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ABSTRACT 

Although AI-based Software as a Medical Device (SaMD) has truly transformed diagnostics and personalized 

health, flexible post-marketing surveillance (PMS) methodologies fail to characterize AI SaMDs. As a result, 

there are gaps in the evaluation of risk, the integration of clinical feedback, and the requirements for 

regulatory compliance. A better PMS framework with deep learning models- for anomaly analysis TCNs, 

clinical feedback assessment HANs, and synthetic data generation cGANs- addresses the limitations of risk 

monitoring, advanced feedback appraisal, and automatic compliance checks. This development proposes a 

new solution to the ever-evolving challenges of AI SaMDs. Experiment results show drastic improvements: a 

75% Risk Impact, an 85% Clinical Follow-up Effectiveness, a 95% Compliance Score, Performance 

Deviation reduced to 4.20%, and Data Integration Efficiency improved up to 90%. Our framework 

outperforms the existing ones in risk detection, stability, and integration efficiency compared to existing 

methods in proactive risk mitigation and robust real-world monitoring. This work paves the way towards AI 

SaMD monitoring as it deals with the inadequacies posed by traditional PMS in making AI health-related 

solutions safer, more reliable, and regulatory compliant, with future opportunities for multi-modal data 

extension, federated learning for privacy preservation, and explainable AI (XAI) for greater interpretability 

and trust. 
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1. INTRODUCTION 

AI spreads its tentacles in harmonizing operations using health, security, and other automation-related fields [1]. 

Yet, these tell the story of dozens of challenges concerning security in distributed computing environments that 

create a need for better authentication mechanisms [2]. In particular, the use of deep learning models for lung 

tumour detection integrated medical imaging data and genetics data for early diagnosis and more effective 

treatment planning [3]. In this field, AI develops the performance of electric vehicles that make more efficient 

energy consumption possible through advanced models like artificial neural networks and electrothermal 

inverter designs [4]. AI innovations in chronic disease management include integrated systems for chronic 

kidney disease management equipped with a probabilistic neuro-fuzzy approach for enhanced monitoring and 

diagnosis improvements [5]. It now offers an efficient security guarantee in health from cloud computing, while 

it also uses AI and blockchain to ensure confidentiality in a secure transfer to authenticators through biometrics 

[6]. Advanced artificial intelligence models exhibit early detection of tumours and medical image analytics, with 

increasing accuracy in diagnostics and, hence, better outcomes [7]. Enhancing access via AI is under health, 

including healthcare areas [8]. With mobile health, IoT, and AI, patients can now be watched from anywhere, 

making medical records more accessible while improving patient care and speedy interventions [9]. AI 
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Software-as-Medical Devices (SaMD) offers substantial hope for the improvement of diagnosis accuracy and 

personalized pathways in care, as well as minimizing the complexities of healthcare delivery [10]. Well, AI 

makes it easier to develop software, such as those improvements found in employing pre-trained language 

models tied to evolutionary algorithms to generate test cases and thus increases overall test coverage [11]. 

In cloud-enabled environments, mechanisms such as authentication and data sharing benefit from added security 

due to SHA-256 and RSA [12]. This treasure trove emerges because big data analytics, ethnographic evidence, 

and network analysis combine to redirect health systems in designing care and enhancing clinical outcomes for 

cardiovascular patients [13]. AI-powered SaMDs are effective in post-market surveillance (PMS) activities for 

ensuring patient safety, adherence to regulations, and successful risk management [14]. Integrating technologies 

such as BIRCH clustering with LPWAN, NCA, and MDS is expanding possibilities for communication and 

providing opportunities for both data clustering and reducing dimensions in application for blockchain [15]. The 

combination of AI and blockchain technology improves transparency and data integrity across multiple 

industries.  

 

The association between AI and big data analytics provides a competitive edge to small and medium-sized 

enterprises (SMEs) in e-commerce [16]. and provides deep insights into market trends and consumer behaviours 

to enhance SME operations to better respond to market needs [17]. Another domain being practiced is 

education, where AI and data analytics assist e-learning platforms in administering more learning output and 

strengthening the architectures by putting around all data, advocating data security, and improving the basic 

standards themselves [18]. AI-based Cloud-GIS systems have started expanding in crisis management, 

particularly disaster response [19]. The systems involve data processing and predicted analytics for the recovery 

phase post-earthquake [20]. Some of the recent methods are built for analysing IoT systems with DMP and 

SOM to enable improved decision-making toward network management optimization [21].AI-enabled Identity 

verification techniques, including CAPTCHA, graphical passwords based on DROP principles, AES encryption, 

and neural network-based multilayer authentication, implement security and usability measures and render 

systems immune to automated and brute-force attacks [22]. Adaptive modelling can also contribute to better 

knowledge management and assist business planning and decision-making, resulting in well-informed strategic 

choices for companies and corporations [23]. The heterogeneous technologies of RPMA, BLE, and LTE-M in 

combination with Gaussian Mixture Models (GMM) provide solutions to existing management challenges 

associated with IoT devices, enhancing power consumption, data throughput, and anomaly detection for the 

smart city and agriculture applications [24]. With the help of AI, digital economy-enabled sustainable 

entrepreneurship and business practices, thereby strengthening economic growth [25]. In the fifth-generation 

communication system (5G), AI using various techniques, including backpropagation neural network (BPNN) 

and generative adversarial networks (GANs), improves channel state information (CSI) for efficient and reliable 

signal usage in communication [26]. AI also supports real-time data analytics for autonomous systems, 

improving safety and operational efficiency [27]. In a nutshell, AI combined with Big Data Mining and IoT 

technologies can significantly elevate role performance, refine predictive analytics, and improve health delivery 

[28]. The AI systems governed by A3C, TRPO, and POMDPs improve decision-making under uncertain 

environments, requiring neither high-quality precision nor speed data [29]. 

 

Emerging techniques in explainable AI (XAI) are critical for transparency in healthcare and finance applications 

[30]. Cloud-based AI architectures are facilitating scalable machine learning workflows with improved resource 

management [31]. AI-driven anomaly detection methods are transforming cybersecurity approaches in 

distributed environments [32]. The integration of federated learning enhances privacy-preserving AI model 

training across multiple devices [33]. The proposed method approach expects to enrich post-marketing 

surveillance of AI SaMD with three elements: TCNs for anomaly detection, HANs for the analysis of clinical 

feedback, and cGANs for synthetic data generation [34]. The components have been incorporated to facilitate 

risk monitoring, automated compliance checks, and a rigid performance evaluation toward assuring safe and 

reliable AI-based healthcare solutions [35]. Continuous improvement in AI model robustness is essential for 

deployment in critical health systems [36]. Policy frameworks are evolving to regulate AI use and ensure ethical 

compliance in automated decision systems [37]. Future research directions focus on integrating multimodal data 

sources for enhanced diagnostic accuracy [38]. 

The proposed method’s main contributions, 

• Analyze risks using TCNs for early detection of anomalies. 

• Evaluate Clinical feedback effectively using HANs to improve issue identification. 

• Generate synthetic data using cGANs for extensive testing and validation. 

• Ensure Regulatory compliance through automated consistency checks and validation 

 

2. LITERATURE REVIEW 
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Here, artificial intelligence solutions could be promising to optimize and secure cloud technology [39]. Also, 

they have certain challenges like scalability, computational complexity, and continuous updates that make them 

unfit for most applications [40]. Most of the solutions are dependent on specific infrastructures and require 

tremendous computational resources making them unfit for low-power environments [41]. Filling these gaps 

will be of utmost importance for increasing the adaptability, scaling, and efficiency of such AI-driven solutions 

in real-world applications [42]. 

A fault injection mechanism was designed [43] to enhance test coverage on AWS cloud environments. Hybrid 

optimization techniques and AWS-centric design in the framework not only possess restrictions in flexibility and 

scalability but also become important in mobile network optimization when using big data analytics by [44] for 

resource allocation and anomaly detection improving performance. Nevertheless, issues associated with 

computation overhead still exist in dynamic networks [45]. Meanwhile, a load-balancing mechanism was 

developed [46] to improve the distribution but caused security vulnerabilities as well as excessive computation 

overhead, which makes it unfit for power-constrained environments [47]. Improved decision-making in 

agricultural supply chains through big data analytics, Decision Support Systems (DSS), and Mixed Integer 

Linear Programming (MILP), but issues of scalability still exist in the wider networks [48]. 

On the other hand, the Giant Model applied an optimized pipeline involving Recursive Feature Elimination 

(RFE), Extreme Learning Machine (ELM), and Sparse Representation Classification (SRC) directed at feature 

selection, training speed, and a high accuracy of classification [49]. The question of scalability in some 

environments remains an issue [50]. A hybrid model integrating Particle Swarm Optimization (PSO) with 

Quadratic Discriminant Analysis (QDA) was proposed to improve AI software development without discussing 

the scalability of the system [51]. Social influence-based reinforcement learning, metaheuristic optimization, 

and an extended view of neuro-symbolic tensor networks were introduced for AI adaptability in software 

environments while furthering retention ability and interpretability; however, the problem of scaling is as yet 

unresolved [52]. A combination of memory-augmented neural networks (MANNs), hierarchical multi-agent 

learning (HMAL), and concept bottleneck models (CBMs) was studied for software adaptability and 

transparency, but the system encounters significant computational and integration challenges [53]. 

A stacked autoencoder and SVM-based phishing detection system achieved remarkable accuracy; however, it 

requires ongoing updates to address evolving phishing tactics, which limits its long-term scalability and 

adaptability [54]. Business intelligence transformation towards decision-making through AI-driven data 

analytics was explored; however, this model does not address issues like data privacy, regulatory compliance, or 

scalability, thereby limiting its application [55]. Cloud-based software testing and automated fault injectors for 

robustness were developed; yet delays and usage costs may still become prohibitive in many systems [56]. 

Neural networks and heuristics were utilized to help minimize overhead in regression testing for cloud systems, 

but heavy computation resource utilization puts strain on its practical operating environment [57]. 

Some security framework models combine detection and response strategies for data-driven mitigation against 

threats; however, besides being highly resource-consuming, they are unsuitable for power-constrained 

environments [58]. 

 

3. PROBLEM STATEMENT 

The primary challenges presented in existing studies are scalability, high computational complexity, continuous 

updates, infrastructure dependency, and power consumption of the AI systems [59]. These difficulties hinder the 

flexibility and sustainability of AI solutions in the time to come [60]. Additionally, many AI models require 

significant computational resources, making them impractical for deployment in resource-constrained 

environments [61]. Moreover, the dependency on specific infrastructure limits the adaptability of AI solutions 

across different platforms [62]. Continuous updates to AI systems pose challenges in maintaining stability and 

security over time [63]. Addressing these issues is critical for ensuring that AI technologies can be effectively 

and efficiently integrated into real-world applications [64]. The proposed method attempts to solve the above 

problems by utilizing scalable algorithms that optimize computational resources and offer flexibility for realistic 

deployments in low-power environments and thus ensure efficient AI-based solutions [65]. 

 

4. PROPOSED METHODOLOGY - RISK MONITORING, CLINICAL FEEDBACK INTEGRATION, 

AND REGULATORY COMPLIANCE MODALITIES FOR PMS AI-SAMDS 

The proposed method improves the subsequent learning of these AI-SaMDs through risk assessment, clinical 

feedback evaluation, and regulatory compliance. It utilizes Temporal Convolutional Networks (TCNs) for the 

anomaly detection process, Hierarchical Attention Networks (HANs) for feedback evaluation, and Conditional 

GANs (cGANs) for synthetically generating data. Data preprocessing consists of cleaning, normalizing, and 

extracting features. Regulatory compliance is verified by using an autoencoder and clustering. The overall 

workflow is displayed in Figure 1. 
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Figure 1: Workflow Diagram of the Proposed Method 

4.1. Data Collection 

The method proposed uses various data sets for strengthening the post-marketing surveillance of AI SaMDs. 

MIMIC-III Clinical Dataset Demo provides clinical time-series data for training Temporal Convolutional 

Networks to detect anomalies in the functioning of AI SaMDs. The CSCE 421: Machine Learning Spring 

structured and unstructured EHR data so that Hierarchical Attention Networks can evaluate clinical feedback 

and corroborate the outputs. Synthetic Medical Dates gathered synthetic clinical data for ablation testing, to help 

determine robustness. The FDA FAERS Quarterly Data Extract Files provides adverse event reports to validate 

regulatory compliance checks. The advantages that these datasets offer include an all-encompassing risk 

evaluation, feedback analysis, synthetic validation, and compliance assessment, which leads to the assurance of 

AI SaMDs' safety and efficacy. 

4.2. Data Preprocessing 

4.2.1. Data Ingestion and Integration 

Data from multiple sources is ingested and unified into a centralized pipeline using Apache Spark. Let 𝐷 =
{𝐷1, 𝐷2, … , 𝐷𝑛} represent datasets from 𝑛 sources. The unified dataset 𝑈 is as shown in Equation (1): 

𝑈 = ⋃  𝑛
𝑖=1 𝐷𝑖                   (1) 

4.2.2. Data Cleaning and Normalization 

Missing values are imputed, and data is normalized to ensure consistency. For missing value imputation is as 

depicted in Equation (2): 

𝑥imputed = {
median(𝑥)  if 𝑥 is missing 

𝑥  otherwise 
       (2) 

For Z-score normalization is as given in the following Equation (3): 

𝑥normalized =
𝑥−𝜇

𝜎
       (3) 

4.2.3. Feature Engineering 

Relevant features are extracted from time series and text data. For time-series feature extraction (e.g., rolling 

average) is as expressed in Equation (4): 

Rolling Average =
1

𝑤
∑  𝑡
𝑖=𝑡−𝑤+1 𝑥𝑖                   (4) 

For text embeddings using BioBERT is as shown in Equation (5): 

e = BioBERT(𝑥text)         (5) 

4.3. Model Training 

4.3.1 Anomaly Detection (Risk Evaluation) 

Temporal Convolutional Networks (TCNs) detect anomalies in time-series data. TCN output for input X is as 

displayed in Equation (6): 

Y = TCN(X)                 (6) 

Anomaly score is shown in Equation (7): 

𝑠 = ‖Y − X‖2                 (7) 

4.3.2. Clinical Feedback Analysis 

Hierarchical Attention Networks (HANs) analyze structured and unstructured feedback. HAN output for input X 

is as depicted in given Equation (8): 

Y = HAN(X)               (8) 

The attention mechanism is expressed in Equation (9): 

𝛼𝑖 =
exp⁡(v⊤tanh⁡(Wh𝑖))

∑  𝑗  exp⁡(v
⊤tanh⁡(Wh𝑗))

          (9) 
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4.3.3. Ablation Studies 

Conditional GANs (cGANs) generate synthetic clinical scenarios. Generator 𝐺 and discriminator 𝐷 loss 

functions are depicted in the following Equations (10), (11): 

ℒ𝐺 = 𝔼𝑧∼𝑝𝑧[log⁡(1 − 𝐷(𝐺(𝑧 ∣ 𝑐)))]           (10) 

ℒ𝐷 = 𝔼𝑥∼𝑝data 
[log⁡𝐷(𝑥 ∣ 𝑐)] + 𝔼𝑧∼𝑝𝑧

[log⁡(1 − 𝐷(𝐺(𝑧 ∣ 𝑐)))]      (11) 

4.3.4. Regulatory Compliance Validation 

Deep autoencoders model normal behavior, and clustering detects inconsistencies. Autoencoder reconstruction 

loss is as shown in Equation (12): 

ℒAE = ‖X − Decoder(Encoder(X))‖2     (12) 

K-Means clustering objective is expressed in Equation (13): 

ℒK−Mcans = ∑  𝑘
𝑖=1 ∑  𝑥∈𝐶𝑖

‖𝑥 − 𝜇𝑖‖
2             (13) 

4.4. Evaluation 

Risk Impact (RI): 

This measures the capability of a system to recognize high-risk scenarios and mitigate them as expressed in 

Equation (14). 

RI =
 Number of High-Risk Cases Detected 

 Total Number of High-Risk Cases 
× 100            (14) 

Clinical Follow-Up Effectiveness (CFE): 

Assessment of the effectiveness of clinical follow-up triggered by the system as given in Equation (15). 

CFE =
 Number of Successful Interventions 

 Total Number of Follow-Up Actions 
× 100     (15) 

Performance Deviation (PD): 

Quantifying AI SaMD Performance deviation in terms of expected benchmarks is mentioned below in Equation 

(16). 

PD = √
1

𝑁
∑  𝑁
𝑖=1   ( Actual Performance 𝑖 −  Expected Performance ⁡𝑖)

2      (16) 

Compliance Score (CS): 

It calculates conformance with the normative standard and guidelines as in Equation (17). 

CS =
 Number of Compliance Checks Passed 

 Total Number of Compliance Checks 
× 100                (17) 

Data Integration Efficiency (DIE): 

It assesses the efficiency of integrating data from multiple sources as illustrated in Equation (18). 

DIE =
 Number of Successfully Integrated Records 

 Total Number of Records 
× 100      (18) 

 

5. RESULTS 

The proposed method substantially is an improvement in risk detection, compliance verification, and clinical 

feedback appraisal within the realm of AI SaMD post-marketing surveillance. This is essentially possible due to 

deep learning-based models like Temporal Convolutional Networks (TCNs), Hierarchical Attention Networks 

(HANs), and Conditional GANs (cGANs) which guarantee superior accuracy, higher efficiency, and enhanced 

robustness in all envisioned applications. The experimental results provide evidence for a reduction in 

performance drift, more adherence to compliance, higher integration efficiencies, and thereby enabling robust 

real-world monitoring and risk mitigation in clinical settings. 

5.1. Performance Evaluation  

The method proposed for the evaluation metrics is compared with the existing AI-SaMD PMCF method, and the 

result is expressed in terms of Risk Impact (RI), Clinical Follow-Up Effectiveness (CFE), Performance 

Deviation (PD), Compliance Score (CS), and Data Integration Efficiency (DIE). 

Risk Impact: The function is to give a general idea about how the known risks would impact the whole system- 

specifying the ability to detect and assess the possible failures. The stacked bar chart visualizes the Risk Impact 

(RI) across different levels of severity of proposed methods and existing methods identifying risks at all severity 

levels as shown in Figure 2. 
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Figure 2: RI Comparison Across Severity Levels with Existing AI-SaMD with PMCF 

Clinical Follow-Up Effectiveness: This would measure the performance of the follow-up actions for the 

already detected risks. Clinical Follow-Up Effectiveness (CFE) was plotted against time in comparing follow-up 

action effectiveness between existing and proposed methods as depicted in Figure 3. 

 

 
Figure 3: CFE Over Time with Existing AI-SaMD with PMCF 

Performance Deviation: Indicates the stability of AI SaMD-performance deviation, which would quantify the 

AI SaMD performance deviation from its expected accuracy. The area graph shows Performance Deviation (PD) 

for monitoring periods, indicating a stable performance of the proposed method, with reduced deviation as 

displayed in Figure 4. 

 
Figure 4: PD Over Monitoring Periods compared with Existing AI-SaMD with PMCF 

Data Integration Efficiency: How effectively all the data sources are brought together and made a part of the 

system. The heat map indicates Data Integration Efficiency (DIE) across sources, resulting in better integration 

and less delay for the proposed method as visually expressed in Figure 5. 

 

 
Figure 5: DIE Across Different Data Sources with Existing AI-SaMD with PMCF 

The proposed method has shown improvement over the previous methodologies by improved risk identification 

(RI +5%) and enhanced proactive follow-up effectiveness (CFE +5%). Performance deterioration has been 

minimized (-1.36%) due to the early detection of anomalies within the data using the TCNs. The proposed 

system will also result in an improved regulatory compliance score (+5%) to carry out validation through deep 

autoencoders. Efficiency in terms of integration of data witnessed an enhancement of 15% via unification with 

Apache Sparks. All these enhancements denote the current methodology's robustness, accuracy, and efficacy for 

AI SaMD post-market surveillance as shown in - Table 1. 

Table 1: Comparison Metrics of The Existing AI-SaMD+PMCF and The Proposed Method 

Metric Existing 

Method 

Proposed 

Method 

Improvement 

Risk Impact (RI) 70% 75% +5% (More risks identified) 

Clinical Follow-Up Effectiveness 80% 85% +5% (Better risk mitigation) 
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(CFE) 

Performance Deviation (PD) 5.56% 4.20% −1.36% (More stable performance) 

Compliance Score (CS) 90% 95% +5% (Higher regulatory adherence) 

Data Integration Efficiency (DIE) 75% 90% +15% (Faster, more seamless integration) 

 

6. CONCLUSION AND FUTURE WORK 

The developed approach improves post-marketing surveillance of AI SaMD compared to the existing methods, 

with a 75% Risk Impact (RI) (+5%), 85% Clinical Follow-Up Effectiveness (CFE) (+5%), and also incurs a 

Compliance Score (CS) of 95% (+5%). Performance Deviation (PD) was brought down to 4.20% (-1.36%), 

whereas Data Integration Efficiency (DIE) scored about 90% (+15%). The result shows the power of TCNs, 

HANs, and cGANs in risk detection, feedback assessment, and compliance verification. In the future, we extend 

this framework to multi-modal data integrated with federated learning for privacy-preserving analytics and to 

explainable AI (XAI) for interpretability for greater applicability and trust in AI SaMDs. 
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