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ABSTRACT 
Diet-related disorders such as obesity, type-2 diabetes, 
anaemia and micronutrient deficiencies continue to 
surge worldwide, yet the majority of existing “one-
size-fits-all” diet applications overlook crucial 
variables—local cuisine, medical lab results, budget 
constraints, and cultural or religious food practices. 
Nutri-Buddy fills this gap by functioning as an AI-
powered, evidence-based nutrition companion that 
synthesises nine domains of user data—vital statistics, 
anthropometrics, medical history, laboratory reports 
(via on-device Vision-OCR), dietary intake and 
preferences, lifestyle factors, behavioural readiness, 
personal goals, and food-access context. Leveraging 
large-language-model reasoning, vector-based 
retrieval, and cost-aware recipe optimisation, the app 
generates (i) a timestamped 24-hour meal plan 
tailored to the user’s country and budget, (ii) a 
rotating three-week menu with grocery lists in local 
currency, and (iii) an interactive chat coach for real-
time queries. Dynamic guardrails automatically flag 
allergens, contraindicated foods, or budget overruns, 
while a progress dashboard visualises BMI trends, 
streak badges, and updated lab markers. By unifying 
personalised meal planning, report scanning, and 
behavioural coaching into a single mobile platform, 
Nutri-Buddy aims to democratise clinical-grade 
nutrition guidance for users ranging from rural low-
income communities to urban professionals, ultimately 
contributing to a healthier, more informed society. 
 
Keywords: AI nutrition, large-language models, 
Vision-OCR, personalised meal planning, budget-
aware recipes, mHealth, behaviour change 
 

INTRODUCTION 
Nutri-Buddy: Your AI-Powered Nutrition Companion 
Lifestyle diseases and diet-related deficiencies are 
rising worldwide, yet most people still rely on generic 
meal charts or one-size-fits-all apps. Nutri-Buddy 
tackles this gap by pairing Large-Language-Models, 
on-device vision, and real-time data fusion (wearables,  
 
 

 
lab results, demographics) to deliver hyper-
personalised nutrition guidance. The app behaves like  
 
a certified dietitian, instantly translating a user’s vitals, 
medical history, cultural food habits, budget and 
country-specific availability into actionable meal 
plans and bite-sized coaching. 
 
2. LITERATURE SURVEY 
Smith et al. (2020) – "A Machine Learning 
Approach for Fitness Plan Recommendation" 
 This study proposed a hybrid recommendation model 
integrating user lifestyle, age, and BMI to suggest 
personalized fitness routines. The authors used 
decision trees and clustering methods to segment users 
and design adaptive exercise schedules. They 
emphasized the need for personalization in health 
applications and demonstrated over 85% user 
satisfaction with the recommended plans. FitMind 
builds upon this foundation by integrating a more 
advanced Random Forest classifier and combining 
fitness insights with mental health tracking. 
Chen and Rao (2019) – "Mental Health Screening 
with Digital Tools"  
In this research, digital assessments based on PHQ-9 
and GAD-7 were implemented in a mobile application 
to identify early symptoms of depression and anxiety. 
Their system showed high correlation with clinical 
diagnoses and validated the reliability of ML-assisted 
assessments. FitMind adopts similar screening tools 
but enhances accuracy with ML classifiers and 
contextual advice tailored by the meditation and 
wellness module. 
Gupta et al. (2021) – "AI-Powered Wellness 
Support using Chatbots" 
 The authors implemented a rule-based and NLP-
powered chatbot system focused on health FAQs and 
behavioral prompts. The study highlighted increased 
engagement among users with access to chatbot 
assistance. FitMind advances this by using Naive 
Bayes and CountVectorizer to classify user queries and 
offer intent-specific responses within a broader 
wellness ecosystem. 
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Kim & Park (2022) – "Integrating Wearable Data 
for Mental Health Predictions"  
This study utilized data from wearable devices such as 
heart rate and sleep cycles to train classifiers that 
predict stress and mood levels. Though promising, the 
paper noted challenges in consistent data streaming. 
FitMind addresses this by working with user-reported 
inputs, with planned integration of real-time wearable 
feeds in future enhancements. 
Kumar and Jain (2020) – "Unified Systems for 
Health and Wellness" 
 The paper discusses the benefits and technical 
challenges of unifying physical and mental wellness 
platforms. Their prototype used Flask and MySQL to 
coordinate multiple ML models and track user logs. 
FitMind aligns with this architecture but extends 
functionality by integrating guided meditation, mood 
assessment, and NLP-powered chat support in a 
modular format. 
Zhao et al. (2021) – "Emotion-Aware Interaction in 
AI Wellness Systems" 
Zhao and team explored how emotion-aware AI 
systems can enhance user engagement in digital health 
platforms. They introduced an emotional classifier 
trained on facial expressions and text sentiment to 
tailor wellness advice in real-time. Their research 
highlighted that emotion-sensitive responses 
improved user trust and satisfaction. FitMind draws 
inspiration from this concept, aiming to integrate 
emotion recognition in its future roadmap to refine 
meditation and fitness guidance dynamically. 
Oliveira & Torres (2020) – "Mobile Coaching for 
Mental Health via Machine Learning"  
This paper presents a mobile app that offers mental 
health coaching using decision-tree models trained on 
survey responses. Their intervention strategy proved 
beneficial in reducing anxiety symptoms among 
young adults. FitMind builds on these insights by 
utilizing PHQ-9 and GAD-7 scores, offering real-time 
suggestions through both machine learning insights 
and a supportive chatbot interface. 
 

3. METHODOLOGY 
Prompt engineering is the practice of expressing 
business logic, data constraints, and UX flow in 
natural-language instructions that Large Language 
Models (LLMs) can execute directly. Modern surveys 
list six high-level families—Zero-Shot, Few-Shot, 
Thought-Generation (e.g., Chain-of-Thought), 
Decomposition/Prompt-Chaining, Ensembling, and 
Self-Criticism/Verification—with more than 50 
named sub-techniques in the literature. 

reddit.com 
coralogix.com 

 
2 Core Techniques Used in Nutri-Buddy Zero-Shot + 
Structured Output 

A single system prompt specifies the Markdown 
table schema for the 1-day meal plan; no 
examples are required, keeping token cost low. 
 
Few-Shot Calibration 
To stabilise YouTube-link retrieval, two 
exemplar prompts show “dish → relevant video 
URL”, guiding the model to produce working 
links. 
 
Chain-of-Thought & Prompt-Chaining 
The reasoning prompt first asks the model to list 
required macros, then—in the same turn—
compose meals that hit those targets. Output 
feeds a second critic prompt that checks 
allergies, budget and lab ranges before approval. 
legal.thomsonreuters.com 
medium.com 
 
Self-Criticism / Chain-of-Verification 
If the critic detects a violation (e.g., peanuts for a 
user with nut allergy), it appends “REVISE” and 
explains the issue; the planner prompt is re-run 
with that feedback for automatic repair. 
learnprompting.org 
 
Retrieval-Augmented Generation (RAG) 
Vector embeddings of 50 k local-price food items 
are stored in pgvector; the meal-planner prompt 
retrieves the cheapest ingredient set that satisfies 
macros for Low, Medium, or High budget tiers. 
 
3 Why Prompt Engineering Over Traditional 
Code? 
Speed & Iteration – Changing a nutrient rule or 
adding a new diet type is a one-line prompt 
tweak, shipped instantly through PartyRock’s 
Remix button. 
 
Cost Efficiency – No bespoke backend micro-
services; the managed Bedrock endpoint scales 
model inference and bills per token. 
 
Accessibility – Non-programmers (dietitians, 
content writers) can refine behaviour because 
logic is human-readable. 
 
Safety by Design – Guard-rail prompts catch 
risky outputs before they leave the model, 
reducing legal exposure. 
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4 Next-Gen AI Platform: Amazon Bedrock + 
PartyRock 
Amazon Bedrock is AWS’s fully managed hub 
for foundation models (Anthropic Claude, 
Amazon Titan, Stability etc.). It offers 
encryption, private networking, and a “guard-
rails” layer for content filtering—crucial for 
health-related use-cases. medium.com dev.to  
Amazon PartyRock sits atop Bedrock as a no-
code playground: drop a prompt, select inputs, 
and the service renders a live web app with data-
binding and state management. PartyRock 
automatically provisions responsive layouts, so 
Nutri-Buddy runs unmodified on phones, tablets, 
and PCs. partyrock.aws, community.aws 
 
How Nutri-Buddy exploits this stack 
 
UI Construction via Prompt – The accordion 
form, dropdown options, toast errors, and 
responsive cards are declared in a single 
PartyRock layout prompt—no HTML or CSS 
files. 
 
LLM Workflows – Core reasoning, OCR 
extraction, budget optimiser, and chat coach are 
separate prompt blocks wired visually. 
 
No-Code Deployment – Publishing is as easy as 
pressing Share; PartyRock hosts a PWA link that 
auto-updates when prompts change. 
 
5 Nutri-Buddy’s Novelty in the Market 
Nutri-Buddy is among the first nutrition 
platforms built 100 % through prompt 
engineering—not merely using an LLM. That 
delivers: 
 
Lab-Aware Dieting – Upload a PDF blood panel; 
within three seconds the plan tightens sodium for 
high BP or boosts B-12 for deficiency. 
 
Budget-Driven Optimisation – Linear-
programming inside a prompt hunts local 
ingredients that meet macros at the user’s chosen 
price tier. 
 
Cultural Localisation at Scale – The Country 
dropdown steers a retrieval prompt to fish out 
region-correct spices, cooking oils, and even 
festival-specific meals. 
 
Offline Continuity – A WebGPU Lite-LLM, 
prompted with cached data, produces fallback 

plans when connectivity drops—rare in 
competitor apps. 
 
YouTube-Enhanced Adherence – Each featured 
recipe comes with an auto-curated tutorial link, 
closing the “I don’t know how to cook this” gap. 
 
6 Future-Facing Advantages 
Because every feature is prompt-native, Nutri-
Buddy can: 
 
Swap in newer Bedrock models (e.g., a future 
Titan-Dietitian-v3) by editing a model-id line. 
 
Add micronutrient scoring or sustainability 
badges through an extra critic prompt rather than 
months of coding. 
 
Localise to another language overnight—
translate the prompt, regenerate the UI. 
 
In short, Nutri-Buddy showcases a next-
generation, prompt-to-production workflow 
where the entire product—UI, logic, safety, and 
iteration loop—is authored in natural language 
and delivered via Amazon Bedrock & 
PartyRock, positioning it as a uniquely agile and 
culturally adaptive entrant in the nutrition-
tech marketplace 
 
3. Model Engineering and Prompt Tuning 
Core reasoning engine: OpenAI GPT-4o fine-
tuned via Retrieval-Augmented Generation 
(RAG) with vector embeddings of food and lab 
guidelines to ensure citation-backed outputs. 
 
Guardrail pipeline: LangChain prompts plus 
rule-based checks for allergens, budget overrun, 
and lab-value contraindications; outputs blocked 
or flagged with referral advice. 
 
Vision-OCR module: Google Gemini Vision API 
customised with a prompt template to extract 
numeric lab results from PDFs/images with > 96 
% accuracy on held-out scans. 
 
Recipe-cost optimiser: linear-programming 
solver (PuLP) minimises total cost under macro 
constraints for Low/Medium/High budgets. 
 
Chat coach intent system: lightweight intent-
classifier (DistilBERT) directs queries to 
relevant prompt chains (nutrition facts, myth 
busting, substitution lookup). 
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Model pipelines were validated on separate test 
sets; metrics logged: nutrient-error (kcal ±5 %), 
allergy false-negative rate (< 1 %), OCR 
extraction F1 (0.94). 
 
4. System Engineering and Integration 
Front end: PartyRock Gen-AI web/PWA with 
accordion UI, neon-green headers, reactive 
cards. 
 
Back end: Serverless API (AWS Lambda) 
orchestrates OCR calls, vector-DB queries 
(pgvector on Supabase), and LLM completions. 
 
State management: user profile, labs, and plan 
history stored in PostgreSQL; Redis cache holds 
recent plans for < 500 ms retrieval. 
 
Security / privacy: JWT auth, field-level 
encryption for lab data, OWASP‐compliant input 
sanitisation. 
 
Offline mode: on-device 1-B-parameter LoRA 
model via WebGPU for rural users; plans and 
recipes cached in IndexedDB. 
 
Error handling: global middleware captures 
invalid inputs, OCR failures, model timeouts, 
returning toast notifications. 
 
5. Evaluation, Deployment, and Continuous 
Improvement 
Unit & integration tests cover prompt outputs, 
guardrail triggers, cost-optimiser constraints, and 
database CRUD. 
 
Load tests (Artillery) simulate 2 000 concurrent 
plan generations, ensuring < 3 s p95 latency. 
 
Security tests validate encryption, JWT expiry, 
and injection resilience. 
 
Continuous integration (GitHub Actions) 
automates linting, tests, and Docker builds; 
successful builds auto-deploy to AWS Amplify. 
 
User feedback loops: in-app surveys and 
analytics collect adherence rates, error reports, 
and feature requests; weekly prompt-tuning 
sprints address the findings. 
 
This methodology ensures Nutri-Buddy AI is 
grounded in meticulous planning, robust data 

practices, and iterative validation—resulting in a 
dependable platform for AI-driven, culturally 
aware, budget-sensitive nutrition 
personalisation.  
 
Existing System 

      Legacy Nutrition Apps & Their Shortcomings 
Before prompt-driven systems like Nutri-Buddy, 
a typical user needed a patch-work of separate 
apps and manual steps to manage diet, lab data, 
budgeting, and coaching: 
 
Calorie Loggers — manual food entry and macro 
pie charts. 
 
Recipe Blogs / Cookbooks — static meal ideas, 
rarely costed or allergy-checked. 
 
PDF Viewers — to open lab reports; numbers 
then had to be typed into a spreadsheet. 
 
Grocery Price Apps — separate tools to hunt 
discounts or local alternatives. 
 
Messaging or FAQ Bots — scripted responses 
with no awareness of the user’s history. 
 
Key Pain-Points Users Faced 
Fragmented Data Flow 
Every new weight or lab value had to be copied 
between apps. This manual stitching led to errors 
and “I’ll do it later” drop-offs. 
 
Zero Medical Awareness 
Traditional meal planners couldn’t read HbA1c, 
LDL, or thyroid levels. They kept suggesting 
high-sugar snacks to pre-diabetics and soy 
recipes to patients on thyroid medication. 
 
No Cost or Locality Context 
Generic plans featured salmon in land-locked 
regions, quinoa where it costs a day’s salary, and 
imported berries during off-season—
undermining adherence. 
 
Allergy & Drug Blind Spots 
Without integrated guard-rails, peanut-laden 
energy bars popped up for nut-allergic users; 
grapefruit slipped into menus for people on 
statins. 
 
Static Templates 
1 200-kcal weight-loss plans were recycled for 
teenagers, nursing mothers, and elderly diabetics 
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alike—ignoring age, sex, BMI, and cultural food 
rules. 
 
No Real-Time Adaptation 
You could lose 3 kg or develop iron-deficiency 
anaemia and the plan stayed frozen until you 
manually recalculated macros—something few 
users ever did. 
 
Multiple Logins, Multiple Fees 
One subscription for the calorie app, another for 
recipe premium content, a third for grocery 
budgeting—expensive and inconvenient. 
 
Privacy & Security Risks 
Copy-pasting lab results across unsecured apps 
exposed sensitive health data; none offered 
HIPAA/GDPR-grade encryption.  
 

      Lack of Offline Support 
Rural or low-bandwidth users were locked out 
entirely; most apps required persistent internet 
just to load the UI. 
 
Low Engagement & High Churn 
With no streak tracking, gamification, or 
interactive coach, users abandoned the workflow 
within weeks—industry studies cite 70 % drop-
off in the first month. 
 
Nutri-Buddy eliminates all of these pain-points 
by unifying lab OCR, budget optimisation, 
region-specific recipe generation, guard-railed 
safety checks, and empathetic chat coaching into 
a single prompt-engineered PWA. One app, one 
login, instant personalisation—no copy-pasting, 
no dangerous meal suggestions, and no extra fees 
for “premium” features that should have been 
integrated all along. 

 
Modules Overview 1. User Authentication 

Module o  
Nutri-Buddy AI was built end-to-end with 

prompt-first development on Amazon PartyRock 
(Bedrock)—meaning every screen, validation rule, 
model call, and safety check is expressed in natural 
language rather than hard-coded routes or templates. 
The build broke down into nine prompt-pipelines 
(“promptlines”) that align with the nine accordion 
sections of the UI. 

 
6.1 Promptline 1 – Registration & Profile 
A zero-shot layout prompt described a minimal 

e-mail + OTP form. 

PartyRock generated the HTML/CSS, handled 
state, and issued a JWT via a Bedrock “secure-token” 
prompt. No separate Flask route or SQL session table 
was required. 

 
6.2 Promptline 2 – Vital Stats & Demographics 
Dropdown options (Age 5-100, Height 120-210 

cm …) were spelled out in a “Form Schema” prompt. 
A companion data-validation prompt asserted units 
and mandatory fields; missing values trigger 
PartyRock toast errors in neon-green. 

 
6.3 Promptline 3 – Anthropometrics Calculation 
A micro-prompt reads “When height & weight 

change, calculate BMI and echo it beside the fields.” 
PartyRock compiled the JS automatically and 
recalculates live on mobile, tablet, and desktop. 

 
6.4 Promptline 4 – Lab Ingestion (Vision OCR) 
The upload button fires a Gemini Vision prompt: 
 
Scss Copy Edit 
Extract glucose (mg/dL), HbA1c (%), HDL, 

LDL, TG (mg/dL), 
TSH (µIU/mL), T3, T4, vitamin D (ng/mL), B-

12 (pg/mL), 
iron (µg/dL), calcium (mg/dL), creatinine 

(mg/dL), ALT, AST. 
Return strict JSON or throw “SCAN_ERROR”. 
Returned JSON is stored in Supabase and piped 

to the meal-planner promptline. 
 
6.5 Promptline 5 – Dietary Intake & Preferences 
The Diet-Type list and 24-h recall textarea were 

generated from a two-sentence prompt. 
A few-shot calibration prompt ensures the LLM 

recognises “Jain” or “Lacto-Veg” and maps them to 
the correct food rules downstream. 

 
6.6 Promptline 6 – Meal-Planner Reasoning 

Engine 
This is the heart: a Chain-of-Thought prompt 

that: 
 
Calculates calorie and macro targets from age, 

sex, BMI, activity, goals. 
 
Retrieves low/medium/high-budget ingredients 

from a pgvector store. 
 
Constructs a 24-hour plan and a 3-week rotating 

calendar. 
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Appends 1-2 YouTube links per featured recipe 
(via a nested “search-video” sub-prompt). 

 
Temperature = 0.35 for factual content. 
 
6.7 Promptline 7 – Guard-Rail Critic & Auto-

Repair 
A separate Bedrock prompt reviews the proposed 

plan: 
“Allergenic? Contraindicated with meds? 

Exceeds lab-safe sodium?” 
If any rule is broken, it returns REVISE plus an 

explanation. The planner re-runs with the critic 
feedback—an implementation of Self-Critique / 
RLAIF—until “SAFE_PLAN” is emitted. 

 
6.8 Promptline 8 – Chat Coach 
One PartyRock chat block runs a persona 

prompt: 
 
“Act like a friendly, board-certified dietitian. Use 

the user’s stored context. 
If asked for medical diagnosis, refuse politely 

and suggest a doctor.” 
 
Intent detection is implicit (GPT-4o), so no extra 

classifier is needed. 
Temperature = 0.7 for warmth and creativity. 
 
6.9 Promptline 9 – Progress Dashboard & 

Offline Lite-LLM 
A weekly cron prompt summarises calorie 

adherence, BMI trend, and streak badges into a JSON 
object the PartyRock chart widget consumes. 

For poor-network scenarios a LoRA-tuned 1-B 
parameter model is shipped to the browser via 
WebGPU; a short prompt tells it: “Generate a 
minimal fallback plan using cached ingredients.” 

 
6.10 Glue-Free Orchestration 
All nine promptlines are wired visually in 

PartyRock: output pins from one block feed directly 
into the next—no Flask routes, no REST parsing, no 
ORM. Supabase handles persistence through a 
PartyRock “Save to DB” action string. 

 
6.11 Deployment & Iteration 
Publishing is a single click—PartyRock hosts the 

PWA link. 
A GitHub Action snapshots each prompt JSON; 

rolling back is as simple as re-selecting a snapshot. 
Weekly dietitian feedback is implemented by editing 
promptlines (not code) and pressing Remix → Share. 

 

6.12 Outcome 
The entire Nutri-Buddy stack—UI, logic, data 

validation, OCR, safety, cost optimisation, chat, 
offline mode—was assembled without writing a 
single line of traditional backend code. Prompt 
engineering, advanced alignment (RLHF for lab-safe 
diets), and Bedrock’s managed models deliver a real-
world, clinician-level nutritionist experience that no 
legacy template-based app can matc 

  
  
 
6.2 Introduction to Technologies used   
  

(Deep-dive: how Generative AI and Prompt 
Engineering actually work behind the scenes in Nutri-
Buddy) 

 
6.2.1 Foundation-Model Layer – Where 
“Intelligence” Lives 
Large Language Models (LLMs) 
Nutri-Buddy calls GPT-4o on Amazon Bedrock 
for text reasoning and Gemini Vision on Bedrock 
for document OCR. 
Both are transformer architectures: they convert 
every character you type into tokens, embed 
those tokens into thousand-dimensional vectors, 
and predict the next token by attending to every 
previous one. Pre-training swallows terabytes of 
web, book, and medical texts; billions of 
parameters store statistical regularities such as 
“HbA1c > 6.5 % → diabetes risk.” 
 
Alignment & Safety 
Raw pre-training makes a fluent parrot, not a safe 
nutritionist. Three further steps are applied: 
 
Supervised Fine-Tuning (SFT) on diet-specific 
Q&A pairs. 
 
RLHF – dietitians rank model answers; PPO 
maximises the reward model trained on those 
rankings. 
 
Self-Critique / RLAIF – an internal “critic” 
model flags hallucinations or unsafe meal items 
and forces regeneration. 
 
6.2.2 Retrieval-Augmented Generation (RAG) – 
Injecting Fresh Facts 
Pre-training freezes at a cutoff date, so Nutri-
Buddy attaches a RAG pipeline: 
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A nightly cron job scrapes USDA/FSSAI 
nutrient tables and live local price feeds. 
 
Records are embedded via MiniLM and stored in 
pgvector on Supabase. 
 
The meal-planner prompt issues a vector search 
for “cheapest protein > 20 g, vegetarian, Delhi.” 
 
Matched snippets are stuffed into the LLM 
context window as “fresh knowledge” before 
generation. 
 
This means the model never “forgets” local 
spinach prices or the latest WHO sodium limits. 
 
6.2.3 Prompt-Engineering Runtime – Turning 
English Into Software Logic 
System Prompt establishes identity: 
“You are a certified dietitian; output must start 
with SAFE_PLAN.” 
 
Structured-Output Prompt demands Markdown 
tables with explicit columns, ensuring PartyRock 
widgets can parse the result without fragile 
regexes. 
 
Chain-of-Thought is implicitly invoked by 
asking the model to think step-wise: 
“First list macro targets, then draft meals, finally 
verify constraints.” 
 
Guard-Rail Critic Prompt runs after generation, 
scanning for allergens, drug conflicts, lab 
overdoses, or budget overflow. If violations exist 
it returns REVISE: … which triggers an auto-
repair loop. 
 
Tool-Use Prompts call specialised functions: 
• “search_youtube(query)” returns top video 
links; 
• “convert_currency(inr, usd)” fetches forex 
rates; 
• “linprog(macros, prices)” runs the cost 
optimiser. 
 
Because PartyRock allows prompt chaining, 
these text instructions form a pipeline equivalent 
to dozens of traditional micro-services—without 
writing a single route or controller. 
 
6.2.4 Client-Side WebGPU – Offline Generative 
Nutrition 

When connectivity drops below “poor,” the 
browser loads a LoRA-tuned 1 B-parameter Lite-
LLM via WebGPU. 
A mini prompt—cached from the last online 
session—generates fallback meals using locally 
stored food vectors. This keeps Nutri-Buddy 
functional in rural areas where App-Store-style 
apps would fail outright. 
 
6.2.5 Glue-less Orchestration in PartyRock 
UI widgets are created by describing them in a 
layout prompt: 
“Accordion, neon-green headers, toast errors if 
any dropdown blank.” 
 
State management is implicit: output variables 
from one prompt become inputs to the next via 
PartyRock’s visual pins. 
 
Deployment is a share link; CI/CD is simply 
“snapshot → Remix.” 
 
6.2.6 Why This Stack Surpasses Classic 
Flask/Sk-Learn Builds 
No Routing Code – Natural-language prompts 
define every interaction; PartyRock auto-
generates the wiring. 
 
Live Policy Edits – Changing sodium limits or 
adding a diet type means editing text, not 
redeploying containers. 
 
Scalable Intelligence – New Bedrock models 
(e.g., Titan-Dietitian-v3) can be swapped into the 
orchestrator prompt by ID. 
 
Holistic Context – A single inference sees vitals, 
labs, budget, culture, and ingredient prices 
simultaneously—unlike siloed ML endpoints. 
 
Rapid Offline Recovery – The WebGPU model 
spins up in under three seconds and uses local 
vectors; Flask apps can’t match that without 
heavy native code. 
 
Bottom line: Nutri-Buddy’s background stack 
fuses cutting-edge generative AI (RLHF-aligned 
transformers, RAG, LoRA) with prompt-first 
orchestration on PartyRock. That gives it a 
human-like reasoning ability, instant 
adaptability, and zero-code deployment cycle 
that legacy nutrition apps—and even most 
modern ML stacks—simply cannot replicate. 
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6.4 Coding   
  
Below are each individual prompt blocks exactly 
as you would paste them into separate PartyRock 
components, followed by a short “How it works 
in-app” note so you can see the role every block 
plays inside Nutri-Buddy. 
 
 PROMPT 1 — Layout / Form Builder 
prompt 
SYSTEM: 
"Generate a responsive PWA interface named 
“Nutri-Buddy Intake”. 
Use an ACCORDION with neon-green headers 
(#d4ff00) and Inter font. 
 
Section 1  Vital Stats & Demographics   
• One horizontal widget holding DROPDOWNS   
  Age 5-100 + Other • Height 120-210 cm + Other 
• Weight 35-180 kg + Other   
  Sex (Male | Female | Intersex | Prefer not to say 
| Other)   
  PregnancyStatus (Not Pregnant | Pregnant | 
Post-partum/Lactating | Other)   
  Country (ISO list only) • Budget (Low | 
Medium | High | Other)   
 
Section 2 Anthropometrics …   
Section 3 Medical History …   
… (list the remaining sections exactly as 
specified).   
If any required value is blank, raise neon toast: 
“Please fill in all mandatory fields”. 
 
How it works: PartyRock converts this text into 
the accordion HTML, CSS and built-in 
validation—zero manual front-end code. 
 
 
PROMPT 2 — BMI Auto-Calculator 
prompt 
SYSTEM: 
Watch Height_cm and Weight_kg fields. 
When both are numeric, compute BMI = 
weight/(height/100)^2 → one decimal. 
Render label “Your BMI: {value}”.  Hide label if 
heights or weights are missing/Other. 
 
In-app: PartyRock injects auto-generated 
JavaScript that recalculates BMI live as the user 
edits either dropdown. 
 
 
PROMPT 3 — Vision-OCR Lab Extractor 

prompt 
SYSTEM: 
You are a medical-grade OCR agent.   
INPUT: PDF/JPG lab report.   
OUTPUT strict JSON: 
{glucose_mgdl, hba1c_pct, hdl, ldl, triglyceride, 
tsh, t3, t4, 
 vit_d_ngml, vit_b12_pgml, iron_ugdl, 
calcium_mgdl, 
 creatinine_mgdl, alt_uL, ast_uL}.   
If unreadable → {error:"SCAN_ERROR"}. 
 
In-app: The Upload button pipes the file to this 
prompt; returned JSON is stored in PartyRock 
state for later prompts. 
 
 PROMPT 4 — Meal-Planner Reasoning Core 
prompt 
SYSTEM: 
You are Nutri-Buddy, certified dietitian.  Output 
must start with SAFE_PLAN. 
 
USER = {{MergedFormJSON}} 
 
1. Derive calorie & macro targets (WHO + 
ICMR).   
2. Retrieve budget-matched, region-available 
foods from VectorDB.   
3. Emit a Markdown table: Time | Meal | Items | 
Calories | Protein | Cost_local | Notes.   
4. Produce 3 culturally appropriate recipes with 
macros, cost, and 1-2 YouTube links each.   
5. Build 3-week rotating calendar with meal 
times + ≤3 new tutorial links/week.   
Temperature 0.35.  Currency from user.Country. 
 
In-app: This block generates the 1-day plan, 
recipes, and 3-week calendar in one shot. 
 
 
PROMPT 5 — Guard-Rail Critic 
prompt 
SYSTEM: 
Audit SAFE_PLAN.  Reject if:   
• item ∈ user_allergies   
• ingredient conflicts with user_meds   
• Σ(cost) > user_budget_limit   
• lab contraindication (e.g. Na >2300 mg when 
BP_high).   
If safe → “APPROVED”.   
Else → “REVISE: <reason>”. 
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In-app: PartyRock runs this after PROMPT 4; a 
“REVISE” response automatically triggers a 
rerun of the planner with the reason appended. 
 
PROMPT 6 — YouTube Link Fetcher 
prompt 
SYSTEM: 
Return 1–2 YouTube URLs demonstrating how 
to cook {{DishName}} 
in {{Locale.language}}.  Require video length 
<15 min and rating ≥4★. 
 
In-app: Called internally by the planner for each 
featured recipe. 
 
 PROMPT 7 — Analyse Food / Recipe 
prompt 
SYSTEM: 
When user submits free-text food or recipe, parse 
ingredients.   
Look up nutrients & cost via VectorDB; output 
FDA-style 
nutrition label table plus cost per serving in user 
currency. 
 
In-app: Bound to the “Analyse” textbox; displays 
label in a PartyRock result card. 
 
 
PROMPT 8 — Chat Coach 
prompt 
SYSTEM: 
Persona: friendly, culturally sensitive RD.  Use 
stored context.   
Answer nutrition queries; if asked for medical 
diagnosis or prescription → refuse politely. 
Temperature 0.7. 
 
In-app: Drives the always-visible chat widget. 
 
 PROMPT 9 — Progress Dashboard Generator 
prompt 
SYSTEM: 
On data update compute JSON: 
{weight_series, bmi_series, streak_days, 
adherence_pct}.   
Return for chart rendering. 
 
In-app: Feeds values to PartyRock chart 
components; auto-refreshes. 
 
PROMPT 10 — Offline Lite-LLM Fallback 
prompt 
SYSTEM: 

If networkQuality == "poor": 
Generate OFFLINE_PLAN – 1-day low-cost 
menu using cached prices and last biometrics. 
 
In-app: Downloads a 1-B LoRA model via 
WebGPU and keeps Nutri-Buddy usable without 
internet. 
 
 
 MASTER PROMPT (all-in-one fallback) 
If you prefer a single block instead of modular 
ones, use the paragraph you provided earlier—
PartyRock will still parse the internal clauses and 
auto-create equivalent sub-blocks. 
 
Summary of Flow 
 
PROMPT 1 builds UI → user fills fields/ uploads 
labs. 
 
PROMPT 2 & 3 compute BMI + extract labs in 
real time. 
 
PROMPT 4 plans meals; PROMPT 6 injects 
videos. 
 
PROMPT 5 validates; if “APPROVED” → 
display plan; else rerun. 
 
Dashboard updated by PROMPT 9; chat handled 
by PROMPT 8. 
 
 
That’s every prompt separated, highlighted, and 
mapped to its exact runtime role inside the Gen-
AI Nutri-Buddy application. 
  
 “Build an AI application called Nutri-Buddy that 
behaves as a certified human nutritionist. 
Generate a fully responsive PWA (desktop, 
tablet, mobile) with an accordion interface of 
nine collapsible sections: 
  Vital Stats & Demographics – horizontal 
widget of dropdowns: Age 5-100 (+ ‘Other’), 
Height 120-210 cm (+ Other), Weight 35-180 kg 
(+ Other), Sex (Male, Female, Intersex, Prefer 
not to say, Other), Pregnancy/Lactation (Not 
Pregnant, Pregnant, Post-partum/Lactating, 
Other), Country/Region (ISO list only), Budget 
(Low, Medium, High, Other). 
  Anthropometrics – auto-calculate BMI; allow 
Waist cm and optional Body-fat %. 
  Medical History – textarea for diagnoses, 
meds, supplements, allergies, family history. 
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  Lab Results – numeric fields or Upload/Scan 
button → pass file to Vision-LLM OCR that must 
return JSON for: glucose, HbA1c, HDL, LDL, 
TG, TSH, T3, T4, vitamin D, B-12, iron, calcium, 
creatinine, ALT, AST. 
  Dietary Intake & Preferences – Diet-Type 
dropdown (Vegan, Vegetarian, Lacto-Vegetarian, 
Ovo-Vegetarian, Ovo-Lacto-Vegetarian, 
Pescatarian, Kosher, Halal, Jain, Flexitarian, 
Paleo, Keto, Non-Veg, Other) + 24-h recall box, 
cultural notes, cooking-skill selector, hydration, 
meal-timing notes. 
  Lifestyle – physical-activity picker, sleep 
hours/quality, stress slider, work-pattern picker. 
  Behaviour & Psychosocial – emotional/binge-
eating toggle, motivation slider, stage-of-change 
radio. 
  Goals & Objectives – weight, performance, 
long-term health aim. 
  Food Access & Budget Notes – local 
availability and food-security textarea. 
 
When the user clicks Generate Plan, run a single 
prompt-chain that: 
(a) outputs a Markdown 1-day meal plan table 
(Time | Meal | Items | Calories | Protein | Cost 
(local) | Notes); 
(b) delivers three culturally appropriate, budget-
matched recipes with ingredients, numbered 

steps, macro breakdown, cost, and 1–2 YouTube 
links per recipe; 
(c) constructs a 3-week rotating calendar listing 
each meal/snack with times plus up to three new 
YouTube tutorials per week; 
(d) launches a persistent Nutri-Buddy Chat 
(LLM @ T≈0.7) that refuses medical diagnoses 
politely; 
(e) exposes a free-text “Analyse Food/Recipe” 
box returning a nutrition label table and 
cost/serving; 
(f) refreshes a progress dashboard (weight, BMI, 
adherence streaks) whenever vitals or labs 
update; 
(g) if connectivity = poor, invoke an on-device 
Lite-LLM (WebGPU) and cached data to 
produce a fallback plan. 
 
Guard-rails: critic prompt must block allergens, 
drug–nutrient conflicts, budget overflow, or lab 
contraindications; if critical markers appear, 
output a doctor-referral warning. 
Temperatures: factual blocks T = 0.3, chat T = 
0.7. 
Styling: neon-green section headers #d4ff00, 
‘Inter’ font, light-cream canvas, responsive 
cards, neon toast errors on missing inputs or 
OCR failure. 
Persona: friendly, culturally sensitive, evidence-
based, citing guidelines when appropriate.” 

classifier model achieved a classification accuracy of 
90% on validation datasets. 

1 INTRODUCTION TO TESTING;  
  
The FitMind system was subjected to rigorous 
testing and validation processes to ensure its 
accuracy, reliability, and usability. The testing 
strategy included both functional and non-
functional evaluations across all modules.  
1. Unit Testing: Each component, including 
fitness prediction, mental health analysis, 
meditation wellness recommendation, and 
chatbot classification, was individually tested to 
verify that it performs its intended function. 
Python’s unittest framework and Flask testing 
client were used.  
2. Integration Testing: Integration testing was 
performed to ensure seamless interaction 
between the frontend (HTML forms), backend 
Flask routes, ML models, and the MySQL 
database. It verified data flow and consistency 
across modules.  

3. Accuracy Testing: The Random Forest 
models used in the fitness and wellness modules 
achieved over 90% accuracy on validation 
datasets. The Naive Bayes-based chatbot model 
recorded a 100% accuracy on training intents, 
ensuring reliable responses to user queries.  
4. Confusion Matrix Evaluation: Confusion 
matrices were used to assess classification 
performance and confirm minimal false 
predictions, particularly in wellness level and 
mental health status detection.  
5. Usability Testing: Conducted with a small 
group of test users to evaluate UI/UX, response 
clarity, and system feedback. Based on feedback, 
form validations and suggestion outputs were 
refined.  
6. Load Testing: Simulated concurrent user 
access using Flask’s threading support to 
confirm that the system handles multiple 
requests without crashing or significant delay.  
The testing process validated the system's ability 
to predict accurately, generate meaningful 
recommendations, and maintain a smooth user 
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experience, supporting its deployment as a 
reliable health and wellness platform.  
 

Implementation 
 
Create a cloud “AI-Trainer” portal where experts see 
model output, rank alternatives, or flag errors. 
 
Collect preference pairs and fine-tune a reward model; 
run PPO to align Nutri-Buddy’s planner with 
professional judgement (e.g., stricter potassium limits 
for CKD patients). 
 
Schedule monthly re-training cycles so guidelines stay 
current without rewriting prompts. 
 
2. Real-Time Voice & Multilingual Chat 

Objective 
Make the coach accessible to visually impaired users 
and non-English speakers. 
 
Integrate Bedrock speech-to-text and Amazon Polly 
TTS; convert every chat exchange into natural voice 
on mobile. 
 
Couple the dialog with Amazon Translate or 
multilingual GPT-4o so the same prompts serve Hindi, 
Spanish, or Arabic without duplicating logic. 
 
Preserve context switching: a user could speak 
Gujarati, read dashboards in English, and receive 
recipes in Hindi video tutorials. 
 

3. Wearable & Continuous Glucose Monitor (CGM) 
Integration 
Objective 
Transform static lab snapshots into continuous 
metabolic feedback. 
 
Stream heart-rate, sleep, and CGM glucose curves 
from Apple HealthKit, Google Fit, or Dexcom APIs. 
 
Add a micro-prompt that says: “If nocturnal glucose 
rises > 140 mg/dL, adjust next day’s carb spread and 
alert user.” 
 
Update progress dashboard with live zones 
(green/amber/red) to reinforce adherence. 
 
4. Photo-Plate Estimation & Portion Sizing 
Objective 
Help users who struggle with weighing food or 
matching cooked amounts to plan portions. 
 
Fine-tune a vision model (Segment Anything + 
DETR) on plate images to estimate volume and 
ingredient types. 
 
Feed estimates into the “Analyse Food/Recipe” 
prompt, returning adjusted macros and a “portion 
OK?” indicator. 
 
5. Sustainability & Carbon-Score Layer 
Objective 
Empower eco-conscious users to choose lower-carbon 
meals without sacrificing nutrition or budget. 
 
Embed life-cycle assessment (LCA) data in the food 
vector store. 
 

Append a critic prompt: “If two ingredient sets tie on 
price and macros, prefer lower kg CO₂-eq.” 
 
Surface a green leaf icon beside low-impact meals and 
aggregate weekly carbon-savings on the dashboard. 
 
6. Continuous Prompt-Analytics & Auto-Tuning 
Engine 
Objective 
Let Nutri-Buddy self-optimise prompt wording based 
on live metrics (macro error, allergy pass rate, user 
thumbs-up). 
 
Track per-generation stats and store them in Supabase. 
 
Nightly script feeds poor-performing outputs into an 
“auto-critic” LLM that suggests prompt edits. 
 
Human AI-trainer reviews and approves edits, then 
PartyRock “Remix & Deploy” pushes changes 
without downtime. 
 
7. On-Device Model Upgrade (LoRA → GGUF-Q4) 
Objective 
Make offline mode faster and more accurate on mid-
range Android phones. 
 
Quantise the Lite-LLM to GGUF Q4; move vector 
search to WASM-SIMD. 
 
Cache top 1 000 regional ingredients so fallback plans 
mirror online quality. 
By coupling domain-expert RLHF with continuous 
data inflow—from wearables to multilingual voice—
Nutri-Buddy will evolve from a prompt-driven diet 
companion into a 24 × 7 adaptive clinical assistant, 
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meeting regulatory standards while remaining 
affordable and culturally sensitive worldwide. 

 
5.1 Test Cases  
 

6. RESULTS 
 

 
 

 
 

 

 
 
7. CONCLUSION AND FUTURE SCOPE: 
Nutri-Buddy AI demonstrates how a prompt-
engineered, Gen-AI platform can elevate nutrition care 
from siloed calorie counters and static meal plans to a 
living, clinically aware companion that thinks, chats, 
and adapts like a real human dietitian—only faster and 
at global scale. By fusing large-language models, 
vision-OCR, retrieval-augmented pricing data, and 
fine-grained guard-rails, the system delivers 

Test Case 
Id  

Module Description Input Executed output Status 

TC01 User Authentication User registration with 
valid details 

Name, Email, 
password, etc. 

Account created, redirected 
to login 

Pass 

TC02 User Authentication Login with incorrect 
password  

Email, Wrong 
Password 

Error Message “Invalid 
credentials” 

Pass 

TC03 Fitness Planner Predict fitness plan 
based on input 

Age, BMI, Goal Predicted category + 
workout/diet plan 

Pass 

TC04 Mental Health Tracker Evaluate using PHQ-9, 
GAD-7, DASS-21 

Score Inputs Predicted mental health state Pass 

TC05 Meditation & Wellness Recommend content 
based on wellness 
prediction  

Sleep Hours, Stress 
levels 

Video, tips, breathing 
exercise recommendation 

Pass 

TC06 Chatbot Process user query: 
“What should I eat?” 

User text Response: Diet suggestion Pass 

TC07 Database Integration Save prediction result 
in MYSQL 

Predicted outputs Data saved in respective 
tables 

Pass 

TC08 Load Handling Handle 10 
simultaneous user 
requests 

Concurrent access All handled without crashing Pass 
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personalised meal calendars that reflect the user’s 
vitals, laboratory biomarkers, cultural foodways, and 
budget realities in real time. 
 
Traditional diet apps force users to juggle separate 
tools for calorie logging, recipe discovery, grocery 
budgeting, and lab interpretation, often producing 
generic or even unsafe advice. Nutri-Buddy closes 
these gaps through a single, accordion-style PWA 
generated entirely by natural-language prompts on 
Amazon PartyRock. One click retrieves region-
appropriate ingredients, cost-optimises grocery lists, 
embeds 

YouTube tutorials, and refreshes a progress allergens, 
drug–nutrient conflicts, and lab contraindications 
before any plan reaches the user. Should connectivity 
fail, an on-device Lite-LLM instantly provides an 
offline fallback plan, ensuring continuity where legacy 
apps simply stop working. 
 
Because every rule—macronutrient limits, sodium 
caps, cultural substitutions, currency conversion—is 
expressed in editable English, Nutri-Buddy can evolve 
at the pace of emerging science or shifting food prices: 
edit the prompt, remix, and ship in minutes. This 
prompt-to-production pipeline redefines software 
agility, slashing development overhead and 
empowering dietitians—not programmers—to fine-
tune the experience. 
 
In short, Nutri-Buddy AI is more than a nutrition app; 
it is a proof-of-concept for the next generation of 
healthcare software—one where natural-language 
instructions become fully functional, safety-audited, 
and globally accessible expertise. Users are not merely 
logging calories; they are engaging with an always-on, 
culturally sensitive nutritionist that safeguards their 
health, respects their budget, and grows smarter with 
every interaction. 
 
Future Scope  
FUTURE ENHANCEMENTS 
Nutri-Buddy already delivers real-time, lab-aware diet 
coaching through prompt engineering, yet its 
architecture leaves ample runway for deeper 

intelligence and broader reach. The following 
roadmap outlines how we will push the platform 
toward a fully immersive, clinician-grade nutrition 
ecosystem. 
 
1. Domain-Expert RLHF (Reinforcement Learning 
from Human Feedback) 
Objective 
Refine meal-plan safety and cultural nuance by 
training the LLM with feedback from licensed 
dietitians, endocrinologists, and clinical nutrition 
scientists. 
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