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Abstract 
Land Use and Land Cover (LULC) classification 
plays a pivotal role in a range of applications, 
including urban planning, environmental 
monitoring, agricultural management, and climate 
change analysis. With the rapid advancement in 
satellite and aerial remote sensing technologies, 
vast volumes of high-resolution multispectral and 
hyperspectral imagery are now accessible. While 
deep learning has emerged as a powerful tool for 
automating LULC classification with high 
accuracy, its black-box nature poses significant 
challenges to transparency, trustworthiness, and 
adoption in critical domains. This research 
proposes an interpretable deep learning 
framework that not only delivers accurate LULC 
classification but also ensures model 
explainability through the use of SHAP (SHapley 
Additive exPlanations), a game-theoretic 
approach to interpreting machine learning 
models. 
The proposed framework integrates a 
convolutional neural network (CNN)-based 
architecture trained on satellite imagery to 
classify different land cover types such as 
vegetation, water bodies, built-up areas, barren 
land, and agricultural fields. The CNN is trained 
using a labeled remote sensing dataset, such as 
Sentinel-2 or Landsat 8 imagery, with 
preprocessing steps including radiometric 
calibration, normalization, and augmentation to 
handle class imbalances and improve 
generalization. 
To address the lack of interpretability in 
traditional deep learning approaches, SHAP is 
used to quantify and visualize the contribution of 
each input feature (spectral bands, texture 
features, and spatial context) to the model’s 
output predictions. This is achieved by computing 
Shapley values for each pixel or region of interest, 
thereby providing insight into how much each 
feature influenced the classification decision. For 
instance, the red edge or near-infrared bands 
might be highly influential in identifying 
vegetation, while shortwave infrared could be 
critical for distinguishing built-up areas from 

barren land. These explanations allow users—
including policymakers, urban planners, and 
environmental scientists—to validate and trust the 
model's outputs. 
Experimental results demonstrate that the CNN 
model achieves high overall accuracy and class-
wise precision on benchmark datasets. More 
importantly, SHAP-based interpretation 
highlights the most significant spectral and spatial 
cues used by the network. This not only confirms 
the biological and physical intuition behind 
remote sensing classification but also helps 
uncover model biases and inconsistencies. 
Moreover, comparative analysis with other 
interpretability techniques such as Grad-CAM 
and LIME shows that SHAP provides more 
granular, consistent, and model-agnostic 
explanations. 
The proposed framework was evaluated in 
multiple geographical contexts to ensure 
robustness and generalization. Case studies over 
urban, rural, and coastal landscapes show that 
SHAP explanations vary with terrain complexity 
and seasonal changes, further validating the 
adaptability of the model. The integration of 
domain knowledge through SHAP also opens the 
door for active learning loops, where human 
feedback can refine the training process and 
correct model misclassifications, enhancing both 
accuracy and reliability over time. 
In conclusion, this study contributes to the 
growing field of explainable artificial intelligence 
(XAI) in remote sensing by providing a practical, 
interpretable deep learning solution for LULC 
classification. By combining the predictive 
strength of CNNs with the interpretive power of 
SHAP, the proposed framework enhances both 
model performance and transparency. It promotes 
responsible AI practices in geospatial analysis, 
which is essential for informed decision-making 
in land management, conservation, and 
sustainable development. Future directions 
include extending this work to multi-temporal 
data for land cover change detection and 
integrating uncertainty quantification to further 
support critical Earth observation applications. 
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Introduction 
In recent years, Land Use and Land Cover 
(LULC) classification has become an essential 
task in geospatial analysis, supporting 
applications such as urban planning, disaster 
management, environmental monitoring, resource 
mapping, and climate change modeling. The ever-
increasing availability of high-resolution satellite 
imagery from sensors like Sentinel-2, Landsat 8, 
and MODIS has enabled detailed observation of 
the Earth’s surface. With this growing data 
availability, there has been a paradigm shift from 
traditional manual or rule-based classification 
methods to automated machine learning 
approaches, particularly deep learning models, 
which have demonstrated superior performance in 
handling complex spatial patterns and large-scale 
image datasets. 
Among these, Convolutional Neural Networks 
(CNNs) have shown exceptional capabilities in 
extracting spatial and spectral features from 
satellite images, resulting in high classification 
accuracy. CNNs can automatically learn 
hierarchical feature representations, reducing the 
need for handcrafted features, and can effectively 
model non-linear relationships between input 
image bands and land cover classes. However, the 
widespread adoption of deep learning in critical 
remote sensing tasks is often hindered by a 
significant drawback — lack of interpretability. 
Most CNN-based models operate as black boxes, 
providing little to no explanation for their 
predictions. In high-stakes scenarios where land 
classification results are used for policymaking or 
disaster response, such opacity can lead to 
mistrust or incorrect decision-making. 
To address this critical limitation, the field of 
Explainable Artificial Intelligence (XAI) has 

emerged, aiming to make machine learning 
models more transparent and understandable to 
human users. One of the most powerful and 
widely accepted tools in this domain is SHAP 
(SHapley Additive exPlanations). SHAP is a 
model-agnostic interpretability method based on 
cooperative game theory, which assigns each 
feature a contribution value (called a Shapley 
value) that quantifies its influence on the model’s 
output. Unlike other interpretability techniques 
that are specific to certain models or architectures, 
SHAP can be applied universally, providing 
consistent and theoretically sound explanations. 
This project proposes an interpretable deep 
learning framework for LULC classification, 
which integrates a CNN model with SHAP-based 
explanation mechanisms. The framework is 
designed to not only achieve high classification 
performance across diverse land cover types — 
such as forests, water bodies, built-up areas, 
agricultural lands, and barren terrain — but also 
to reveal which input features (e.g., specific 
spectral bands or spatial textures) most influenced 
each classification decision. This dual goal of 
accuracy and transparency is crucial for 
building trust in AI systems deployed in sensitive 
geospatial applications. 
The motivation for combining deep learning and 
SHAP in LULC classification stems from both 
technical and societal needs. Technically, remote 
sensing images often contain complex spectral 
information that varies across regions and 
seasons, making manual feature selection 
insufficient. Deep learning handles such 
variability effectively but does so opaquely. On 
the societal side, decision-makers — such as 
environmental agencies, urban developers, and 
governmental organizations — require clear 
reasoning to support the outcomes produced by 
AI models. The ability to interpret and validate 
results with domain knowledge improves the 
reliability and acceptability of such models in 
practice. 
Furthermore, integrating SHAP into the deep 
learning workflow enables fine-grained 
attribution analysis at the pixel or regional level. 
This not only helps in verifying model behavior 
but also in identifying biases or areas where the 
model may be overfitting or misclassifying. For 
example, SHAP values can help uncover whether 
vegetation misclassifications are due to seasonal 
changes in reflectance or due to overlapping 
features in urban-rural transition zones. 
The framework is evaluated using benchmark 
remote sensing datasets and undergoes extensive 
testing across varied geographic and 
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environmental contexts. Performance metrics 
such as overall accuracy, precision, recall, and F1-
score are calculated, and SHAP visualizations are 
generated to illustrate the internal logic of the 
CNN. Comparisons with other interpretability 
techniques, such as LIME (Local Interpretable 
Model-agnostic Explanations) and Grad-CAM, 
are also presented to highlight the strengths of 
SHAP in geospatial contexts. 
In summary, this project addresses a pressing 
need in remote sensing: combining the high 
predictive power of deep learning with the 
interpretability needed for practical deployment 
and user trust. By doing so, it bridges the gap 
between performance and transparency in LULC 
classification. The outcomes of this work have the 
potential to influence not only future research in 
explainable geospatial AI but also operational 
practices in land management, environmental 
assessment, and sustainable development. 
 
 
Literature Review 
Land Use and Land Cover (LULC) classification 
has traditionally relied on statistical classifiers 
such as k-nearest neighbors (KNN), support 
vector machines (SVM), and random forests 
(RF) due to their simplicity and interpretability. 
However, as the volume and complexity of 
remote sensing data have increased, these 
classical methods have shown limitations in 
handling high-dimensional data and capturing 
complex spatial-spectral relationships. In 
response, deep learning models, especially 
Convolutional Neural Networks (CNNs), have 
gained significant attention for their ability to 
automatically extract multi-scale spatial features 
and achieve higher classification accuracy. 
Deep Learning in LULC Classification 
One of the foundational works in this area is by 
Zhang et al. (2016), who demonstrated the use of 
CNNs for land cover classification using Sentinel-
2 imagery. Their results showed significant 
performance improvements over traditional 
classifiers. Similarly, Kussul et al. (2017) used 
deep neural networks on high-resolution satellite 
data to map agricultural land in Ukraine, 
achieving impressive accuracy by leveraging 
spatial information. 
Further developments have introduced hybrid 
architectures, such as CNN-RNN 
combinations, to handle temporal data, and 3D 
CNNs for spectral-spatial feature extraction in 
hyperspectral images. For instance, Li et al. 
(2019) developed a 3D CNN that captures 
spectral–spatial correlations across neighboring 

pixels, proving effective for hyperspectral 
classification tasks. Despite these successes, one 
consistent limitation across deep learning models 
is their lack of interpretability. 
Explainable AI in Remote Sensing 
As the demand for transparency in AI models 
has grown, researchers have explored 
explainability techniques to interpret deep 
learning models in remote sensing. Grad-CAM 
(Selvaraju et al., 2017) is one such method that 
visualizes activation maps from CNNs to 
highlight areas in an image that contribute most to 
a decision. It has been applied to land cover tasks 
to offer rough visual explanations. However, 
Grad-CAM is architecture-specific and works 
best for classification tasks with a single dominant 
object per image, which is not always the case in 
satellite imagery. 
Local Interpretable Model-agnostic 
Explanations (LIME), introduced by Ribeiro et 
al. (2016), offers another route for explanation by 
approximating a black-box model locally with an 
interpretable surrogate. In remote sensing, Singh 
et al. (2020) applied LIME to explain urban 
feature classification, but found that the 
explanations varied widely across instances, 
raising concerns about stability and consistency. 
SHAP for Model Interpretation 
SHAP (SHapley Additive exPlanations), 
developed by Lundberg and Lee (2017), 
provides a theoretically grounded method based 
on cooperative game theory. It attributes 
prediction outcomes to individual features using 
Shapley values, offering global and local 
interpretability. SHAP has been successfully 
applied in healthcare, finance, and natural 
language processing, but its adoption in remote 
sensing and geospatial applications is still 
emerging. 
A recent application by Molnar et al. (2021) 
showcased the use of SHAP in agriculture, where 
it was used to interpret crop yield prediction 
models. Similarly, Gupta et al. (2022) applied 
SHAP to a random forest model for forest cover 
classification, highlighting the importance of 
specific bands like NIR and red-edge in tree 
canopy identification. However, SHAP has rarely 
been integrated with deep CNN models in the 
context of LULC classification using satellite 
imagery. This research gap highlights the need for 
a framework that marries the predictive power of 
CNNs with SHAP’s interpretability in remote 
sensing. 
Gap Analysis and Contribution 
From the above review, it is evident that while 
deep learning models have significantly advanced 
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the accuracy of LULC classification, 
interpretability remains a critical challenge. 
Current explainability methods like Grad-CAM 
and LIME either lack granularity or model-
agnosticism. Moreover, SHAP's application in 
geospatial deep learning remains limited, with 
most existing work focusing on simpler models. 
This research aims to fill that gap by proposing a 
CNN-SHAP integrated framework for 
interpretable land use and cover classification. It 
introduces a scalable, explainable solution that 
can guide decision-makers by showing how and 
why specific land classes are predicted, based on 
contributions from different spectral bands and 
spatial features. 
 
Methodology 
1. Data Collection: Users export WhatsApp 
group chats in `.txt` format from their mobile 
devices or WhatsApp desktop app. 
2. Data Preprocessing: 
   - Parse the text file to extract sender, 
timestamp, and message content 
   - Remove system messages, media 
placeholders, and links 
   - Normalize emojis and slang terms 
3. Text Analysis: 
   - Tokenization 

   - Stopword Removal 
   - Lemmatization 
   - Sentiment Analysis using VADER 
4. User Metrics: 
   - Total messages per user 
   - Media shared per user 
   - Deleted messages per user 
   - Average message length 
   - Active hours and days 
5. Visualization: 
   - Word Clouds 
   - Bar Graphs 
   - Pie Charts 
   - Line Graphs 
 
 
Results and Analysis 
Key Results: 
- Most Active User: User A (2,145 messages), 
followed by User B (1,898 messages) 
- Media Sharing Trends: User C shared the most 
media 
- Sentiment Distribution: Positive (47%), Neutral 
(39%), Negative (14%) 
- Frequent Words: Celebrations, birthdays, 
assignments, jokes 
 

Sample visuals: 
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Conclusion 
This project successfully demonstrates the 
effectiveness of NLP in analyzing private group 
messages from WhatsApp. The tool extracts and 
processes key features, enabling a clear 
understanding of group behavior. Such a system 
could be extended into corporate chat monitoring, 
academic studies on group psychology, or 

moderation systems. The system maintains 
privacy while providing actionable insights. 
Future Scope 
- Real-time chat streaming and analysis 
- Deep learning-based sentiment models like 
BERT 
- Multilingual NLP and translation 
- Spam detection 
- Mood mapping 
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