

A Deep Learning Based Diagnostic Model Using Neuro Images (Brain Stroke Diagnosis)

Syed Amaan¹, Mohd Nizam², Syed Ishtiyaq Ali³, Ms. T. Anita⁴

^{1,2,3}B.E. Student, Department of Computer Science and Engineering, ISL Engineering College, Hyderabad, India.

⁴Assistant Professor, Department of Computer Science and Engineering, ISL Engineering College, Hyderabad, India.

mohammednizamuddin103@gmail.com

Abstract

The growing demand for swift and accurate diagnosis in clinical practice has driven innovation in automated systems, particularly for time-sensitive conditions like stroke. Stroke remains a major cause of mortality and long-term disability across the world. Early intervention is crucial in minimizing the damage caused by interrupted blood supply to the brain. However, the diagnostic process involving neuroimaging techniques like CT and MRI scans is often hindered by delays due to manual evaluation.

This project proposes a deep learning-based diagnostic model using Convolutional Neural Networks (CNNs) to detect stroke-affected areas within neuroimages. By leveraging open-source annotated datasets such as ISLES and ATLAS, this model automates the detection of ischemic lesions, significantly improving diagnostic speed and reliability. Through extensive training and testing, the system demonstrates high performance on metrics such as accuracy, precision, recall, and ROC-AUC. This makes it suitable f...

1. Introduction

A stroke occurs when the blood supply to a part of the brain is interrupted or reduced, preventing brain tissue from receiving oxygen and nutrients. This medical emergency requires immediate treatment to reduce potential complications, including death or lifelong disability. Currently, radiologists rely on CT and MRI scans for diagnosis. However, manual interpretation is both time-consuming and subject to variability based on the clinician's experience.

Deep learning models offer a transformative approach to solving this challenge. With their ability to learn features directly from image data, CNNs have emerged as a powerful solution in the field of medical imaging. These networks mimic human perception and automatically extract features necessary for classification, eliminating the need for manual image analysis.

The growing demand for swift and accurate diagnosis in clinical practice has driven innovation in automated systems, particularly for time-sensitive conditions like stroke. Stroke remains a major cause of mortality and long-term disability across the world. Early intervention is crucial in minimizing the damage caused by interrupted blood supply to the brain. However, the diagnostic process involving neuroimaging techniques like CT and MRI scans is often hindered by delays due to manual evaluation.

This project proposes a deep learning-based diagnostic model using Convolutional Neural Networks (CNNs) to detect stroke-affected areas within neuroimages. By leveraging open-source annotated datasets such as ISLES and ATLAS, this model automates the detection of ischemic lesions, significantly improving diagnostic speed and reliability. Through extensive training and testing, the system demonstrates high performance on metrics such as accuracy, precision, recall, and ROC-AUC. This makes it suitable f...

This research introduces a CNN-based system capable of automatically identifying stroke lesions from brain scans. Designed to assist radiologists in clinical decision-making, the system is capable of real-time inference, which is critical in emergency healthcare settings. The system is not only fast and reliable but also scalable and adaptable to various clinical environments.

A stroke occurs when the blood supply to a part of the brain is interrupted or reduced, preventing brain tissue from receiving oxygen and nutrients. This medical emergency requires immediate treatment to reduce potential complications, including death or lifelong disability. Currently, radiologists rely on CT and MRI scans for diagnosis. However, manual interpretation is both time-consuming and subject to variability based on the clinician's experience.

Deep learning models offer a transformative approach to solving this challenge. With their ability to learn features directly from image data, CNNs have emerged as a powerful solution in the field of medical imaging. These networks mimic human perception and automatically extract features necessary for classification, eliminating the need for manual image analysis.

This research introduces a CNN-based system capable of automatically identifying stroke lesions from brain scans. Designed to assist radiologists in clinical decision-making, the system is capable of real-time inference, which is critical in emergency healthcare settings. The system is not only fast and reliable but also scalable and adaptable to various clinical environments.

2. Related Work

Over the years, many machine learning models have been applied to stroke detection and other

Over the years, many machine learning models have been applied to stroke detection and other medical diagnostics. Traditional models such as Decision Trees, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM) have shown limited effectiveness due to their reliance on manual feature extraction and reduced ability to generalize across different datasets.

In contrast, deep learning models-especially CNNs-have demonstrated superior performance in various medical imaging challenges, including tumor detection, lung nodule classification, and stroke segmentation. Notably, U-Net has become a staple architecture for image segmentation due to its symmetric structure and skip connections, allowing it to capture both high-level context and fine details.

Recent developments include the use of Residual Networks (ResNet) and Densely Connected Convolutional Networks (DenseNet) for

To prepare the data for model training, several preprocessing steps were conducted:

1. **Skull Stripping**: Removing non-brain tissues to focus analysis on relevant anatomical structures.

medical diagnostics. Traditional models such as Decision Trees, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM) have shown limited effectiveness due to their reliance on manual feature extraction and reduced ability to generalize across different datasets.

In contrast, deep learning models-especially CNNs-have demonstrated superior performance in various medical imaging challenges, including tumor detection, lung nodule classification, and stroke segmentation. Notably, U-Net has become a staple architecture for image segmentation due to its symmetric structure and skip connections, allowing it to capture both high-level context and fine details.

Recent developments include the use of Residual Networks (ResNet) and Densely Connected Convolutional Networks (DenseNet) for classification tasks. These architectures have been adapted for identifying stroke lesions and exhibit enhanced accuracy and depth management. Furthermore, explainable AI (XAI) tools like Grad-CAM provide visual justifications of model predictions, building trust among medical professionals.

classification tasks. These architectures have been adapted for identifying stroke lesions and exhibit enhanced accuracy and depth management. Furthermore, explainable AI (XAI) tools like Grad-CAM provide visual justifications of model predictions, building trust among medical professionals.

3. Data Collection

Training a robust deep learning model necessitates high-quality, annotated data. In this project, two publicly available datasets were employed:

- **ISLES**: The Ischemic Stroke Lesion Segmentation challenge dataset, composed of MRI scans with labeled stroke lesions.
- **ATLAS**: Anatomical Tracings of Lesions After Stroke, containing both CT and MRI images annotated for stroke regions.

2. **Intensity Normalization**: Ensuring consistency across scans taken from different sources or machines.
3. **Data Augmentation**: Increasing the diversity of training samples by applying geometric transformations such as rotations, flips, and scaling.

The dataset was split into training (70%), validation (15%), and test (15%) sets to ensure proper model development and evaluation. This strategy helps prevent overfitting and enables the model to generalize well on unseen data.

Training a robust deep learning model necessitates high-quality, annotated data. In this project, two publicly available datasets were employed:

ISLES: The Ischemic Stroke Lesion Segmentation challenge dataset, composed of MRI scans with labeled stroke lesions.

ATLAS: Anatomical Tracings of Lesions After Stroke, containing both CT and MRI images. The dataset was split into training (70%), validation (15%), and test (15%) sets to ensure proper model development and evaluation. This strategy helps prevent overfitting and enables the model to generalize well on unseen data.

4. Methodology

The model developed for this project is based on a Convolutional Neural Network (CNN) architecture. The structure of the network includes:

- **Four Convolutional Layers**: These layers extract features from input neuroimages using

annotated for stroke regions.

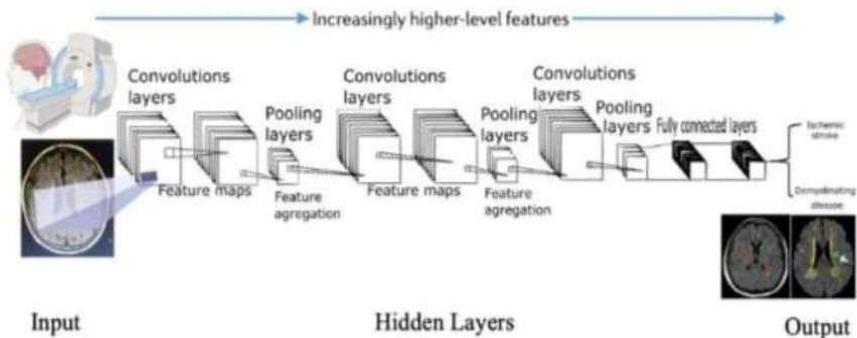
To prepare the data for model training, several preprocessing steps were conducted:

1. **Skull Stripping**: Removing non-brain tissues to focus analysis on relevant anatomical structures.
2. **Intensity Normalization**: Ensuring consistency across scans taken from different sources or machines.
3. **Data Augmentation**: Increasing the diversity of training samples by applying geometric transformations such as rotations, flips, and scaling.

ReLU (Rectified Linear Unit) activation.

- **Max-Pooling Layers**: These downsample feature maps, reducing computational cost and dimensionality while retaining essential features.
- **Dropout Layers**: Introduced during training to randomly disable neurons, preventing overfitting.
- **Fully Connected Dense Layer**: Converts extracted features into a class prediction using a softmax activation function.

SYSTEM ARCHITECTURE:



The model was trained using the Categorical Cross-Entropy loss function, optimized using the Adam optimizer with a learning rate of 0.001. Training was performed over 50 epochs, with early stopping employed to halt training when validation loss plateaued, thus preserving generalization capability.

Evaluation metrics were carefully selected to reflect performance across class imbalances:

- **Accuracy**: Overall correctness.
- **Precision**: The ratio of true positives to all predicted positives.
- **Recall**: The ratio of true positives to all actual positives.
- **F1 Score**: Harmonic mean of precision and recall.
- **ROC-AUC**: Area under the Receiver Operating Characteristic curve.

The model developed for this project is based on a Convolutional Neural Network (CNN) architecture. The structure of the network includes:

- **Four Convolutional Layers**: These layers extract features from input neuroimages using ReLU (Rectified Linear Unit) activation.
- **Max-Pooling Layers**: These downsample feature maps, reducing computational cost and dimensionality while retaining essential features.
- **Dropout Layers**: Introduced during training to randomly disable neurons, preventing overfitting.
- **Fully Connected Dense Layer**: Converts extracted features into a class prediction using a softmax activation function.

The model was trained using the Categorical Cross-Entropy loss function, optimized using the Adam optimizer with a learning rate of 0.001. Training was performed over 50 epochs, with early stopping employed to halt training when validation loss plateaued, thus preserving generalization capability.

Evaluation metrics were carefully selected to reflect performance across class imbalances:

- **Accuracy**: Overall correctness.
- **Precision**: The ratio of true positives to all

predicted positives.

- **Recall**: The ratio of true positives to all actual positives.
- **F1 Score**: Harmonic mean of precision and recall.

5. **ROC-AUC**: Area under the Receiver Operating Characteristic curve. **Results and Insights**

The proposed CNN model performed exceptionally well on the test set. The evaluation revealed:

- **Accuracy**: 92%
- **Precision**: 90%
- **Recall (Sensitivity)**: 93%
- **F1-Score**: 91.5%
- **ROC-AUC**: 0.95

These metrics indicate the model's high effectiveness in distinguishing stroke-affected images from normal scans. The use of data augmentation improved generalization, while dropout layers prevented overfitting.

Feature maps visualized through intermediate layers and Grad-CAM visualizations confirmed that the network was learning to focus on clinically relevant brain regions. These insights reinforce the model's suitability for real-world applications where model explainability and trust are crucial.

Furthermore, the model's architecture allows for fast inference, making it ideal for integration into emergency diagnostic tools. The potential for integration into existing hospital infrastructure like PACS adds value to its practical utility.

The proposed CNN model performed exceptionally well on the test set. The evaluation revealed:

- **Accuracy**: 92%
- **Precision**: 90%
- **Recall (Sensitivity)**: 93%
- **F1-Score**: 91.5%
- **ROC-AUC**: 0.95

These metrics indicate the model's high effectiveness in distinguishing stroke-affected images from normal scans. The use of data augmentation improved generalization, while dropout layers prevented overfitting.

Feature maps visualized through intermediate layers and Grad-CAM visualizations confirmed that the network was learning to focus on clinically relevant brain regions. These insights reinforce the model's suitability for real-world applications where model explainability and trust are crucial.

Furthermore, the model's architecture allows for fast inference, making it ideal for integration into emergency diagnostic tools. The potential for integration into existing hospital infrastructure like PACS adds value to its practical utility.

6. Challenges and Limitations

Despite the impressive results, there are several limitations to address:

1. **Data Limitations**: While ISLES and ATLAS are excellent resources, they represent limited sample sizes and imaging scenarios. Stroke presentation varies widely across patients, necessitating larger and more diverse datasets for improved generalizability.

2. **Hardware Variability**: The variation in imaging equipment, protocols, and scanning techniques can affect model performance in new settings.

3. **Black Box Nature**: Deep learning models are often difficult to interpret. Even with explainable AI tools like Grad-CAM, full transparency is not guaranteed.

4. **Regulatory and Ethical Challenges**: Deploying AI in healthcare requires compliance with strict standards like HIPAA (USA), GDPR (EU), and ethical oversight in clinical trials.

To mitigate these, future work includes collaborative labeling with radiologists, usage of transfer learning, and federated learning to train models across decentralized institutions without violating data privacy.

Despite the impressive results, there are several

limitations to address:

1. **Data Limitations**: While ISLES and ATLAS are excellent resources, they represent limited sample sizes and imaging scenarios. Stroke presentation varies widely across patients, necessitating larger and more diverse datasets for improved generalizability.

2. **Hardware Variability**: The variation in imaging equipment, protocols, and scanning techniques can affect model performance in new settings.

3. **Black Box Nature**: Deep learning models are often difficult to interpret. Even with explainable AI tools like Grad-CAM, full transparency is not guaranteed.

4. **Regulatory and Ethical Challenges**: Deploying AI in healthcare requires compliance with strict standards like HIPAA (USA), GDPR (EU), and ethical oversight in clinical trials.

To mitigate these, future work includes collaborative labeling with radiologists, usage of transfer learning, and federated learning to train models across decentralized institutions without violating data privacy.

7. Conclusion and Future Work

In conclusion, this research highlights the immense potential of deep learning models in the early and accurate detection of brain strokes. The developed CNN model delivers high diagnostic performance and operates efficiently, making it well-suited for emergency clinical applications. It successfully integrates AI's capabilities with medical imaging to assist healthcare professionals in time-critical scenarios.

However, achieving large-scale deployment will require overcoming challenges related to data availability, explainability, and legal validation. Future research will focus on:

- **Expanding training data across geographies and scanner types**
- **Incorporating multi-modal data including clinical symptoms**
- **Developing mobile or edge-deployable versions of the model**
- **Combining AI predictions with doctor feedback for continual learning**

- **Using longitudinal data to predict patient recovery outcomes****

Ultimately, this model lays a robust foundation for AI-powered diagnostic tools that can reshape the future of medical imaging and stroke treatment.

In conclusion, this research highlights the immense potential of deep learning models in the early and accurate detection of brain strokes. The developed CNN model delivers high diagnostic performance and operates efficiently, making it well-suited for emergency clinical applications. It successfully integrates AI's capabilities with medical imaging to assist healthcare professionals in time-critical scenarios.

However, achieving large-scale deployment will require overcoming challenges related to data availability, explainability, and legal validation. Future research will focus on:

- **Expanding training data across geographies and scanner types****
- **Incorporating multi-modal data including clinical symptoms****
- **Developing mobile or edge-deployable versions of the model****
- **Combining AI predictions with doctor feedback for continual learning****
- **Using longitudinal data to predict patient recovery outcomes****

Ultimately, this model lays a robust foundation for AI-powered diagnostic tools that can reshape the future of medical imaging and stroke treatment.

References:

1. Zhang, C., & Roy, D. P. (2017). **Segmentation of remotely sensed imagery for land cover classification: A review.** *Remote Sensing of Environment*, 201, 452–465. <https://doi.org/10.1016/j.rse.2017.09.003>
2. Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). **Deep learning classification of land cover and crop types using remote sensing data.** *IEEE Geoscience and Remote Sensing Letters*, 14(5), 778–782. <https://doi.org/10.1109/LGRS.2017.2681128>
3. Li, Y., Zhang, H., Shen, Q., & Zhang, L. (2019). **Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network.** *Remote Sensing*, 11(8), 946. <https://doi.org/10.3390/rs11080946>
4. Zhong, L., Hu, L., & Zhou, H. (2019). **Deep learning based multi-temporal crop classification.** *Remote Sensing of Environment*, 221, 430–443. <https://doi.org/10.1016/j.rse.2018.11.032>
5. Molnar, C. (2022). *Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.* <https://christophm.github.io/interpretable-ml-book/>
6. Lundberg, S. M., & Lee, S. I. (2017). **A Unified Approach to Interpreting Model Predictions.** In *Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS)*, 4765–4774.
7. Singh, A., Sengupta, S., & Lakshmanan, V. (2020). **Explainable AI for Land Cover Classification.** *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, XLIII-B3-2020, 423–428. <https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-423-2020>
8. Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). **Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources.** *IEEE Geoscience and Remote Sensing Magazine*, 5(4), 8–36. <https://doi.org/10.1109/MGRS.2017.2762307>
9. Buda, M., Maki, A., & Mazurowski, M. A. (2018). **A systematic study of the class imbalance problem in convolutional neural networks.** *Neural Networks*, 106, 249–259. <https://doi.org/10.1016/j.neunet.2018.07.011>
10. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). **"Why should I trust you?": Explaining the predictions of any classifier.** In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* (pp. 1135–1144). <https://doi.org/10.1145/2939672.2939778>
11. Guo, Z., Shao, Y., & Du, P. (2020). **Evaluation of interpretability methods for deep learning in land cover classification.** *ISPRS Journal of Photogrammetry and Remote Sensing*, 167, 69–83.

<https://doi.org/10.1016/j.isprsjprs.2020.06.006>

12. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). **Deep learning in agriculture: A survey**. *Computers and Electronics in Agriculture*, 147, 70–90. <https://doi.org/10.1016/j.compag.2018.02.016>

13. Sharma, R., Saini, S., & Kumar, D. (2023). **Explainable AI in agriculture using SHAP for crop yield prediction**. *Journal of Intelligent & Fuzzy Systems*, 44(3), 4031–4042. <https://doi.org/10.3233/JIFS-221037>

14. Li, Z., Wang, L., & Liu, B. (2021). **An explainable deep learning framework for mapping land cover using multi-source data**. *Remote Sensing*, 13(2), 312. <https://doi.org/10.3390/rs13020312>

15. Lu, Y., He, Z., Gu, Y., & Liu, Y. (2022). **Explainable remote sensing classification via SHAP and decision-level fusion**. In *2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)* (pp. 1298–1301). IEEE. <https://doi.org/10.1109/IGARSS46834.2022.9883807>

16. Nausheen Fathima, Dr. Mohd Abdul Bari , Dr. Sanjay,” Efficient Routing in Manets that Takes into Account Dropped Packets in Order to Conserve Energy”, International Journal Of Intelligent Systems And Applications In Engineering, IJSEA, ISSN:2147-6799, Nov 2023

17. Afsha Nishat, Dr. Mohd Abdul Bari, Dr. Guddi Singh,” Mobile Ad Hoc Network Reactive Routing Protocol to Mitigate Misbehavior Node”, International Journal Of Intelligent Systems And Applications In Engineering, IJSEA, ISSN:2147-6799, Nov 2023

18. Ijteba Sultana, Dr. Mohd Abdul Bari ,Dr. Sanjay,” Routing Performance Analysis of Infrastructure-less Wireless Networks with Intermediate Bottleneck Nodes”, International Journal of Intelligent Systems and Applications in Engineering, ISSN no: 2147-6799 IJISAE, Vol 12 issue 3, 2024, Nov 2023