for each detected face. The
coordinates are normalized and used to generate landmark heatmaps by convolving Gaussian filters at each
landmark location, producing a spatially interpretable representation. Simultaneously, key regions of interest (e.g.,
eyes, mouth, brows) are extracted as grayscale patches and resized to 48x48 pixels to standardize CNN input.
4.3 CNN and Fusion Architecture
The model architecture consists of two branches: one processing raw grayscale images and the other processing
landmark heatmaps. Each branch comprises four convolutional layers, each followed by batch normalization,
ReLU activation, and max-pooling. After feature extraction, the outputs of both branches are concatenated and
fed into two fully connected layers. The final layer is a softmax classifier predicting seven discrete emotion
categories. This dual-stream configuration allows the model to learn both visual and spatial hierarchies.
4.4 Training Configuration
We utilize the Adam optimizer with a learning rate of 0.0001 and mini-batch size of 64. The loss function is
categorical cross-entropy. Training is conducted for 50 epochs, with early stopping triggered by validation loss
plateau. Data augmentation is performed on-the-fly and includes random rotations (£20°), translations (+10
pixels), zoom (90-110%), and horizontal flipping. These augmentations help simulate real-world variances and
reduce overfitting.
4.5 Evaluation Protocol
Performance is evaluated using 10-fold cross-validation for CK+ and an 80-10-10 train-validation-test split for
FER2013. Metrics include accuracy, precision, recall, Fl-score, and confusion matrices. In addition, ablation
studies are conducted to measure the individual contributions of the grayscale and landmark branches. We also

simulate occlusion scenarios by masking out specific facial regions to assess the model’s resilience.
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This comprehensive methodology is intended to ensure not only empirical rigor but also practical relevance, as
the hybrid model is targeted toward deployment in environments where image quality and face visibility may vary

significantly.

5. RESULTS
Emotion CK+ Accuracy (%) FER2013 Accuracy (%)

Happiness 91 89
Sadness 84 78
Anger 87 79
Fear 86 76
Surprise 90 84
Disgust 83 75
Neutral 85 80

The results of the evaluation confirm the effectiveness of the hybrid model in emotion classification across both
the CK+ and FER2013 datasets. Quantitatively, the model achieved a classification accuracy of 88.3% on CK+
and 82.5% on FER2013, significantly outperforming models that utilized only grayscale images (83.6% and
77.9%, respectively) or landmarks alone (75.1% and 68.7%, respectively). These gains were particularly
noticeable in categories such as fear and disgust, where subtle differences in facial geometry play a crucial role.
A further breakdown by emotion categories reveals consistent superiority of the hybrid model. On the CK+
dataset, the model recorded over 90% accuracy in recognizing happiness and surprise, while maintaining above
80% accuracy in more ambiguous categories like fear and neutral. Similarly, on FER2013, the hybrid model
maintained accuracy above 75% across all categories.

Ablation studies further supported the role of feature fusion. Removing the landmark heatmap input caused a
performance drop of 4-6% across both datasets. Additionally, the model demonstrated robustness against artificial
occlusions applied to the eye or mouth regions, retaining classification accuracy within 5% of the original
performance. These findings confirm the model’s practical applicability in real-world settings where complete

facial visibility cannot always be guaranteed.

6. Discussion

The success of the proposed hybrid model can be attributed to its effective integration of geometric and
appearance-based information, which allows for a more nuanced understanding of facial expressions. By
leveraging facial landmarks as structural priors, the system benefits from spatial consistency, ensuring that
emotion-relevant regions such as the eyes and mouth are consistently weighted during feature extraction.
Simultaneously, the CNN component excels at capturing complex texture variations and subtle expression cues
embedded in grayscale facial imagery. This dual-modality fusion equips the model with a richer and more
discriminative feature space, improving classification performance across both controlled and unconstrained
scenarios.

A critical factor behind the robustness of the model is the decision to represent landmarks as heatmaps rather than

coordinate vectors. This design preserves spatial dependencies and facilitates the convolutional layers’ ability to
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learn localized filters. Consequently, the network can adapt to slight variations in facial shape and alignment,
which are common in real-world settings. During artificial occlusion tests, where parts of the face were
deliberately blocked, the model maintained its accuracy far better than baseline CNN models, suggesting that the
landmark inputs guided the model to extract complementary information from unoccluded regions.

Furthermore, the model's performance consistency across two datasets—CK+ with its high-resolution posed
expressions, and FER2013 with its more diverse and spontaneous samples—demonstrates strong generalizability.
The network does not merely memorize dataset-specific features but learns transferable representations. This trait
is particularly important for deployment in applications like mobile health monitoring or user sentiment tracking
in educational environments, where varied lighting, camera angles, and face orientations are common.

However, certain challenges remain. The added preprocessing steps, including facial landmark detection and
heatmap generation, increase computational load and latency, which may pose constraints for real-time systems
on low-power devices. Additionally, the demographic homogeneity in training data could introduce model bias.
A broader training corpus covering various age groups, ethnic backgrounds, and facial geometries could further
enhance fairness and generalization. Future extensions might also explore attention-based mechanisms to
dynamically emphasize emotion-relevant regions or apply domain adaptation to new environments with minimal
retraining.

In summary, this discussion affirms that the hybrid approach significantly advances the state-of-the-art in facial
emotion recognition, particularly through its innovative use of landmark heatmaps as spatial priors. It balances
accuracy with resilience and provides a promising architecture for real-world, real-time emotion-aware

applications.

7. Conclusion
This study proposed and evaluated a hybrid facial emotion recognition model that integrates geometric facial
landmark data with convolutional neural networks processing grayscale imagery. The fusion of these two
modalities yielded superior results compared to standalone approaches, validating the hypothesis that spatial and
visual information together provide a more robust foundation for emotion classification. Extensive experiments
across CK+ and FER2013 datasets confirmed the model’s strength in both accuracy and generalization, even
under occlusion and lighting variability.
Beyond raw performance metrics, the model’s architecture promotes practical benefits. It is modular, making it
adaptable to a variety of deployment environments, including mobile applications, intelligent tutoring systems,
and surveillance platforms. The reliance on 68-point landmark features, a standard across many facial analysis
pipelines, ensures compatibility with existing systems and facilitates integration into broader affective computing
frameworks.
Our findings support the viability of combining geometric and appearance cues for robust emotion recognition.
The model's capability to handle noise and facial obstructions while maintaining high accuracy is a testament to
the synergy of its dual-stream input. The ablation study reinforces the importance of landmark-guided attention
in improving classification decisions, especially for subtle emotional states like fear, disgust, or neutrality that are
often misclassified in simpler systems.
To further enhance the framework, future research could explore the incorporation of temporal dynamics from

video data to capture transitions between emotional states. Integration with audio features may also improve multi-
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modal emotion detection. Moreover, leveraging transformers or graph-based neural networks could enhance the
representation of spatial relationships among landmarks, potentially refining emotion boundaries and inter-class
distinctions.

Ultimately, this research contributes a scalable, extensible, and effective model to the field of affective computing,
paving the way for more human-centered applications that understand and adapt to user emotions in diverse real-

world contexts.
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