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Abstract 

The exponential growth in digital connectivity has significantly expanded the attack surface for cyber threats, 
demanding more intelligent and real-time detection mechanisms. Traditional cybersecurity systems often rely on 
centralized processing, which introduces latency and limits responsiveness, particularly in time-critical or 
bandwidth-constrained environments. This research proposes an innovative edge-enabled cyber threat detection 
framework utilizing compressed transformer architectures to overcome these challenges. By deploying 
lightweight yet powerful models directly at the edge of the network, this approach enables rapid, local analysis of 
complex and heterogeneous threat data. To support this work, we utilize the Cyber Threat Dataset: Network, Text 
& Relation from Kaggle, which integrates structured network traffic, unstructured textual alerts, and relational 
entity data to simulate attack scenarios. Our methodology leverages transformer-based models for both natural 
language processing and structured data representation, with model compression techniques such as pruning, 
quantization, and knowledge distillation applied to optimize performance for edge deployment. The compressed 
models maintain high detection accuracy while drastically reducing computational overhead, making them ideal 
for deployment in resource-constrained environments. Experimental results demonstrate the effectiveness of the 
proposed system in identifying sophisticated threats with minimal latency and high throughput. This research 
highlights the potential of combining edge computing with advanced deep learning to achieve scalable, efficient, 
and real-time cyber threat detection—laying the groundwork for the next generation of intelligent, decentralized 
cybersecurity systems. 
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1. INTRODUCTION 

The exponential growth of networked devices, driven by the Internet of Things (IoT), 5G, and edge computing, 
has exponentially increased data flow across networks [1]. This surge brings unprecedented diversity in data types, 
from high-definition video streams to low-latency sensor data, demanding real-time processing [2]. Traditional 
cloud-based security solutions, though robust in centralized environments, struggle to scale with these dynamic 
workloads [3]. High latency, bandwidth constraints, and centralized processing bottlenecks limit their 
effectiveness for time-sensitive applications [4]. Moreover, as cyber-physical systems evolve, the complexity of 
threat landscapes intensifies, requiring adaptive and context-aware security measures [5,6,7]. Decentralized 
security mechanisms, particularly those leveraging edge computing, promise to alleviate these challenges [8]. By 
distributing security intelligence closer to data sources, they reduce latency and reliance on cloud bandwidth, 
enabling faster threat detection and mitigation [10,11]. Such mechanisms often harness lightweight machine 
learning models, tailored to operate on resource-constrained edge devices [12]. In addition, the edge-centric 
approach enhances privacy by minimizing raw data transmission to centralized servers [13]. Decentralized 
frameworks can also self-adapt, learning from local data patterns to identify emerging threats [14,15]. Edge-based 
security not only ensures rapid incident response but also complements the broader defence ecosystem [16]. As 
the network edge becomes a critical security frontier, research and innovation in distributed, intelligent security 
frameworks gain renewed importance [17,18]. 

Edge computing fundamentally redefines how we process and analyse data by shifting computational tasks closer 
to where data is generated [19]. This reduces the need for constant communication with cloud servers, which often 
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introduces significant latency [20]. Real-time decision-making becomes achievable as data no longer has to 
traverse long network paths for processing. However, to harness the full potential of edge computing for 
cybersecurity, advanced AI models must be integrated directly into edge nodes [21]. These models enable 
proactive detection of malicious activities and rapid response to evolving threat [22]. Transformer-based 
architectures, renowned for their ability to model long-range dependencies and contextual relationships, show 
promising results in cybersecurity [23,24,25]. They excel in tasks like anomaly detection and malware 
classification due to their sophisticated attention mechanisms [26]. However, the sheer size of these models and 
their computational intensity challenge their deployment in resource-limited edge environments [27,28]. To 
overcome these limitations, researchers are exploring techniques like model pruning, quantization, and knowledge 
distillation to reduce model size while preserving performance [29,30]. Lightweight transformer variants are 
emerging as viable options for edge deployment [31]. These innovations are essential for balancing the power of 
transformers with the constraints of edge devices [32]. The ability to process data locally, coupled with 
transformer-based threat intelligence, holds the key to responsive and scalable edge security solutions [33]. One 
of the advantages of compressed transformer models namely Distil BERT to accomplish accurate and efficient 
cyber threat detection on edge hardware [34,35]. Through the use of model compression methods like pruning 
and quantization, the system minimizes resource utilization while preserving high detection accuracy [36]. The 
model is validated against a thorough cyber threat dataset that comprises structured network logs, unstructured 
text data, and relational metadata [37]. 

In doing so, this work effectively navigates the trade-off between the sophistication of deep learning models and 
the resource constraints of edge computing [38]. By optimizing transformer-based models for edge deployment, 
it unlocks the power of deep contextual understanding without sacrificing speed [39]. Our approach ensures that 
even under limited computational capacity, the system can deliver high-fidelity threat detection in real time [40]. 
Furthermore, the model’s interpretability provides valuable insights into detected anomalies, fostering trust and 
transparency in security operations [41]. The resulting threat detection system seamlessly adapts to the dynamic 
and distributed nature of modern industrial environments [42]. Its low-latency response is critical for mitigating 
attacks that target industrial control systems and critical infrastructure [43]. Unlike conventional cloud-dependent 
solutions, our system leverages the proximity of edge devices to data sources, minimizing delay and improving 
resilience against network disruptions [44,45]. This not only strengthens the security posture of edge networks 
but also aligns with the evolving landscape of edge-native AI. As industries continue to digitize, this work 
demonstrates the practical viability of advanced AI at the edge [46]. It sets the stage for further innovation in edge- 
centric cybersecurity and paves the way for a secure, intelligent edge ecosystem [47]. 

2. LITERATURE REVIEW 

[48] presents the combination of Hierarchical Dirichlet Processes (HDPs) and Multi-access Edge Computing 
(MEC) represents an important breakthrough for SCADA systems to keep pace with the need for real-time 
processing of industrial data. Existing SCADA systems tend to lag behind in keeping up with complexity and 
velocity expectations of contemporary IoT-driven environments. [49] The combination of Edge AI with IoMT 
provides a groundbreaking solution towards early CKD diagnosis, to address the need for real-time scalable 
healthcare technologies [50]. This paper suggests a hybrid CNN-LSTM and neuro-fuzzy approach that leverages 
the forecasting ability of deep learning while inheriting the interpretability of fuzzy logic 

[51] proposes a state-of-the-art federated learning system augmented by split learning, Graph Neural Networks 
(GNNs), and technology to address contemporary cybersecurity threats. With 98% threat detection accuracy and 
2% false positives, and detection latency of merely 30 milliseconds, the system performs exceptionally well in 
real-time. [52] illustrates an integrated system of FHIR, Blockchain, and AI with a goal of improving cyber- 
healthcare interoperability, data integrity, and AI-driven decision-making. FHIR provides interoperability with 
standardized data exchange, Blockchain offers tamper-proof and secure storage, while AI drives prediction for 
efficient patient care. 

[53] proposes an AI-based Breach and Attack Simulation (BAS) framework as a paradigm shift in penetration 
testing to overcome the shortcomings of conventional methods. Through the use of GNNs for predicting attack 
paths, BERT for vulnerability scanning, and SOAR for automated risk analysis, the framework facilitates real- 
time, responsive threat simulation and [54] presents a decentralized, AI-based cybersecurity architecture is 
proposed to effectively emerging cyber-attacks by combining Federated Learning, KNN, GANs, and IOTA 
Tangle. The model improves real-time anomaly detection, privacy protection, and secure communication in IoT 
environments [55]. 

[56] introduces an AI-based threat detection system based on the Random Forest algorithm to boost the security 
of cloud computing against both established and new cyber threats. Dissimilar to conventional approaches, it 
facilitates timely detection independent of static attack signatures, enhancing flexibility and precision. [57] solves 
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the important security and privacy issues in Vehicular Cloud Computing (VCC) through the proposition of a new 
trust-based framework, DBTEC, that improves secure cooperation between vehicles. DBTEC uses both direct 
(Private board) and indirect (Public board) trust estimation to dynamically learn and respond to VCC's dynamic 
environment and enhance the discovery of trustworthy nodes. 

[58] presents a comprehensive survey of how big data analysis with cloud computing raises transaction security 
for e-commerce operations. With real-time processing and scalability features of cloud computing, businesses can 
significantly detect and deflect security threats. Coupled with machine learning based anomaly detection and 
predictive modelling, there is extra strength to preventing fraud. [59] presents the financial fraud detection is the 
key function within the healthcare sector in the preservation of public funds as well as healthcare service quality 
[60]. The complexity and scale of schemes today can overpower conventional methods. Towards the goal of 
improving fraud detection, this study examines the utilization of DL and ML-based techniques [61]. 

[62] proposes an AI-based framework that strengthens the security and reliability of monetary information on 
IaaS cloud servers. The addition of predictive maintenance using regression modelling and anomaly identification 
through k-means clustering, the system can provide real-time monitoring and real-time corrective maintenance of 
the issues. [63] considers a key issue in cloud computing by suggesting an efficient framework integrating 
homomorphic encryption to facilitate calculations on encrypted information without decryption in order to protect 
data privacy and integrity [64]. Different from conventional mechanisms such as AES and RSA that are challenged 
to perform at large scales this suggested model aims to maximize the efficiency of encryption using pre-treatment 
methods including normalization. [65] highlights the innovative role of Clinical Decision Support Systems 
(CDSS) and data mining towards enhancing cardiovascular healthcare. Utilizing electronic health records and 
wearable  sensor  data,  the suggested system applies sequential  mining  to improve diagnosis  accuracy 
and tailor treatment. 

[66] presents the blend of deconvolutional neural networks (DNNs) and cloud-based big data analytics is 
transforming face recognition on social media. DNNs refine image definition and quality, significantly boosting 
the accuracy of recognition. Leveraging platforms like AWS, Google Cloud. It employs advanced data 
preparation, feature extraction and optimized architecture for consistent results. Robust security controls ensure 
privacy and regulatory compliance. Srinivasan and [67] introduce an innovative and powerful interdisciplinary 
methodology through the integration of ethnographic research methods with big data analysis to augment 
healthcare systems research with a focus on cardiology. By situating quantitative findings in qualitative patient- 
clinician communication, it connects human-cantered care with data-based decision-making. 

3. PROBLEM STATEMENT 

With the exponential growth of connected devices and the rapid expansion of cyber-physical systems, traditional 
cloud-centric cybersecurity frameworks are increasingly struggling to offer real-time threat detection due to 
latency, bandwidth constraints, and centralized processing bottlenecks [68] At the same time, the complexity and 
volume of modern cyber threats demand advanced models capable of understanding sophisticated patterns in 
network traffic and user behaviour [69]. While transformer-based deep learning models have demonstrated 
superior performance in various security tasks, their large computational and memory requirements hinder 
deployment at the edge, where resources are limited [70] [71]. This research addresses the pressing need for an 
efficient and scalable solution by proposing a compressed transformer architecture tailored for edge computing 
environments [72]. 

Objectives 

 Analyse the limitations of traditional cloud-based cyber threat detection systems in terms of latency, 
bandwidth usage, and scalability within edge environments. 
 Design a lightweight and efficient transformer-based architecture optimized for deployment on edge 
devices through model compression techniques. 
 Evaluate the performance of the proposed model in terms of accuracy, speed, and resource utilization 
compared to conventional transformer architectures. 
 Validate the scalability and adaptability of the compressed model across various edge hardware platforms 
and threat scenarios. 
 Recommend optimization strategies for further enhancing model performance without compromising 
detection accuracy in constrained environments. 

4. Proposed Edge-Enabled Cyber Threat Detection by Compressed 
Transformer Architectures 
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The suggested system introduces an edge-enabled framework of cyber threat detection based on a compressed 
transformer architecture, tailored for real-time implementation in resource-scarce settings. Structured network 
data, unstructured text logs, and relational threat data from a multi-modal cyber threat data collection are 
integrated into the system to provide a holistic examination of threats. Noise, redundancy, and irrelevant features 
are eliminated through preprocessing methods, yielding better model accuracy and efficiency. The detection core 
relies on a pruned and quantized variant of DistilBERT, the detection performance being maintained while cutting 
down on computation overhead. The feature extraction and dimensionality reduction are used to emphasize key 
threat indicators, and the compressed end model is distributed to edge devices with fog computing capabilities to 
support low-latency, localized detection of threats. This architecture balances high detection precision with real- 
time performance, making it well-suited for contemporary edge-based cybersecurity use cases. 
 

 
Fig 1: Block Diagram of Edge-Enabled Cyber Threat Detection Using Compressed Transformer 

Architectures 

The fig 1 shows the end-to-end structure of an edge-enabled cyber threat detection system based on compressed 
transformer architectures. The system is particularly geared for efficient operation in edge computing contexts, 
where computational power is constrained but low-latency threat detection is essential. The pipeline begins with 
multi-modal data collection from the Cyber Threat Dataset consisting of structured network traffic, unstructured 
text logs, and entity-relation mappings. This high-quality dataset is pre-processed at early stages, meaning noise 
removal, normalization, and aggregation of multiple data formats in a common framework acceptable to machine 
learning models. Pre-processed data is fed into a feature extraction module where significant indicators of 
threats—i.e., IP behavior communication patterns, and textural description indicators—get extracted. Textual data 
is subjected to natural language processing (NLP) operations like tokenization, stemming, and embedding to 
transform raw logs and alerts into vectors that can be understood by the machine. Next, the data passes through 
the Compressed Transformer Model, the detection framework's central entity. This architecture is a light version 
of the standard transformers, pruned for edge devices using pruning, quantization, and knowledge distillation 
methods. It is highly accurate while incurring very little memory and computational overhead. The transformer is 
able to capture both the short- and long-range dependencies in the data and learn intricate patterns of threats from 
structured and unstructured inputs. After the transformer encoding, the output is passed through a classification 
layer that classifies the input data as malicious or benign. For malicious behavior, additional sub-categorization 
can classify specific threats such as malware, phishing, or DDoS attacks. 

4.1 Data Collection 

The Cyber Threat Dataset: Network, Text & Relation, acquired from Kaggle, is an exhaustive and multi-modal 
dataset meticulously designed to assist superior research into detecting cyber threats by applying machine learning 
and deep learning techniques. The dataset amalgamates structured network traffic, unstructured text logs, and 
relations between entities to capture genuine-world cyber threats in a more inclusive manner. The data set holds 
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extensive records of communication between IP addresses, network traffic, and correlated threat intelligence 
information including malware types, attack patterns, and adversarial actions. It also holds textual data in the form 
of alert messages and threat descriptions, allowing one to explore natural language processing methods for threat 
categorization.[42] 

4.2 Data Preprocessing 

4.2.1 Removing Duplicate Records 

In large-scale network traffic datasets (like CICIDS2017 or NSL-KDD), duplicate rows can occur due to repeated 
sessions, logging errors, or merging of capture logs. These redundancies can bias the model during training. 

Let 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑛} be the dataset with 𝑛 traffic records, where each record 𝑥𝑖 is a feature vector: 

𝑥𝑖 = [𝑓1, 𝑓2, … , 𝑓𝑘] (1) 

Define a function unique (𝐷) that filters out all duplicate vectors: 

𝐷′ = 𝑢𝑛𝑖𝑞𝑢𝑒 (𝐷), 𝑤ℎ𝑒𝑟𝑒 |𝐷′| ≤ |𝐷| (2) 

This ensures that no two records 𝑥𝑖, 𝑥𝑗 ∈ 𝐷′ are such that 𝑥𝑖 = 𝑥𝑗, improving generalization and reducing 
overfitting. 

4.2.2 Removing Irrelevant or Constant Features 

Some features may be: 

● Irrelevant (e.g., flow ID, which may be arbitrary) 

● Constant across all samples (e.g., a field with the same value in every record) 

Let 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑘} be the feature set. For each feature 𝑓𝑗, compute the variance: 

𝑉𝑎𝑟(𝑓 ) = 
1 

∑𝑛 2 1 
∑𝑛 𝑥 (3) 

 
 

𝑗 𝑛 
𝑖=1 (𝑥𝑖𝑗 − 𝜇𝑗) , 𝜇𝑗 = 

𝑛 𝑖=1 𝑖𝑗 

If 𝑉𝑎𝑟(𝑓𝑗) = 0, the feature is constant and should be removed: 

𝐹′ = {𝑓𝑗 ∈ 𝐹 ∣ 𝑉𝑎𝑟(𝑓𝑗) > 𝜖} (4) 

Where 𝜖 is a small threshold (often 𝜖 = 0 ). 

4.2.3 Removing Irrelevant or Constant Features 

Some features may be: 

● Irrelevant (e.g., flow ID, which may be arbitrary) 

● Constant across all samples (e.g., a field with the same value in every record) 

Let 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑘} be the feature set. For each feature 𝑓𝑗, compute the variance: 

𝑉𝑎𝑟(𝑓 ) = 
1 

∑𝑛 2 1 
∑𝑛 𝑥 (5) 

 
 

𝑗 𝑛 
𝑖=1 (𝑥𝑖𝑗 − 𝜇𝑗) , 𝜇𝑗 = 

𝑛 𝑖=1 𝑖𝑗 

If 𝑉𝑎𝑟(𝑓𝑗) = 0, the feature is constant and should be removed: 

𝐹′ = {𝑓𝑗 ∈ 𝐹 ∣ 𝑉𝑎𝑟(𝑓𝑗) > 𝜖} (6) 

Where 𝜖 is a small threshold (often 𝜖 = 0 ). 

4.2.4 Removing Irrelevant or Constant Features 

Some features may be: 

● Irrelevant (e.g., flow ID, which may be arbitrary) 

● Constant across all samples (e.g., a field with the same value in every record) 
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Let 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑘} be the feature set. For each feature 𝑓𝑗, compute the variance: 

𝑉𝑎𝑟(𝑓 ) = 
1 

∑𝑛 2 1 
∑𝑛 𝑥 (7) 

𝑗 𝑛 𝑖=1 (𝑥𝑖𝑗 − 𝜇𝑗) , 𝜇𝑗 = 
𝑛 𝑖=1 𝑖𝑗 

If 𝑉𝑎𝑟(𝑓𝑗) = 0, the feature is constant and should be removed: 

𝐹′ = {𝑓𝑗 ∈ 𝐹 ∣ 𝑉𝑎𝑟(𝑓𝑗) > 𝜖} (8) 

Where 𝜖 is a small threshold (often 𝜖 = 0 ). 

4.3 Feature Extraction using Principal Component Analysis 

In the case of cyber threat detection, good feature engineering is important to help models be able to distinguish 
correctly between benign and malicious network patterns. Temporal and spatial features are derived from 
unprocessed network traffic data, which include packet size, flow duration, time since previous packet, 
source/destination IP distributions, and traffic volume over time. These characteristics capture the timing as well 
as the structure of network communications-central to detecting anomalies that can indicate cyber threats. Yet, 
the high dimensionality of the feature space can create redundancy and noise, which can impair model 
performance, especially on resource-limited edge devices. To mitigate this, Principal Component Analysis is used 
for dimension reduction. PCA converts the original correlated features into a lower number of uncorrelated 
components that preserve the most important variance from the data. In mathematical terms, PCA finds the 
eigenvalue decomposition of the data covariance matrix C, which is expressed as: 

𝐶 = 
1 

∑𝑛 
𝖳 

𝑛  𝑖=1 (𝑥𝑖 − 𝑥)(𝑥𝑖 − 𝑥) 

(9) 

where 𝑥𝑖 represents the i-th sample vector, and 𝑥 is the mean vector of the dataset. The directions in which the 
data is the most variable are given by eigenvectors of C, and the extent of variance preserved along these directions 
is given by the eigenvalues. The top-k principal components with the largest eigenvalues can then be chosen to 
project the data into a k-dimensional subspace, which reduces computational complexity considerably without 
losing vital threat-related patterns. 

4.3  Data Splitting 

To develop a trustworthy and generalizable model for detecting cyber threats, the dataset should be properly split 
into different subsets to train, validate, and test the model. Data splitting is critical to achieve the goal of not only 
having the model learn from the data but also making it perform on new samples. The dataset D is usually divided 
into three disjoint subsets: a training set 𝐷𝑡𝑟𝑎𝑖𝑛, , a validation set 𝐷𝑣𝑎𝑙 , and a test set 𝐷𝑡𝑒𝑠𝑡, in a normal ratio of 
70:15:15. This can be represented mathematically as: 

𝐷 = 𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑣𝑎𝑙 ∪ 𝐷𝑡𝑒𝑠𝑡 , 𝐷𝑡𝑟𝑎𝑖𝑛 ∩ 𝐷𝑣𝑎𝑙 = 𝐷𝑡𝑟𝑎𝑖𝑛 ∩ 𝐷𝑡𝑒𝑠𝑡 = 𝐷𝑣𝑎𝑙 ∩ 𝐷𝑡𝑒𝑠𝑡 = ∅ (10) 

where ∪ is the union of sets and ∩ is the intersection, such that each subset contains 
distinct, non-overlapping samples. The training set 𝐷𝑡𝑟𝑎𝑖𝑛 is employed to fit model 
parameters and acquire underlying patterns in network traffic or threat information. The validation set 𝐷𝑣𝑎𝑙 is 
used during training to optimize hyperparameters and avoid overfitting, enabling the model to generalize well to 
new inputs. Lastly, the test set 𝐷𝑡𝑒𝑠𝑡 is kept for final performance assessment, providing an objective measure of 
the model's accuracy and stability under actual conditions. It is essential that the data are shuffled randomly before 
splitting so as to maintain the class distribution among all subsets. Stratified sampling can further be used, 
particularly in the case of unbalanced datasets, to guarantee each subset has an equal class distribution as the 
dataset being split. This systematic split process ensures the trained model not only is precise but also transferable 
when rolled out in edge-based cyber threat detection systems. 

4.5 DistilBERT for Efficient Cyber Threat Detection on Edge Devices 

In the development of a viable and computationally tractable cyber threat detection model for edge environments, 
transformer architecture selection is key. DistilBERT, a light, distilled form of BERT (Bidirectional Encoder 
Representations from Transformers), is used herein to capture spatial and temporal relationships in network traffic 
data. BERT-based models are effective at capturing contextual relations with their multi-head self-attention 
mechanism but are computationally demanding and not suitable for edge deployment. DistilBERT meets this 
challenge by reducing the layers (from 12 to 6), parameters, and training duration, yet preserves more than 95% 
of BERT's language comprehension proficiency. For use in cyber threat detection, the network traffic stream or 
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𝑄𝐾 

session of each can be tokenized to a series of features (i.e., packet types, sizes, flow lifetime), which can be 
processed similar to tokens from a sentence. DistilBERT then applies self-attention to capture interactions 
between these features across time, enabling the architecture to recognize anomalous sequences evidencing threats 
like DoS attacks or data exfiltration. The self-attention mechanism at the core of DistilBERT is defined by the 
following equation: 
 

𝖳 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (   ) 𝑉 (11) 
√𝑑𝑘 

Where Q, K, and V denote the query, key, and value matrices generated from the input embeddings, and 𝑑𝑘 

denotes the keys' dimensionality. This specification allows the model to assign weightage to each feature in the 
sequence with reference to all the others, independent of their positions and hence accounting for both short-range 
as well as long-range dependencies. The attention layers output is fed into feedforward neural networks, to which 
positional encodings are added in order to preserve the order of the input sequence. With the use of DistilBERT, 
the architecture is able to balance performance with computational efficiency and is therefore a good candidate 
for deployment on edge devices in real-time cyber threat detection applications. 

4.6 Transformer Compression via Weight Pruning for Edge-Based Threat Detection 

In order to facilitate real-time cyber threat detection on resource-limited edge devices, there is a need to compress 
the original transformer model with minimal loss of performance. Weight pruning is one such effective 
compression technique utilized in this work, wherein redundant or less important parameters in the neural network 
are systematically removed. In large models such as DistilBERT, a large number of weights have only a small 
influence on the overall prediction, and their removal has the potential to result in considerable model size 
reduction, memory, and inference time. Weight pruning achieves this through examining the absolute value of a 
weight and making those below some threshold equal to zero, essentially sparsifying the network. Mathematically, 
for a weight matrix W∈R^(m×n), the pruned weight matrix W ˆ is computed using the following element-wise 
operation: 

𝑊ˆ𝑖,𝑗 = {𝑊𝑖,𝑗, 𝑖𝑓 |𝑊𝑖,𝑗| ≥ 𝜏 0, 𝑖𝑓 |𝑊𝑖,𝑗| < 𝜏 
(12) 

where τ is an explicitly defined pruning threshold, and 𝑊𝑖,𝑗 indicates the weight for row i, column j. Choosing τ 
correctly is important because an excessively hard pruning policy is detrimental to model accuracy, yet a 
conservative approach may have minor compression gain at all. Accuracy loss can be mitigated, though, using a 
combination with finetuning in which all weights left on are refitted over the initial data to try and reverse- 
performance deterioration. In this paper, structured pruning is used on attention and feedforward layers of 
DistilBERT, with a focus on whole rows or columns of weights belonging to individual neurons or heads, further 
enabling cost-effective matrix computation on hardware accelerators. The resulting model is small and efficient 
and achieves high cyber threat detection precision while satisfying the stringent latency and memory requirements 
common in edge computing settings. 

4.7 Enhancing Edge Deployment of DistilBERT Through Quantization and Fog Computing 

Deep learning model deployment on the edge using transformer-based architectures such as DistilBERT requires 
certain optimizations in order to enable efficient operation on resource-limited devices like loT gateways, edge 
nodes, or low-power processors. For low-latency inference, various strategies are used such as model quantization, 
pruning, and parallel processing optimization on hardware accelerators. Quantization, say, brings down the 
accuracy of the weights and activations of the model from 32-bit floating-point numbers to lower bit widths (for 
instance, 8-bit integer or even binary), drastically reducing both memory requirements and computational burden. 
Mathematically, it can be represented as follows: 
 𝑊ˆ 𝑊 (13) 

𝑞𝑢𝑎𝑛𝑡 = 𝑟𝑜𝑢𝑛𝑑 ( 
𝛥 

) × 𝛥 

where Δ is the step size of quantization, W is the original weight, and 𝑊ˆ𝑞𝑢𝑎𝑛𝑡 is the quantized weight. Through 
the use of quantization, the model size is minimized and inference times are accelerated on hardware-constrained 
edge devices, for example, edge devices with GPUs or TPUs. 

Apart from these optimizations, edge computing approaches such as fog computing are integrated to further 
optimize the efficiency of the model. Fog computing is defined as the extension of cloud computing to the edge, 
which provides intermediate processing nearer to where data is being generated, for instance, loT sensors or local 
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network devices. It reduces the need for constant communication with centralized cloud servers, thus reducing 
latency and bandwidth consumption. The overall fog computing system can be represented by: 

Fog Layer Processing → Edge Device Decision → Cloud Feedback 

Here, edge devices make decisions locally at the "fog layer" in real-time and process data. Aggregated or merely 
important data can be sent to the cloud for further analysis to minimize network delays. Through the application 
of the fog computing paradigm, real-time decision-making is realized even when there is intermittent network 
connectivity or when there is data-intensive activity, allowing for continuous threat monitoring and rapid response 
times for edge-based cyber defense systems. Integration of these methods within the transformer model makes it 
possible for even highly complex architectures such as DistilBERT to still achieve the strict real-time requirements 
of cyber threat detection on edge devices while keeping detection accuracy high. These optimizations make it 
possible for the model to process the huge volume of network traffic data, efficiently handle it, and act on threats 
in a timely manner without saturating the edge device's processing resources. 

5 RESULT AND DISCUSSION 

Here, we provide the results and discussion of the performance of the edge-optimized DistilBERT model over 10 
training epochs. The discussion is centered on some of the most important metrics, including training and testing 
accuracy, training and validation loss, and precision-recall curve (PRC). We discuss how the accuracy and loss of 
the model change over time, reflecting its capacity to learn and generalize to new data. Moreover, the PRC analysis 
reveals the precision-recall trade-off, enabling us to determine the best balance between precision and recall in 
threat detection for edge deployment in cybersecurity. 
 

 

 

 

 
Fig 2: Training vs. Testing Accuracy Over Epochs Fig 3: Training vs. Validation Loss Over Epochs 

The fig 2 illustrates the training and test accuracy progression across 10 training epochs for edge-optimized 
DistilBERT model. The x-axis is labeled as the number of training epochs, and the y-axis as the percentage 
accuracy. Training accuracy is indicated by the blue line, and test accuracy by the orange line. From the curve, 
we see a consistent improvement in both training and testing accuracy, from around 72% and 70%, respectively, 
to converge around 94% and 92% at epoch 10. The smooth increasing trend shows that the model learns 
meaningful patterns effectively without much overfitting since the difference between the training and testing 
curves is minimal and consistent. This points to the generalization capability of the compressed DistilBERT model 
on unseen network traffic data. The fig 3 presents the training and validation loss of the DistilBERT model over 
10 epochs. The x-axis indicates epochs, and the y-axis shows the loss values (typically cross-entropy loss). The 
red line corresponds to training loss, while the blue line represents validation loss. As shown, both loss curves 
exhibit a consistent downward trend, demonstrating that the model is learning progressively with each epoch. The 
training loss decreases from ~0.62 to ~0.21, while the validation loss drops from ~0.65 to ~0.28. The relatively 
close alignment of the two curves indicates minimal overfitting and suggests that the model maintains high 
performance on unseen data. This validates the effectiveness of model optimization and regularization strategies 
applied during training, especially for edge deployment scenarios. 
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Fig 4: Precision vs. Recall Curve (PR Curve) 

This fig 4 curve graphically represents precision on the y-axis and recall on the x-axis, offering insights into how 
these two metrics trade off with each other. In your scenario, as the threshold for declaring an event as malicious 
shifts, precision and recall will both change. High precision implies that the model is highly likely to get it right 
if it classifies an event as malicious, but this may cost in terms of reduced recall and therefore some attacks will 
be lost. Higher recall, on the other hand, would mean the model is overly sensitive and marking more attacks but 
at the penalty of reduced precision and possibly identifying more benign behaviors as threats.By examining the 
PRC, you can calculate the best trade-off for your edge-enabled threat detection system, based on whether you 
want to minimize false positives (high precision) or capture most threats (high recall). The area under the PRC 
curve (AUC-PR) is an overall measure of performance, and in cybersecurity applications, a higher AUC-PR 
means better overall performance at detecting attacks while controlling false alarms. 

Table 1: Performance Metrics Before and After Edge Optimization 
 

Metric Before Optimization After Optimization 
Accuracy (%) 94.2 93.5 

Precision (%) 93.8 93.1 

Recall (%) 94.0 92.7 

F1-Score (%) 93.9 92.9 

Inference Latency (ms) 120.0 38.0 

Model Size (MB) 255.0 82.0 

Epochs 10 10 

AUC-ROC Score 0.96 0.95 

Average Precision 0.95 0.93 

 
The performance metrics table gives an in-depth comparison of the DistilBERT-based cyber threat detection 
model prior to and post implementation of edge optimization techniques like weight pruning and quantization. 
The study points out that while there is a minor loss in classification accuracy—from 94.2% to 93.5%—the overall 
performance is sound, with marginal drops being observed across precision (93.8% to 93.1%), recall (94.0% to 
92.7%), and F1-score (93.9% to 92.9%). These values show that the model remains robust in its predictive ability 
even after compression for edge deployment. Most importantly, the optimization has brought about a huge boost 
in computational efficiency. The inference latency has dramatically decreased from 120 milliseconds to as low as 
38 milliseconds, and the model size decreased from 255 MB to 82 MB. This dramatic decrease in size improves 
the model's candidate for deployment onto resource-limited edge and IoT devices where both memory and energy 
usage are severe issues. Moreover, the score of AUC-ROC very slightly dropped off from 0.96 to 0.95, as well as 
average precision score that fell from 0.95 to 0.93, showing negligible adverse effect on total model discrimination 
as well as rank quality. 

6 CONCLUSION AND FUTURE WORK 

In summary, this research succeeds in demonstrating the feasibility of adopting a compressed model architecture 
of the transformer model type, i.e., DistilBERT, towards real-time detection of cyber threats in edge computing. 
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Through leveraging model compression methodologies such as pruning and quantization, and through leveraging 
dimension reduction methodologies such as PCA, the proposed system effectively succeeds in acquiring high 
detection rate against restricted computation capabilities of the edge devices. The result is promising, with ongoing 
improvement in precision and little overfitting, as well as an optimized trade-off between recall and precision. 
The model is scalable and flexible, meeting the low latency and resource limitations of edge platforms. For further 
research, further optimization methods can be explored, such as raising the pruning technique with more 
sophisticated methods, merging reinforcement learning for adaptive threat detection, and expanding the model to 
accommodate even larger, more varied datasets. 
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