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ABSTRACT 

Diabetes being a chronic disease is a constant subject for surveillance, detection, and personalized care. With 

the infusion of IoT technologies in healthcare, there exists an opportunity to develop intelligent systems to 

collect such real-time physiological data as glucose levels, heart rate, and physical activity via wearable devices 

such as Continuous Glucose Monitors (CGMs) and fitness trackers. Nevertheless, it presents an enormous 

challenge for traditional diagnosis systems due to the varied nature of the overwhelming amount of this data. 

To this effect, this research study proposes a smart diabetes detection framework combining IoT-based data 

collection and cutting-edge machine learning and deep learning techniques. The system utilizes data cells for 

pre-processing through Z-Score normalization and KNN imputation to ensure consistency and quality of the 

data. It employs deep feature extraction by means of Autoencoders to lower dimension and preserve key 

patterns; these are then flattened into a vector and fed to a Recurrent Neural Network (RNN) classifier, which 

exploits temporal dependencies varying between features to determine the presence or absence of diabetes 

accurately. The classification results are analysed and visualized further to forge interpretable insights. 

Evaluation by performance metrics and user-level analysis demonstrates the efficacy of the system in 

supporting early diagnosis and personalized management of diabetes. This convergent approach will thus 

facilitate adaptive, data-driven patient-centric smart healthcare solutions. 
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1. INTRODUCTION 

Diabetes is emerging as a global health threat, which calls for innovative, continuous, and personal monitoring 

systems. This very approach would enable Smart Diabetes Care by providing a much-needed new paradigm that 

makes available the Internet of Things (IoT) connected data analytics for health monitoring personalized and in 

real-time [1]. However, at the same time, it generates massive amounts of physiological and behavioural data with 

different IoT-enabled devices such as Continuous Glucose Monitors, smart insulin pens, and wearable fitness 

trackers [2]. The continuous inflow of data, thus, enables tracking blood glucose levels, insulin activity, and 

physical activity in real-time and brings an integrated understanding of an individual's health condition [3]. 

However, high-dimensional, multisource data delivered threaten efficient management and analysis, thus calling 

for very sophisticated computational resources that can recognize subtle patterns and actually support timely 

actions [4]. This study proposes a framework that starts with the data collection of the IoT devices in healthcare, 

followed by the pre-processing steps such as Z-score normalization and KNN-based imputation for data quality 

[5]. Autoencoders extract the deep and compressed features from data; these deep features are then fed to an RNN 

classifier, which is capable of learning temporal dependencies [6]. The outputs of the model are analysed and 

visualized to tell whether the patient is extremely probable to have diabetes, as evidenced by the performance 

evaluation metrics. In smart healthcare environments, it not only makes earlier diagnosis of diabetes possible but 

also helps in laying the foundation for adaptive personalized treatment strategies [7]. 

The rapid advancement of the Internet of Things (IoT) and data analytics has revolutionized modern healthcare, 

offering new possibilities for managing chronic conditions such as diabetes [8]. Smart Diabetes Care is an 

innovative approach that integrates IoT-enabled devices with powerful data analytics to deliver real-time, 

personalized health insights for individuals living with diabetes [9]. These systems continuously monitor vital 

parameters such as blood glucose levels, physical activity, diet, and medication adherence through wearable 

sensors and smart devices [10]. The collected data is then processed using advanced analytics and machine 

learning algorithms to identify patterns, predict complications, and provide tailored recommendations. This 
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integration not only enhances the accuracy of diabetes management but also empowers patients and healthcare 

providers with actionable insights for proactive decision-making [11]. By enabling early detection of anomalies 

and supporting individualized care plans, Smart Diabetes Care marks a significant step towards more efficient, 

responsive, and patient-centric healthcare solutions [12]. 

Diabetes is a chronic disease that demands continuous monitoring and management, often requiring patients to 

make daily decisions about their health [13]. Traditional methods of diabetes care are limited by periodic data 

collection, which may not provide a complete picture of a patient’s health status [14]. With the emergence of IoT 

technologies, a paradigm shift is underway, allowing real-time, non-invasive, and continuous data collection from 

smart wearable devices [15]. These innovations are transforming how individuals track their health metrics and 

how medical professionals intervene, offering a smarter and more responsive approach to diabetes care [16]. At 

the core of Smart Diabetes Care is the seamless integration of IoT devices with intelligent data analytics platforms 

[17]. Devices such as continuous glucose monitors (CGMs), smart insulin pens, and connected fitness trackers 

capture diverse health data [18]. When analyzed using AI and machine learning algorithms, this data uncovers 

meaningful patterns and trends that are often missed through conventional monitoring. These insights can be used 

to forecast glucose fluctuations, detect hypoglycemic events early, and personalize treatment plans, improving the 

overall quality of life for diabetic patients [19]. 

The personalized health insights derived from data analytics empower patients to become active participants in 

managing their diabetes. Through mobile apps and cloud-based dashboards, users can visualize their health data, 

receive personalized alerts, and get evidence-based recommendations in real time [20]. This patient-centered 

model not only promotes self-management but also encourages behavioral change, helping individuals make 

informed decisions about their diet, exercise, and medication [21]. Ultimately, this leads to improved glycemic 

control and reduces the risk of diabetes-related complications. From a healthcare provider’s perspective, Smart 

Diabetes Care facilitates more efficient and proactive care delivery. By remotely accessing real-time patient data, 

clinicians can perform timely interventions, optimize medication regimens, and reduce unnecessary hospital visits. 

Predictive analytics further enhance clinical decision-making by identifying at-risk patients and enabling early 

intervention. This data-driven approach enhances patient engagement, supports remote care models such as 

telemedicine, and contributes to the development of precision medicine in diabetes management [22]. 

As the global burden of diabetes continues to rise, the integration of IoT and data analytics offers a scalable and 

sustainable solution for long-term disease management. However, challenges related to data security, 

interoperability, and user adoption must be addressed to fully realize the potential of Smart Diabetes Care [23]. 

Ongoing research, innovation, and collaboration between technology developers, healthcare providers, and 

policymakers are essential to build robust systems that are secure, reliable, and patient-friendly. With the right 

infrastructure and strategic implementation, Smart Diabetes Care has the potential to transform diabetes 

management into a highly personalized and proactive healthcare experience [24]. The intersection of healthcare 

and technology has opened new frontiers in chronic disease management, particularly in addressing the growing 

diabetes epidemic. Smart Diabetes Care leverages the capabilities of IoT devices to collect real-time physiological 

data, enabling continuous monitoring outside of clinical settings. By combining this with data analytics, it 

becomes possible to detect early warning signs and customize care plans based on individual patient needs. This 

shift from reactive to proactive care is redefining how diabetes is managed, focusing on prevention and 

personalization [25]. 

The digital transformation of healthcare has led to the development of intelligent ecosystems where data-driven 

insights can greatly enhance patient outcomes [26]. In the context of diabetes care, IoT devices serve as data 

generators, capturing a wide array of parameters such as glucose levels, heart rate, sleep patterns, and physical 

activity. These data streams, when processed through analytics engines, help identify subtle deviations and trigger 

timely responses [27]. Such smart systems not only support physicians in making accurate decisions but also 

empower patients to stay engaged with their health. Traditional diabetes management often involves routine 

check-ups and manual data logging, which can be cumbersome and prone to error. Smart Diabetes Care replaces 

this with an automated and intelligent framework where data is collected passively and continuously [28]. IoT 

sensors, embedded in wearable devices or medical tools, transmit health data to cloud platforms for real-time 

analysis. This continuous loop of data collection and insight generation ensures a holistic understanding of a 

patient’s condition and supports dynamic, adaptive treatment strategies [29]. 

The personalized approach to diabetes management represents a significant advancement over generalized 

treatment protocols. Through the integration of IoT and advanced analytics, healthcare providers can design 

interventions tailored to the specific lifestyle, physiology, and response patterns of each patient. For instance, 

machine learning models can predict how a particular meal or activity affects glucose levels, enabling patients to 
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make smarter choices throughout the day. Such systems are not only innovative but also essential in moving 

toward precision health in diabetes care [30]. 

1.1 PROBLEM STATEMENT 

Diabetes is a chronic and progressive metabolic disorder that affects millions throughout the world. 

Timely diagnosis, continuous monitoring, and individualized treatment are the key to preventing complications 

[31]. Even though modern diagnostic tools and digital health records are available, conventional management of 

diabetes often pertains to periodic check-ups and snapshots of isolated data on the patient, thereby limiting the 

potential to capture evolving health patterns in real-time [32]. Furthermore, the data coming from various 

healthcare sources-wearable IoT devices, electronic health records, and lifestyle logs-are typically high-

dimensional, heterogeneous, and incomplete [33]. These very factors hinder aggregating the data, cleaning them, 

and then analysing them in order to generate some useful clinical insights for real-time and personalized care 

initiation [34]. There is, thus, an urgent need for an intelligent integrated system that continuously acquires health 

data from IoT devices and employs advanced analytics for diabetes to be diagnosed early and accurately [35]. The 

absence of scalable frameworks to handle multi-source temporal data, conduct suitable pre-processing, and learn 

sequential patterns for disease classification is a roadblock for transitioning from reactive to proactive care [36]. 

In this work, we define an overarching smart diabetes care architecture integrating IoT-based data acquisition, 

automated data pre-processing (Z-score normalization and KNN imputation), deep feature extraction using 

autoencoders, and time-series classification via Recurrent Neural Networks (RNN) followed by the performance 

assessment and decision visualization [37]. The proposed approach is aimed at enhancing diagnostic accuracy and 

personalizing treatment regimens based on data [38]. 

Objective 

➢ Real time physiological and behavioural data collection from IoT-enabled healthcare devices, like 

CGMs, smart pens, and fitness trackers, for better overall diabetes monitoring. 

➢ The collected will undergo Z-score normalization pre-processing for feature standardization and K-

Nearest Neighbours (KNN) imputation of missing values to achieve consistent and reliable data for 

analysis. 

➢ Feature extraction involves the use of Autoencoders to identify significant features among high-

dimensional IoT data captured by healthcare facilities while ensuring meaningful dimensionality 

reduction with the retention of crucial signal properties. 

➢ Diagnosis of diabetes as presence or absence with the help of recurrent neural networks (RNNs) that 

capture sequential patterns since RNNs are based on temporal dependencies. 

➢ To test models performance, consequently, results will be generated in the form of data analytics or 

visualization, thus, making individualized health insights interpretable towards improved diabetes 

management. 

 

2. LITERATURE SURVEY 

                  Internet of Things (IoT) systems in healthcare has transformed chronic disease monitoring, specifically 

for diabetes management. Various studies have focused on continuous monitoring with many of these wearable 

sensors and smart devices to receive real-time physiological parameters, including glucose, heart rate, physical 

activity, and dietary habits [39]. By processing these data streams through intelligent analytic frameworks, 

messages to alert, analyse trends, and provide patient-specific health-related information can be given to doctors 

just in time [40]. These researchers are also exploring cloud-connected IoT ecosystems to enable remote 

monitoring of diabetes patients and early detection of anomalies via wireless transmission of data. These systems 

help to improve patient adherence while providing some insights to clinicians and work to bridge the gap between 

continuous monitoring and personalized treatment [41]. Machine learning techniques are now widely used to 

manage, analyse, and model large-scale data collected by the IoT. Autoencoders are proving to be a good 

approach, extracting features from various complex health datasets in lower-dimensional representations and 

crucial information [42]. Deep learning models, in particular, recurrent neural networks (RNNs), have been 

successfully applied to model temporal health patterns, predicting the risk of diabetes and/or episodes of diabetes 

based on long sequences of past data [43]. Classification algorithms' accuracy and robustness in predicting 

diabetes are enhanced with the prior application of pre-processing methods, including normalization and 

imputation [44]. The synthesis of these technologies builds the foundation for intelligent predictive personalized 

diabetes treatment systems. 

Recent advancements in the integration of Internet of Things (IoT) and data analytics have significantly 

transformed healthcare systems, particularly in the domain of personalized patient care and chronic disease 
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management [45]. Studies have emphasized the importance of IoT frameworks in enabling smart city 

infrastructures and improving healthcare delivery through real-time monitoring, automation, and intelligent 

decision-making [46]. IoT-integrated technologies such as ultra-wideband (IR-UWB), wearable sensors, and 

blockchain-based platforms have shown immense potential in enhancing healthcare applications by ensuring data 

accuracy, security, and interoperability [47]. These systems support continuous health tracking, making it feasible 

to deliver timely interventions for patients, especially those managing chronic conditions like diabetes [48]. Cloud 

computing has also been recognized as a key enabler for scalable healthcare solutions [49]. Various research 

efforts have explored the synergy between cloud services, artificial intelligence (AI), and IoT to optimize resource 

utilization and improve decision support mechanisms [50]. For example, hybrid AI models incorporating neural 

networks, deep learning, and heuristic methods have been applied to disease prediction and test case prioritization, 

enhancing diagnostic accuracy and treatment outcomes [51]. In parallel, secure data transmission and storage have 

been addressed through cryptographic protocols and blockchain-based integrity management, ensuring patient 

confidentiality and trust in smart healthcare systems [52]. 

Big data analytics plays a critical role in extracting actionable insights from vast volumes of healthcare data 

generated by IoT devices [53]. Advanced clustering techniques, anomaly detection algorithms, and decision 

support systems have been used to evaluate healthcare performance, detect irregular patterns, and suggest 

corrective actions [54]. Additionally, indoor positioning systems and facility management tools integrated with 

IoT have facilitated smarter hospital infrastructure, enhancing operational efficiency and patient flow management 

[55]. These systems have contributed to building context-aware environments where health data is continuously 

analyzed and used for dynamic personalization of healthcare services [56]. The emergence of intelligent 

healthcare ecosystems is also linked with the growing application of AI and machine learning algorithms in areas 

such as remote patient monitoring, malware detection in medical systems, and CRM frameworks in healthcare 

operations [57]. These models not only automate routine tasks but also provide predictive insights for clinical 

decision-making [58]. In particular, the integration of fog and cloud environments has been highlighted as a 

strategy to increase system availability and responsiveness, particularly for time-sensitive medical data processing 

[59]. Collectively, the literature reveals a strong trend towards building comprehensive, secure, and intelligent 

healthcare systems by leveraging IoT, AI, and cloud computing [60]. The shift towards real-time monitoring, 

decentralized data management, and predictive analytics has paved the way for innovative solutions that support 

personalized, preventive, and participatory healthcare models [61]. However, the implementation of these systems 

still faces challenges related to interoperability, standardization, and data privacy, which require continuous 

research and development for widespread adoption and effectiveness [62]. 

The integration of IoT in healthcare has emerged as a transformative approach to enable real-time monitoring, 

efficient data sharing, and improved decision-making [63]. Research has shown that IoT-based systems, when 

embedded with smart sensors and wearable technologies, can continuously collect health-related data such as 

glucose levels, heart rate, and physical activity [64]. This data, when processed using AI and analytics, offers 

deeper insights into patient behavior and health trends. The resulting intelligence supports predictive diagnostics 

and allows for early intervention, especially for chronic diseases like diabetes where timely management is critical 

[65]. Security and privacy of medical data remain primary concerns in IoT-driven healthcare environments [66]. 

Various studies have explored the use of advanced cryptographic methods, such as super singular elliptic curve 

isogeny and blockchain technologies, to safeguard sensitive patient information [67]. Blockchain-integrated 

platforms not only enhance data integrity and immutability but also support decentralized health records 

management [68]. These innovations ensure secure communication among medical devices, cloud platforms, and 

healthcare professionals, reducing the risk of data breaches and unauthorized access in smart healthcare systems 

[69]. 

3. PROPOSED METHDOLOGY 

This flow chart demonstrates a smart healthcare pipeline, which profits from the Internet of Things data 

and advanced analytics for the detection of diabetes. The process traverses through data acquisition, which entails 

the collection of data from healthcare IoT devices and vital signs with patient metrics [70]. The next stage is pre-

processing, during which Z-score normalization and data cleaning are carried out to ensure quality and consistency 

of the data being used. Feature extraction follows via an Autoencoder algorithm in order to slightly downsize the 

dimensionality of the observations while preserving all the important patterns of input data [71]. These extracted 

features enter the feed of the Recurrent Neural Network (RNN) for classification based on the temporal 

dependence of the data. These outputs then feed a data analytics and visualization module that interprets the output 

and classifies whether or not diabetes is present. Based on this classification, the metrics for the evaluation of 

model performance are then generated. Therefore, this entire system forms an effective and lucid framework for 

intelligent detection of diabetes via IoT-driven data analytics [72]. This figure describes the complete IoT health 
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data and deep learning analysis-based smart diabetes detection process. The workflow starts with the collection 

of data through various IoT devices in a healthcare environment, measuring physiological parameters in real time, 

such as glucose levels, heart rate, and activity pattern After that data is collected, it is processed using Z-score 

normalization and KNN-based data cleaning for missing values so that the features will carry a uniform scale and 

give one dataset ready for analysis. The features are extracted from the pre-processed data through an 

Autoencoder, which reduces the amount of information in the form of high-dimensional input while keeping key 

information intact. This reduction in feature space goes on to classification by RNN (Recurrent Neural Network), 

which can learn time-varying patterns of sequential health data. Classification results are analysed and visualized 

to check for disease presence or absence. It differentiates between parts of the body where diabetes exists or not, 

according to that prediction. Finally, assessing performance will prove to what extent the entire model establishes 

credibility in terms of accuracy and interpretability and support personalized healthcare 

 

 

                                       Figure 1: Smart Diabetes Detection Using IoT 

3.1 Data collection 

The figure 1 shows that data gathering about a patient's health by different sources is a priority-one-step 

platform in the proposed smart health workflow for diabetes detection. These sources include wearable IoT 

devices such as continuous glucose monitors (CGMs), smart insulin pens, and fitness trackers and record real-

time metrics such as blood glucose levels, insulin dosages, physical activity, and heart rate. It's about collecting 

patient health data from various sources. These different sources include wearable IoT devices such as the 

continuous glucose monitor (CGM), the smart insulin pen, and fitness trackers, which can record real-time metrics 

like blood glucose levels, insulin dosages, physical activity, and heart rate. Electronic health records (EHRs) are 

also a source for historical data on patient demographics, medical history, and laboratory results. The 

amalgamation of these heterogeneous streams provides the system with a comprehensive dataset that caters for 

current and longitudinal health indicators, thus providing a solid basis for further pre-processing, analysis, and 

predictive modelling in diabetes management. 

3.2 Pre-processing 

In stage of pre-processing within the smart healthcare workflow for diabetes detection, a couple of very 

critical techniques have been construed to prep up for analysis of the datasets. One of these techniques involves 

Z-score normalization, which usually serves to standardize the features around mean 0 and standard deviation 1. 

This then ensures that the features contribute equally to analysis; most algorithms are sensitive to feature scaling. 

The other pre-processor involves the K-Nearest Neighbours (KNN) imputation for missing values in the dataset. 

KNN here refers to estimating missing values by the k closest instances according to their attributes in the 
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underlying structure of the data. Pre-processing somehow makes the dataset more ready for modelling and analysis 

under diabetes detection. 

3.2.1 Normalization 

Normalization using the Z-score, also termed as standardization, is a way of transforming the data so that 

its mean becomes 0 and its standard deviation is 1. This is essential when the features in a dataset have different 

units or scales, thus ensuring that each feature contributes equally to the analysis. The transformation to a standard 

normal distribution would also be preferred by the algorithms that depend on distance metrics, for example, k-

nearest neighbours or methods based on gradient descent.  

                    𝑧 =
𝑥−𝜇

𝜎
                                                                                           (1) 

𝑥 is the original data point, μ\ muμ is the mean of the feature, and σ sigma is the standard deviation of the feature 

3.2.2 Data Cleaning 

K-nearest neighbours imputation is a technique for missing value recovery for a single attribute in a data-

set where the values are estimated from the k most similar entries. This method assumes that similar data points 

are likely to have similar values for missing attributes. KNN imputation provides closer estimates in a statistically 

informed context rather than those offered by simple imputation approaches, as it takes not only the direction but 

also the distance between points into consideration. 

�̂�missing =
1

𝑘
∑  𝑘

𝑖=1 𝑥𝑖                                                                                 (2) 

�̂�missing  is the estimated value for the missing data point,𝑥𝑖 represents the values of the 'k' nearest neighbours, 

𝑘 is the number of neighbors considered. 

3.3 Feature Extraction 

During feature extraction in the smart diabetes care workflow, the aim is mainly to reduce the dimensions of high-

frequency time-series data collected from IoT devices such as glucose monitors and wearable sensors while 

retaining important patterns useful for predictive modelling. In feature extraction, raw data is pre-processed into 

meaningful inputs for machine learning models, such as RNNs, achieving the goal of decreased data while 

maintaining important information. One such option which is employed in the workflow for feature extraction is 

Autoencoders. An autoencoder is an artificial neural network that learns to encode the input data into a lower-

dimensional space and subsequently decode it back into a reconstructed version. This decoded projection (latent 

space) is treated as the extracted feature. This method finds very efficient application in learning non-linear 

relationships that establish themselves in the data; this is very much the case in physiological signals, for instance, 

glucose levels and heart rate. The equation for an autoencoder's operation is as follows: 

�̂� = 𝑓decoder (𝑓encoder (𝑥))                                                                (3) 

𝑥 represents the original input data (e.g., sensor readings or glucose values), 

𝑓encoder  is the encoding function that maps the input data into a compressed feature representation (latent space), 

𝑓decoder  is the decoding function that reconstructs the original data from the compressed features, 

�̂� is the reconstructed output. 

 

3.4 Classification of using RNN 

It is developed as a future smart healthcare framework concerning diabetes detection, which has proved one of 

the best candidates for classification techniques trained with sequential data and temporal data. It carries in the 

model its capability of memorizing (or hidden states) any information it receives as input earlier and generate, 

thereby build up a temporary set of meta-parameter values for a such physiological signal which usually says the 
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blood glucose levels, heart rate, alveolar glucose, and insulin activities of the patient measured over a time interval; 

that is what a vast difference RNN has with feedforward neural networks. After pre-processing and feature 

extraction through autoencoder, the trans-formation data is fed into RNNs which learn the pat-terns associated 

with such diabetes presence/absence. Capturing the dependencies across several time steps, therefore, boosts the 

prediction accuracy of RNNs and a more informed personalized decision-making diagnostic. : Much importance 

and role in performing a classification task with sequential healthcare data are borne by RNN. This is especially 

true for certain diseases like diabetes, where trends and patterns matter most in time. RNN keeps an internal hidden 

state latched on to continuous timeframe input so that it can remember details from previous time steps. It is hence 

always effective for time series data collection based on methods to take an input for IoT devices including glucose 

monitors and wearable sensors. It is within this context where pre-processing has occurred, featured by 

arrangement using an Autoencoder, and now gives to the RNN input to learn all temporal relations causing the 

development or onset of diabetes. RNN as it has been conceptualized is a perfect model designed to operate on 

the premise that input data will be provided in a sequential flowering method while each time step gives rise to 

an internal hidden state carrying forward with its exercise the free continuous time frame. As a rule, RNN is well 

well-suited to collect time-series data based on methods to take input from IoT devices including glucose monitors 

and wearable sensors. The pre-processing that takes place has caused arrangement of features via and now serves 

to give the RNN inputs to learn all the temporal relationships causing either the progression or onset of diabetes. 

Unlike traditional classifiers, it has been observed that RNN generally does a good job at modelling the temporal 

dependencies, taking or more specifically patient related data such as glucose fluctuations or even insulin intake 

patterns or activity levels. The model will learn the often minor yet overlooked aberrations and behaviours towards 

sometimes behaving more as sequences. These can be linked to their quite many patterns to output classes like 

"disease present" or maybe "not present", thus presenting RNNs as stronger models for making predictions for 

observable but not invisible diabetes. This model therefore improves diagnostic enablement and earlier 

intervention, thus suiting it to a very intelligent personalized healthcare system. 

Input Layer

Hidden Layer

Output Layer

 
Figure 2: Classification of RNN  

3.4.1 Input Layer (Sequential Data) 

Function: Accepts a time-dependent sequence of data Examples: In NLP: word embeddings or tokens In 

loT / Healthcare: time-stamped sensor readings (heart rate, temperature, etc.) Output: Inputs at time steps 

𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑡 

3.4.2 Recurrent Hidden Layer 

Function: Processes current input and retains memory of past inputs via hidden states. Key Operation: 
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ℎ𝑡 = tanh (𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)                                                           (4) 

where: ℎ𝑡 : hidden state at time, 𝑡𝑥𝑡 : input at time 𝑡,𝑊𝑥ℎ , 𝑊ℎℎ : weight matrices,𝑏ℎ : bias, Characteristic: 

Feedback connections allow previous state ℎ𝑡−1 to influence the current state. 

3.4.3Output Layer 

Function: Generates predictions based on the current hidden state. Types Many-to-One: One output after 

processing the full sequence (e.g., sentiment classification),Many-to-Many: One output at each time step 

(e.g., language translation) 

Example  

𝑦𝑡 = softmax(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦)                                                          (5) 

Output: 𝑦𝑡 - general prediction (class, value, token, etc.) 

3.5 Data Analytics, Exploration, and Visualization 

Data Analytics, Exploration, and Visualization form crucial steps for decoding raw data to find patterns, 

trends, and relationship valuables. Data Exploration covers tasks from computing descriptive statistics (mean, 

variance) to finding anomalies. Visualization, on the other hand, is a process through which complex forms 

of data are turned into graphical formats, charts, plots, etc., which are easy to interpret. For instance, the mean 

(𝜇) is a key statistic in data exploration, calculated as: 

𝜇 =
1

𝑛
∑  𝑛

𝑖=1 𝑥𝑖                                                                                      (6) 

Where 𝑥𝑖 represents individual data points, and 𝑛 is the total number of data points. In data visualization, 

scatter plots are often used to examine the correlation between two variables. The correlation coefficient ( 𝑟 ) 

between two variables 𝑥 and 𝑦 is calculated using the formula: 

o 𝑟 =
∑  𝑛

𝑖=1  (𝑥𝑖−𝜇𝑥)(𝑦𝑖−𝜇𝑦)

√∑  𝑛
𝑖=1  (𝑥𝑖−𝜇𝑥)2 ∑  𝑛

𝑖=1  (𝑦𝑖−𝜇𝑦)
2
                                                                       (7) 

Where 𝜇𝑥 and 𝜇𝑦 are the means of 𝑥 and 𝑦. This equation quantifies the strength and direction of the 

relationship between two variables, providing essential insights for data-driven decision-making. 

 

4. RESULTS AND DISCUSSION 

The outcome of the proposed smart diabetes detection system has been evaluated by several deep learning 

models, where performance evaluation involved metrics such as Mean Absolute Error (MAE), followed by 

correlation visualization and user-level accuracy distribution. Among all models tested, the GRU gave an MAE 

of 0.10, which was the least, followed by LSTM with an MAE of 0.12 and Vanilla RNN with an MAE of 0.18. 

This suggests that the modern recurrent architectures are suited for predicting sequential health patterns. 

Behavioural trends in glucose variation and weak correlation with activity level were evidenced by scatter and 

line plots useful for personalization insights. Again, a violin plot of user-level prediction accuracy indicated that 

Users 8–10 were more stable and accurate in their results compared with Users 1-4, emphasizing the necessity for 

user-specific tuning. These results present compelling evidence for the efficacy of the system in aiding terms of 

diagnostic accuracy and adaptive data-driven management of diabetes. 
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Figure 3: Comparison Across model 

This bar chart figure 3 shows the MAE performances of three deep learning models: Vanilla RNN, 

LSTM, and GRU, within a smart diabetes care framework for prediction tasks. MAE means the performance 

metric in terms of evaluation that shows how well continuous predictions are made; lower values indicate well 

performance. The highest MAE among them is 0.18, having been achieved by Vanilla RNN, implying less 

accurate prediction performance. LSTM achieves quite well with the MAE reduced to 0.12 and improved handling 

of long-term dependencies in the sequential data. And GRU achieves the lowest MAE, recording 0.10, which 

means that it is very effective in capturing care patterns through fewer parameters and better convergences. As 

per this graph, it shows that modern recurrent architectures such as LSTM and GRU exceed standard RNN as far 

as minimizing the prediction error is concerned, making them fit for time-series tasks like predicting blood glucose 

trends or forecasting health states in diabetic patients. 

 

 

 

Figure 4: Glucose Level and Activity 

 

The graphs shows that figure 4 described above relate mainly to the behaviour of glucose and some 

insights into the relationship of glucose with physical activity in the individuals having IoT healthcare systems. 
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The left-hand side line graph shows the fluctuations in glucose levels over some time while noting the 

inconsistencies and possible spikes of glucose that may indicate a set risk for diabetes. Glucose levels are 

compared with activity levels through this dot-like view on the right-hand side, showing low linear correlation 

and indicating different possibilities of lifestyle effects on glucose regulation. Strong arguments are raised through 

such ways for data-driven diagnostics and individualized risk assessment in smart diabetes care systems. 

 

Figure 5: Prediction Accuracy Distribution level  

In the figure 5 violin plot distribution, we clearly show the shapes of 10 individual users concerning prediction 

accuracy in the smart diabetes detection system. The violin indicates how the model performs consistently for that 

particular user, considering the scores' spread and central tendency Users 1 to 4 tend to show slightly lower and 

more varied accuracy, which tells about inconsistencies in their input data or how well they generalize the model. 

In contrast, Users 8, 9, and 10 exhibit high and tightly clustered accuracy scores, indicating more stable and 

reliable predictions. This varied illustration demands personalized modelling or adaptive tuning across the 

different users to ensure any high prediction accuracy above all. 

5. CONCLUSION AND FUTURE ENHANCEMENTS 

The intelligent system herein, integrates data collection through the IoTs and advanced machine learning, and 

deep learning techniques, to offer a robust infrastructure for real-time personalized monitoring and diagnosis of 

diabetes. That is, capturing the high-quality data from wearable devices, such as Continuous Glucose Monitors 

(CGMs), fitness trackers, and using very strong pre-processing methods such as Z-score normalization and KNN 

imputation, provide a basis for predictive modelling. Features extracted through autoencoders are classified using 

Recurrent Neural Networks (RNNs) to consider temporal dependencies in diabetes data. The model's efficacy in 

classifying diabetes presence is then validated through performance metrics and visualization for individual 

insights. This flagged model can be further extended to include other data sources that could be environmental 

factors and lifestyle data to improve model accuracy using Federated Learning techniques for data processing 

dispersed, resulting in data privacy and real-time feedback systems for dynamic model retraining. Besides, it could 

widen its impact on healthcare by adapting the system to monitor and predict different other chronic conditions.  
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