
ISSN 2347–3657

Volume 13, Issue 2s, 2025

41
DOI: https://doi.org/10.62647/IJITCE2025V13I2sPP41-48

Centralized Context-Aware Firewall configuration in Virtual
Network

1Mohd Shoaib Adeeb, 2Mir Abdul Aziz Khan, 3Mohammed Zaid Uddin, 4Dr. Mohammed Jameel Hashmi
1,2,3 B.E. Students, Department of CSE, ISL Engineering College (OU), Hyderabad, India.

4 Associate Professor, HOD CSE, Department of CSE, ISL Engineering College (OU), Hyderabad, India.

ABSTRACT
Modern virtualized networks require dynamic and
automated security configurations to avoid
vulnerabilities caused by manual setups. This project
presents a system that generates and configures firewall
rules automatically based on high-level Network
Security Requirements (NSRs) specified by
administrators. Initially, the administrator uploads a
Security Graph (SG), which contains a list of Access
Points (APs) representing logical network nodes. Next,
the administrator defines NSRs by specifying the source
AP, destination AP, and action (ALLOW or DENY) to
control network traffic behavior. The system processes
these NSRs to compute the optimal placement of
firewall instances, generate a minimal and anomaly-
free set of firewall rules, and enforce the required
security policies with default behaviors like whitelisting
or blacklisting. This approach formally guarantees the
correctness of the solution, i.e., that all security
requirements are satisfied, and it minimizes the number
of needed firewalls and firewall rules. This
methodology is extensively evaluated using different
metrics and tests on both synthetic and real use cases,
and compared to the state-of-the-art solutions, showing
its superiority.

1- INTRODUCTION

THE Network Functions Virtualization (NFV) and
Software Defined Networking (SDN) paradigms
increased agility in network configuration, opening the
possibility for users to dynamically request the creation
of virtual Service Function Graphs, more commonly
known as Service Graph (SG), generalization of the
Service Function Chain (SFC) concept. The SG is a new
level of abstraction that has been enabled by decoupling
computing and physical infrastructures. It is the logical
representation of a virtual network, independent from the
physical infrastructure where it is embedded. A problem
which arises in this context is how to enforce the Network
Security Requirements (NSRs) that a SG should satisfy,
like data protection and isolation. Traditionally, this task
is in charge of a security manager, typically different
from the net work manager who defines the logical
topology of the service. This separation of roles, if
combined with miscommunication or lack of technical
knowledge about the domain field of the other person,
can lead to the enforcement of incorrect security controls
[3]. Furthermore, the configuration of the Network
Security Functions (NSFs) is commonly performed
manually. This approach not only entails slower reaction
when attacks on the network are detected, but it is also
prone to human errors, which can lead to the introduction

of vulnerabilities. For example, among the hundreds of
rules that need to be defined in order to enforce a certain
isolation policy, the security manager might miss one ,so
making isolation not actually effective. Focusing
attention on the control of traffic forwarding, the core
NSFs used for this purpose are firewalls. If in traditional
scenarios a single point-of-control for packet filtering
was usually placed between the local area to protect and
the external network where attacks could come from, the
flexibility provided by NFV and SDN is encouraging
distributed architectures, where more instances are
allocated between different service functions, thus being
able to address more complex security requirements and
to improve efficiency and scalability. Designing and
managing these complex architectures requires
automation, because positioning and configuring virtual
instances manually can likely lead to incorrect or non-
optimal solutions, in addition to taking excessive time.
Instead, automation, paired with formal verification
techniques, is the key for computing provably correct and
optimized solutions rapidly enough. Unfortunately, the
problem of automating network security configuration
has not been sufficiently addressed in the literature so far,
despite it represents a key aspect in facing the constantly
increasing cybersecurity attacks. Initially, the problem
was less pronounced in traditional networks, even though
already perceived, because of their intrinsic limitations
(e.g., difficulty in allocating multiple firewalls, or
creating complex topologies). Later, the advent of
network virtualization sharpened the sensibility for this
problem but its high complexity restrained the evolution
of the state-of the-art solutions, which are all partial. In
particular, no prior formal method exists to automatically
find an optimum allocation and configuration of virtual
firewalls in a given SG. Consequently, automated
allocation and configuration of distributed firewalls is
still an open research issue. In this context, this article
proposes a new methodology that addresses the open
issues. The goal is to provide an automatic way to
allocate packet filters– the most common and traditional
firewall technology– in a SG defined by the service
designer, and to create firewall rules automatically ,so as
to satisfy the specified security requirements. The
method is based on a formal model which provides
assurance that the final solution really satisfies the
security requirements (correct ness-by-construction).
Optimality represents another core aspect of our
approach: minimizing the number of firewalls to be
allocated and the number of rules to be configured in each
one of them increases the performance of the overall
architecture, while reducing its cost in terms of employed
resources. All this is achieved by a careful formulation of
the problem as a partial weighted Maximum Satisfiability

ISSN 2347–3657

Volume 13, Issue 2s, 2025

42
DOI: https://doi.org/10.62647/IJITCE2025V13I2sPP41-48

Modulo Theories (MaxSMT) problem, which can be
solved automatically, providing a solution, if one exists,
that is formally guaranteed to satisfy all the hard logical
constraints defined in the problem, and that is an
optimum one, according to the optimization criteria
defined in the problem. Our preliminary ideas about the
proposed approach were presented at the
NOMS2020conference.
The way traffic flows, network functions, and network
security requirements are formalized in the MaxSMT
problem is totally new with respect to the preliminary
ideas. The new models have been redefined in terms of
flows, rather than packets, with the goal of achieving
better performance and scalability. All models and
algorithms are described with full technical details. The
experimental validation has been performed much more
extensively than in, by testing the method not only with
synthetic topologies, but also with real topologies of
production networks. Com pared to the preliminary idea,
the new framework shows greatly increased
performance. Amore extensive survey of the related
literature has been carried out, and a different, more
articulated, clarifying example is used here to better
highlight the advantages of our proposal with respect to
alter native solutions or manual strategies

2- LITERATURE SURVEY
3- Title: “Improving the formal verification of

reachability poli cies in virtualized networks.
Author: D. Bringhenti, G. Marchetto, R. Sisto, S.
Spinoso, F. Valenza, and J. Yusupov.
Year: 2021.
Description:
Network Function Virtualization (NFV) and Software
Defined Networking (SDN) are new emerging paradigms
that changed the rules of networking, shifting the focus
on dynamicity and programmability. In this new
scenario, a very important and challenging task is to
detect anomalies in the data plane, especially with the aid
of suitable automated software tools. In particular, this
operation must be performed within quite strict times,
due to the high dynamism introduced by virtualization.
In this article, we propose a new network modeling
approach that enhances the performance of formal
verification of reachability policies, checked by solving
a Satisfiability Modulo Theories (SMT) problem. This
performance improvement is motivated by the definition
of function models that do not work on single packets,
but on packet classes. Nonetheless, the modeling
approach is comprehensive not only of stateless
functions, but also stateful functions such as NATs and
firewalls. The implementation of the proposed approach
achieves high scalability in complex networked systems
consisting of several heterogeneous functions.
 Title: “Benchmarking open source NFV MANO
systems: OSM and ONAP.
Author: G. M. Yilma, F. Z. Yousaf, V. Sciancalepore,
and X. P. Costa
 Year: 2020

Description:
With the increasing trend in softwarization
and virtualization of network functions and
systems, NFV management and orchestration (MANO)
solutions are being developed to meet the agile and
flexible management requirements of
virtualized network services in the 5G era and beyond. In
this regard, ETSI ISG NFV has specified a
standard MANO system that is used as a reference by
vendors as well as open-source MANO projects. These
MANO systems are inherently very complex and have a
direct impact on the overall performance
of NFV systems. However, unlike traditional networking
functions and systems, there are no well-defined test
methods and KPIs based on which the performance of the
NFV-MANO system can be tested, validated and
benchmarked. Given the absence of formal MANO
specific evaluation techniques based on which the
performance and features of a MANO system can be
quantified, and compared against, we introduce in this
paper a formal benchmarking methodology and KPIs for
MANO systems. For illustration purposes, we analyze
and compare the performance of the two most popular
open-source NFV MANO projects, namely ONAP and
OSM, using a complex open-source virtual customer
premises equipment (vCPE) VNF. Our results show the
current features support, performance to be expected and
gaps to be covered in future releases.
Title: Adaptive network slicing in multi-tenant
5GIoTnetworks.
Author: A. Matencio-Escolar , J. M. Alcaraz-Calero , P.
Salva-Garcia , J. B. Bernabe, and Q. Wang.
 Year: 202
Description:
The Fifth Generation (5G) mobile networking coupled
with Internet of Things (IoT) can provide innovative
solutions for a wide range of uses cases. The flexibility
of virtualized, softwarized and multi-tenant
infrastructures and the high performance promised by 5G
technology are key to cope with the deployment of the
IoT use cases demanded by various vertical businesses.
Such 5G IoT use cases incur challenging Quality of
Service (QoS) requirements especially connectivity for
millions of IoT devices to achieve massive Machine-
Type Communication (mMTC). In addition, network
slicing is a key enabling technology in 5G multi-tenant
networks to create logical virtualized networks for
delivering customized solutions to meet diverse QoS
requirements. This work presents a 5G IoT framework
with network slicing capabilities able to manage a vast
number of heterogeneous IoT network slices
dynamically on demand. The proposed solution has been
empirically tested and validated in five realistic vertical-
oriented IoT use cases. The achieved results demonstrate
a excellent stability, isolation and scalability while being
able to meet extreme QoS requirements even in the most
congested and stressful scenarios.
Title: Enabling cyber-attack mitigation techni ques in a
software defined network.

ISSN 2347–3657

Volume 13, Issue 2s, 2025

43
DOI: https://doi.org/10.62647/IJITCE2025V13I2sPP41-48

Author: A. Pasias, T. Kotsiopoulos, G. Lazaridis, A.
Drosou, D. Tzovaras, and P. G. Sarigiannidis.
Year: 2021.
Description:
Software Defined Networking (SDN) is an innovative
technology, which can be applied in a plethora of
applications and areas. Recently, SDN has been
identified as one of the most promising solutions for
industrial applications as well. The key features of SDN
include the decoupling of the control plane from the data
plane and the programmability of the network through
application development. Researchers are looking at
these features in order to enhance the Quality of Service
(QoS) provisioning of modern network applications. To
this end, the following work presents the development of
an SDN application, capable of mitigating attacks and
maximizing the network’s QoS, by implementing mixed
integer linear programming but also using genetic
algorithms. Furthermore, a low-cost, physical SDN
testbed was developed in order to evaluate the
aforementioned application in a more realistic
environment other than only using simulation tools.
Title: Self-organization and resilience for net worked
systems: Design principles and open research issues.
Author: S. Dobson, D. Hutchison, A. Mauthe, A.
Schaeffer-Filho , P. Smith, and J. P. G. Sterbenz,
Year: 2019
Description:
Networked systems form the backbone of modern
society, underpinning critical infrastructures such as
electricity, water, transport and commerce, and other
essential services (e.g., information, entertainment, and
social networks). It is almost inconceivable to
contemplate a future without even more dependence on
them. Indeed, any unavailability of such critical systems
is - even for short periods - a rather bleak prospect.
However, due to their increasing size and complexity,
they also require some means of autonomic formation
and self-organization. This paper identifies the design
principles and open research issues in the twin fields of
self-organization and resilience for networked systems.
In combination, they offer the prospect of combating
threats and allowing essential services that run on
networked systems to continue operating satisfactorily.
This will be achieved, on the one hand, through the (self-
)adaptation of networked systems and, on the other hand,
through structural and operational resilience techniques
to ensure that they can detect, defend against, and
ultimately withstand challengesMETHODOLOGY
This project focuses on the automated generation and
management of firewall configurations in virtualized
network environments based on administrator-defined
Network Security Requirements (NSRs). The system
starts by allowing the user to upload a Security Graph
(SG), which defines the logical structure of the network
in terms of Access Points (APs). Administrators then
specify communication policies by defining the source
AP, destination AP, and action (either ALLOW or
DENY) for each communication flow. The system

automatically processes these security rules to determine
where firewall instances should be placed within the
network and generates optimized, minimal, and
anomaly-free sets of firewall rules for each firewall. The
approach supports both whitelisting and blacklisting
models for traffic management and ensures that all user-
defined security policies are formally satisfied while
minimizing resource consumption. Designed with
scalability in mind, the project also prepares for future
enhancements such as conflict detection, dynamic
visualization of network topology, real firewall system
integration, and multi-user management features, making
it a comprehensive solution for modern network security
automation.
User Interface Design
To connect with server user must give their username
and password then only they can able to connect the
server. If the user already exits directly can login into
the server else user must register their details such as
username, password, Email id, City and Country into
the server. Database will create the account for the
entire user to maintain upload and download rate. Name
will be set as user id. Logging in is usually used to enter
a specific page. It will search the query and display the
query.
User Authentication Module
This module provides a secure login system for
administrators to access the tool. It ensures that only
authorized users can manage and configure the network
security settings. Admin credentials are verified before
granting access to the main dashboard.
Security Graph (SG) Upload Module
In this module, users upload the network's logical
structure, known as the Security Graph, which defines all
the Access Points (APs) in the virtual network. The
system processes the uploaded data and prepares it for
further configuration.
NSR Definition Module
This module allows administrators to define Network
Security Requirements by selecting the source AP,
destination AP, and the desired action (ALLOW or
DENY). It captures all communication policies needed to
enforce network security.
Firewall Allocation Module
The firewall allocation module decides the best locations
within the network (Access Points) to place firewall
instances. It ensures that firewalls are optimally
positioned to enforce all specified security rules using the
least number of resources.
Firewall Rule Optimization
Firewall rule optimization is the process of improving
firewall configurations to make them more efficient,
correct, and easy to manage.
In any network, firewalls are used to allow or block
specific types of traffic based on defined rules. However,
as networks grow larger and more dynamic, firewall rule
sets often become very large, complex, and redundant.
This can cause problems like slow packet processing,
wasted memory, and even security vulnerabilities due to

ISSN 2347–3657

Volume 13, Issue 2s, 2025

44
DOI: https://doi.org/10.62647/IJITCE2025V13I2sPP41-48

mistakes.
The main goal of firewall rule optimization is to
minimize the number of rules while still preserving the
correct behavior of the firewall. This involves detecting
and removing redundant rules, conflicting rules, and
unnecessary overlaps. For example, if two rules allow
the same traffic, they can be merged into one. If a rule is
never reached because a previous rule already matches
the traffic, it can be safely removed.
Optimizing firewall rules not only makes the firewall
faster but also improves security, because a smaller and
cleaner rule set is easier to audit and verify. In modern
systems, optimization also tries to reduce resource
usage like CPU, memory, and storage on the devices
running firewalls, especially important in virtualized
cloud environments.
Different techniques are used for firewall rule
optimization, including heuristic methods, graph-
based models, and formal methods like SAT solving or
SMT solving. In advanced systems, optimization
happens automatically during the design of the network,
rather than being manually adjusted after problems are
noticed.
Thus, firewall rule optimization is a critical step for
building secure, high-performance, and scalable
networks, particularly in environments using virtual
networks and dynamic topologies.

4- REQUIREMENTS
ENGINEERING HARDWARE
REQUIREMENTS
The hardware requirements may serve
as the basis for a contract for the
implementation of the system and
should therefore be a complete and
consistent specification of the whole
system. They are used by software
engineers as the starting point for the
system design. It shoulds what the
system do and not how it should be
implemented.
HARDWARE
 PROCESSOR : PENTIUM IV

2.6 GHz, Intel Core 2 Duo.
 RAM : 512

MB DD RAM
 MONITOR : 15” COLOR
 HARD DISK : 40GB

SOFTWARE REQUIREMENTS

The software requirements document is the
specification of the system. It should include both a
definition and a specification of requirements. It is a
set of what the system should do rather than how it
should do it. The software requirements provide a
basis for creating the software requirements
specification. It is useful in estimating cost, planning
team activities, performing tasks and tracking the

teams and tracking the team’s progress throughout
the development activity.

 Front End : J2EE (JSP, SERVLET)
 Back End : MY SQL 5.5
 Operating System : Windows 10
 IDE : Eclipse

FUNCTIONAL REQUIREMENTS
 A functional requirement defines a function of a
software system or its component. A function is
described as a set of inputs, the behavior, and outputs.
The outsourced computation is data is more secured.
User Request

 Input: The user submits a request for data or
files.

 Behavior: The system processes the request
and checks the user's credentials for valid
access.

 Output: If the request is valid, access to the
data is granted. Otherwise, an error message is
displayed.

 File Details
 Input: User selects a file and requests to view

its details.
 Behavior: The system fetches file metadata

such as name, size, and type.
 Output: The file details are displayed to the user,

allowing them to view more information before
proceeding with further actions (such as downloading or
requesting keys).NON-FUNCTIONAL
REQUIREMENTS
The major non-functional Requirements of the system
are as follows
 Usability
The system is designed with completely automated
process hence there is no or less user intervention.
 Reliability
The system is more reliable because of the qualities that
are inherited from the chosen platform java. The code
built by using java is more reliable.
 Performance
This system is developing in the high level languages and
using the advanced front-end and back-end technologies
it
will give response to the end user on client system with
in very less time.
 Supportability
The system is designed to be the cross platform
supportable. The system is supported on a wide range of
hardware and any software platform which is having
JVM, built into the system.
 Implementation
The system is implemented in a web environment using
struts framework. The Apache Tomcat is used as the web
server, and Windows XP Professional is used as the
platform. Interface the user interface is based on Struts
provides HTML Tag

ISSN 2347–3657

Volume 13, Issue 2s, 2025

45
DOI: https://doi.org/10.62647/IJITCE2025V13I2sPP41-48

5-DESIGN ENGINEERING
Design Engineering deals with the various UML [Unified
Modeling Language] diagrams for the implementation of
a project. Design is a meaningful engineering

representation of a thing that is to be built. Software
design is a process through which the requirements are
translated into a representation of the software. Design is
the place where quality is rendered in software
engineering. Design is the means to accurately translate
customer requirements into a product

This class diagram represents how the classes with attributes and methods are linked together to perform the verification

SYSTEM ARCHITECTURE:

User

Register
Login

Search()
Send Request Admin()
View Keys()
Download()

Admin

Register
Login

Upload SG file()
Select Source/Destination()
Select Deny/Allow()
Run Optimization()
User Request()

Database

Stores Data

Warehouse()

ISSN 2347–3657

Volume 13, Issue 2s, 2025

46
DOI: https://doi.org/10.62647/IJITCE2025V13I2sPP41-48

6- IMPLEMENTATION
LIST:
Lists are implemented in the JCF via
the java.util.List interface. It defines a list as essentially
a more flexible version of an array. Elements have a
specific order, and duplicate elements are allowed.
Elements can be placed in a specific position. They can
also be searched for within the list. Two concrete classes
implement List. The first is java.util.ArrayList, which
implements the list as an array. Whenever functions
specific to a list are required, the class moves the
elements around within the array in order to do it. The
other implementation is java.util.LinkedList. This class
stores the elements in nodes that each have a pointer to
the previous and next nodes in the list. The list can be
traversed by following the pointers, and elements can be
added or removed simply by changing the pointers
around to place the node in its proper place.
SET:
Java's java.util.Set interface defines the set. A set can't
have any duplicate elements in it. Additionally, the set
has no set order. As such, elements can't be found by
index. Set is implemented
by java.util.HashSet,java.util.LinkedHashSet,
and java.util.TreeSet. HashSet uses a hash table. More
specifically, it uses a java.util.HashMap to store the
hashes and elements and to prevent duplicates.
Java.util.LinkedHashSet extends this by creating a

doubly linked list that links all of the elements by their
insertion order. This ensures that the iteration order over
the set is predictable. java.util.TreeSet uses a red-black
tree implemented by a java.util.TreeMap. The red-black
tree makes sure that there are no duplicates.
Additionally, it allows Tree Set to
implement java.util.SortedSet.
The java.util.Set interface is extended by
the java.util.SortedSet interface. Unlike a regular set, the
elements in a sorted set are sorted, either by the
element's compareTo() method or a method provided to
the constructor of the sorted set. The first and last
elements of the sorted set can be retrieved, and subsets
can be created via minimum and maximum values, as
well as beginning or ending at the beginning or ending
of the sorted set. The SortedSet interface is implemented
by java.util.TreeSet
java.util.SortedSet is extended further via
the java.util.NavigableSet interface. It's similar to
SortedSet, but there are a few additional methods. The
floor(), ceiling(), lower(), and higher() methods find an
element in the set that's close to the parameter.
Additionally, a descending iterator over the items in the
set is provided. As with
SortedSet, java.util.TreeSet implements NavigableSet.
MAP:
Maps are defined by the java.util.Map interface in Java.

ISSN 2347–3657

Volume 13, Issue 2s, 2025

47
DOI: https://doi.org/10.62647/IJITCE2025V13I2sPP41-48

Maps are simple data structures that associate a key with
a value. The element is the value. This lets the map be
very flexible. If the key is the hash code of the element,
the map is essentially a set. If it's just an increasing
number, it becomes a list. Maps are implemented
by java.util.HashMap, java.util.LinkedHashMap,
and java.util.TreeMap. HashMap uses a hash table. The
hashes of the keys are used to find the values in various
buckets. LinkedHashMap extends this by creating a
doubly linked list between the elements. This allows the
elements to be accessed in the order in which they were
inserted into the map. TreeMap, in contrast to HashMap
and LinkedHashMap, uses a red-black tree. The keys are
used as the values for the nodes in the tree, and the nodes
point to the values in the map
THREAD:
Simply put, a thread is a program's path of execution.
Most programs written today run as a single thread,
causing problems when multiple events or actions need
to occur at the same time. Let's say, for example, a
program is not capable of drawing pictures while
reading keystrokes. The program must give its full
attention to the keyboard input, lacking the ability to
handle more than one event at a time. The ideal solution
to this problem is the seamless execution of two or more
sections of a program at the same time
 CREATING THREAD:
Java's creators have graciously designed two ways of
creating threads: implementing an interface and
extending a class. Extending a class is the way Java
inherits methods and variables from a parent class. In
this case, one can only extend or inherit from a single
parent class. This limitation within Java can be
overcome by implementing interfaces, which is the most
common way to create threads

7- CONCLUSION
In this article, we have designed an automated system
for configuring network security, specifically focusing
on firewall rule optimization and placement within a
virtual network environment. By leveraging innovative
algorithms like the Partial Weighted Maximum
Satisfiability Modulo Theories (Max-SMT), the system
ensures that security requirements are enforced correctly
while rminimizing the resource consumption required
for firewall rules and placement. The integration of
features like dynamic security graph handling, user-
specific policy enforcement, and secure data access
management enhances the overall security posture of
virtual networks. Additionally, the system offers
scalability and flexibility for future extensions, such as
anomaly detection, multi-user support, and real-time
firewall configuration updates. Ultimately, this system
automates and streamlines the process of enforcing
network security policies, making it more efficient and
reliable, particularly in complex.
While the current system provides an effective solution
for automating firewall rule optimization and placement,
several future enhancements can further improve its
capabilities and user experience. One key enhancement
could be the integration of anomaly detection to identify
and resolve conflicting rules or potential security
vulnerabilities automatically. Additionally, dynamic

topology visualization could be introduced to provide
network administrators with real-time graphical
representations of firewall placements and traffic flow,
making it easier to monitor and adjust
configurations.Multi-user support and role-based access
control could also be implemented, allowing different
users (e.g., administrators, MSPs, owners, and regular
users) to interact with the system based on their specific
privileges. Furthermore, real-time updates and the
ability to handle security configuration changes on-the-
fly would ensure the system remains adaptive in
responding to emerging threats. Integration with
existing firewall configuration exporters could allow
seamless deployment of the system into real-world
environments, further enhancing its practical utility.
Lastly, file upload support for security graphs would
enable users to directly import network security data,
improving flexibility and ease of use. These
enhancements will ensure the system remains scalable,
adaptable, and capable of meeting the ever-evolving
demands of modern network security
REFERENCES
[1] J. Halpern and C. Pignataro, “Service function
chaining (SFC) architecture,” RFC 7665, pp. 1–32,
2015.
[2] J. Garay, J. Matias, J. Unzilla, and E. Jacob, “Service
description in the NFV revolution: Trends, challenges
and a way forward,” IEEE Commun. Mag., vol. 54, no.
3, pp. 68–74, Mar. 2016.
[3] S. Singh, Y. Jeong, and J. H. Park, “A survey on
cloud computing security: Issues, threats, and
solutions,” J. Netw. Comput. Appl., vol. 75, pp. 200–
222, 2016.
[4] R. Mijumbi et al., “Management and orchestration
challenges in network functions virtualization,” IEEE
Commun. Mag., vol. 54, no. 1, pp. 98–105, Jan. 2016.
[5] D. Bringhenti et al., “Improving the formal
verification of reachability policies in virtualized
networks,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 1, pp. 713–728, Mar. 2021.
[6] Y.-M. Kim and M. Kang, “Formal verification of
SDN-based firewalls by using TLA+,” IEEE Access,
vol. 8, pp. 52100–52112, 2020.
[7] Y. Bartal, A. Mayer, K. Nissim, and A. Wool,
“Firmato: A novel firewall management toolkit,” ACM
Trans. Comput. Syst., vol. 22, no. 4, pp. 381–420, 2004.
[8] P. Verma and A. Prakash, “FACE: A firewall
analysis and configuration engine,” in Proc. IEEE/IPSJ
Int. Symp. Appl. Internet, 2005, pp. 74–81.
[9] J. D. Guttman, “Filtering postures: Local
enforcement for global policies,” in Proc. IEEE Symp.
Secur. Privacy, 1997, pp. 120–129.
[10] M. A. Rahman and E. Al-Shaer, “Automated
synthesis of distributed network access controls: A
formal framework with refinement,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 2, pp. 416–430, Feb.
2017.
[11] A. Gember-Jacobson et al., “Automatically
repairing network control planes using an abstract
representation,” in Proc. 26th Symp. Oper. Syst. Princ.,
2017, pp. 359–373.
[12] C. Basile et al., “Adding support for automatic

ISSN 2347–3657

Volume 13, Issue 2s, 2025

48
DOI: https://doi.org/10.62647/IJITCE2025V13I2sPP41-48

enforcement of security policies in NFV networks,”
IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 707–720,
Apr. 2019.
[13] D. Bringhenti et al., “Automated optimal firewall
orchestration and configuration in virtualized
networks,” in Proc. IEEE/IFIP Netw. Oper. Manage.
Symp., 2020, pp. 1–7.
[14] A. Mayer, A. Wool, and E. Ziskind, “Fang: A
firewall analysis engine,” in Proc. IEEE Symp. Secur.
Privacy, 2000, pp. 177–187.
[15] J. Govaerts, A. K. Bandara, and K. Curran, “A
formal logic approach to firewall packet filtering
analysis and generation,” Artif. Intell. Rev., vol. 29, no.
3/4, pp. 223–248, 2008.
[16] D. Ranathunga, M. Roughan, P. Kernick, and N.
Falkner, “The mathematical foundations for mapping
policies to network devices,” in Proc. 13th Int. Joint
Conf. E-Bus. Telecommun., 2016, pp. 197–206.
[17] N. B. Y. B. Souayeh and A. Bouhoula, “A fully
automatic approach for fixing firewall
misconfigurations,” in Proc. 11th IEEE Int. Conf.
Comput. Inf. Technol., 2011, pp. 461–466.
[18] K. Adi, L. Hamza, and L. Pene, “Automatic
security policy enforcement in computer systems,”
Comput. Secur., vol. 73, pp. 156–171, 2018.
[19] A. Tsuchiya et al., “Software-defined networking
firewall for industry 4.0 manufacturing systems,” J. Ind.
Eng. Manage., vol. 11, 2018, Art. no. 318.
[20] P. Salva-Garcia et al., “Towards automatic
deployment of virtual firewalls to support secure mMTC
in 5G networks,” in Proc. IEEE Conf. Comput.
Commun. Workshops, 2019, pp. 385–390.
[21] S. Dobson et al., “Self-organization and resilience
for networked systems: Design principles and open
research issues,” Proc. IEEE, vol. 107, no. 4, pp. 819–
834, Apr. 2019.
[22] J. Zhang et al., “Enabling efficient service function
chaining by integrating NFV and SDN: Architecture,
challenges and opportunities,” IEEE Netw., vol. 32, no.
6, pp. 152–159, Nov./Dec. 2018.
[23] E. J. Scheid et al., “INSpIRE: Integrated NFV-
based intent refinement environment,” in Proc.
IFIP/IEEE Symp. Integr. Netw. Serv. Manage., 2017,
pp. 186–194.
[24] Y. Han et al., “An intent-based network
virtualization platform for SDN,” in Proc. 12th Int.

Conf. Netw. Serv. Manage., 2016, pp. 353–358.
[25] A. S. Jacobs et al., “Refining network intents for
self-driving networks,” Comput. Commun. Rev., vol. 48,
no. 5, pp. 55–63, 2018.
[26] Z. Hao, Z. Lin, and R. Li, “A SDN/NFV security
protection architecture with a function composition
algorithm based on trie,” in Proc. 2nd Int. Conf. Comput.
Sci. Appl. Eng., 2018, Art. no. 176.
[27] Y. Liu et al., “A dynamic composition mechanism
of security service chaining oriented to SDN/NFV-
enabled networks,” IEEE Access, vol. 6, pp. 53918–
53929, 2018.
[28] A. Pasias et al., “Enabling cyber-attack mitigation
techniques in a software defined network,” in Proc.
IEEE Int. Conf. Cyber Secur. Resilience, 2021, pp. 497–
502.
[29] A. Matencio-Escolar et al., “Adaptive network
slicing in multi-tenant 5G IoT networks,” IEEE Access,
vol. 9, pp. 14048–14069, 2021.
[30] M. Yoon, S. Chen, and Z. Zhang, “Minimizing the
maximum firewall rule set in a network with multiple
firewalls,” IEEE Trans. Comput., vol. 59, no. 2, pp. 218–
230, Feb. 2010.
[31] N. Schnepf et al., “Rule-based synthesis of chains
of security functions for software-defined networks,”
Electron. Commun. EASST, vol. 76, pp. 1–19, 2018.
[32] E. Al-Shaer et al., “Conflict classification and
analysis of distributed firewall policies,” IEEE J. Sel.
Areas Commun., vol. 23, no. 10, pp. 2069–2084, Oct.
2005.
[33] F. Valenza et al., “Classification and analysis of
communication protection policy anomalies,”
IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 2601–2614,
Oct. 2017.
[34] J. Gil-Herrera and J. F. Botero, “Resource
allocation in NFV: A comprehensive survey,” IEEE
Trans. Netw. Service Manag., vol. 13, no. 3, pp. 518–
532, Sep. 2016.
[35] K. Hida and S. Kuribayashi, “Joint deployment of
virtual routing function and virtual firewall function in
NFV-based network with minimum network cost,” in
Proc. 21st Int. Conf. Adv. Netw.-Based Inf. Syst., 2018,
pp. 333–345.

.

