
ISSN 2347–3657

Volume 13, Issue 3, 2025

52

Vocal Gist
1Ishrath Nousheen, 2Yagandla Roshini, 3Jukuri Srinija, 4Polasani Sruthi

1Assistant Professor, Department of Information Technology, Bhoj Reddy Engineering College for Women
2.3.4B,tech students, Department of Information Technology, Bhoj Reddy Engineering College for Women

psruthirao114@gmail.com

ABSTRACT

This project introduces "Vocal Gist," a web-based

application designed to streamline the process of

extracting and synthesizing information from

YouTube videos. Addressing the challenge of time-

consuming video consumption and the difficulty in

quickly grasping key content, Vocal Gist provides

an efficient solution for users seeking concise

insights.

The application functions by first extracting the

full transcript from a given YouTube video URL

using the youtube_transcript_api. This raw text is

then processed by a Google Generative AI model

(gemini-2.0-flash), which intelligently summarizes

the content into detailed, bullet-pointed notes,

typically within 250 words. Furthermore, to

enhance accessibility and usability, Vocal Gist

offers the functionality to translate these generated

summaries into various languages and allows

users to download the notes as a plain text file for

offline reference or further use.

Developed using Python, with Streamlit for the

intuitive graphical user interface and google-

generativeai for leveraging advanced AI

capabilities, Vocal Gist significantly reduces the

effort required to glean essential information from

video content. It serves as a valuable resource for

students, researchers, content creators, and

anyone requiring quick, multilingual access to

video summaries.

 Keywords: YouTube Video Summarization,

Transcript Extraction, youtube_transcript_api,

Google Generative

 AI, Gemini 2.0 Flash, AI Text Summarization,

Streamlit Web App, Multilingual Translation, Text

File

1. INTRODUCTION

In today's digital age, video content has become an

indispensable medium for learning, entertainment,

and information dissemination. Platforms like

YouTube host an unparalleled volume of videos,

ranging from educational lectures and detailed

tutorials to news analyses and conference talks.

While this abundance of visual information is a

tremendous resource, it also presents a significant

challenge: the sheer volume and length of many

videos make it time-consuming for users to

efficiently extract key insights and actionable

information. Manually sifting through hours of

footage or meticulously taking notes during

playback is often impractical and inefficient. This is

precisely the challenge that "Vocal Gist" aims to

solve.

Vocal Gist is a powerful yet intuitive web-based

application designed to transform lengthy YouTube

videos into concise, digestible, and multilingual

textual summaries. Its core functionality involves

automatically extracting video transcripts,

intelligently summarizing these transcripts into

bullet-pointed notes, and offering translation

capabilities for global accessibility. Additionally,

users can easily download these generated notes for

offline access or further integration into their

workflows. Built on a robust Python backend

utilizing Google's Generative AI (gemini-2.0-flash)

for sophisticated text processing and a user-friendly

front-end powered by Streamlit, Vocal Gist provides

a practical solution for students, researchers, content

creators, and professionals who need to quickly

grasp the essence of video content.

Existing System:

Before the advent of specialized tools like Vocal

Gist, the traditional method for extracting

information from online video content, particularly

on platforms like YouTube, primarily involved

manual engagement. Users were required to watch

entire videos, often of significant length, and

simultaneously take notes. This process is inherently

inefficient and time-consuming, leading to

challenges such as information overload, difficulty

in pinpointing specific details quickly, and the

practical impossibility of consuming large volumes

of video content for research or learning purposes.

Furthermore, language barriers posed a substantial

obstacle, as users would struggle to comprehend

content presented in languages they did not

understand, lacking any integrated translation

capabilities for summaries. This manual and

disjointed approach often resulted in suboptimal

information retention and hindered the rapid

assimilation of knowledge from video resources.

Proposed System:

The proposed system, "Vocal Gist," is a web-based

application developed to efficiently extract and

process information from YouTube videos, directly

addressing the limitations of manual methods.[1] It

operates by first retrieving the video's transcript via

youtube_transcript_api. This transcript is then sent

to a Google Generative AI model (gemini-2.0-flash)

to generate concise, bullet-pointed summaries.

Vocal Gist further enhances utility by providing

integrated options for translating these summaries

into multiple languages and downloading them as

text files. Built with Python and Streamlit, this

system offers a streamlined, efficient, and accessible

solution for rapid video content analysis.

mailto:psruthirao114@gmail.com

ISSN 2347–3657

Volume 13, Issue 3, 2025

53

2.RELATED WORK

The increasing volume of online video content has

spurred significant interest in tools that enhance

information retrieval and consumption efficiency.

Historically, extracting insights from videos

primarily involved manual effort, where users would

meticulously watch entire videos and take notes, a

process both time-consuming and prone to human

error. Early technological aids offered basic

functionalities like keyword searching within

automatically generated captions, which often

suffered from accuracy issues. More advanced

solutions then emerged focusing on video-to-text

conversion, leveraging speech recognition

technologies to transcribe audio into raw text.

Libraries such as youtube_dl combined with various

speech-to-text APIs (e.g., Google Cloud Speech-to-

Text) facilitate this, but typically leave the user with

the laborious task of sifting through extensive raw

transcripts to find relevant

information.Concurrently, the field of Natural

Language Processing (NLP) has seen the

development of numerous algorithms and models

for automatic text summarization and translation.

Text summarization techniques can be broadly

categorized into extractive methods, which select

significant sentences from the original text (e.g.,

using algorithms like TextRank), and abstractive

methods, which generate entirely new sentences that

capture the essence of the content, often utilizing

advanced neural networks like transformer-based

models (e.g., BERT, GPT). Libraries such as Sumy,

NLTK, and spaCy provide foundational tools for

these tasks. Similarly, sophisticated machine

translation services (e.g., Google Translate, DeepL)

are widely available. [2] Vocal Gist distinguishes

itself by offering a unified and comprehensive

solution that addresses these existing gaps. Unlike

systems that merely provide raw transcripts or

require users to employ separate tools for

summarization and translation, Vocal Gist integrates

youtube_transcript_api for reliable transcript

retrieval with the advanced gemini-2.0-flash AI

model.By consolidating these functionalities,Vocal

Gist provides a superior, end-to-end experience that

significantly streamlines the process of consuming

and understanding video content, thereby

outperforming fragmented traditional approaches

and most standalone solutions.

3. REQUIREMENT ANALYSIS

Functional Requirements:

Functional requirements define the specific actions

or services that the "Vocal Gist" system must

perform to meet user needs and system objectives.

These requirements detail what the application does

at each stage of its operation, from user input to final

output, ensuring that all core functionalities are

clearly outlined for development and testing.

• YouTube Video URL Input

• Video ID Extraction

• Transcript Retrieval

• Error Handling for Transcript Availability

• Transcript Summarization

• Summary Translation

• Summary Download

• Thumbnail Display

• API Key Management

• User Feedback and Progress Indicators

Non-Functional Requirements:

Non-functional requirements specify quality

attributes of the "Vocal Gist" system, defining how

well the system performs its functions. These

requirements are crucial for ensuring the overall user

experience, system reliability, security, and

maintainability.

 Performance:

• Response Time: The system should aim to display

summaries and translations within 5-10 seconds of

clicking the respective buttons, depending on

transcript length and API response times..

• Transcript Processing Speed: Transcript extraction

should ideally complete within 3-5 seconds for most

videos.

Scalability:

• The system should be capable of handling multiple

concurrent users without significant degradation in

performance. (Note: Streamlit's inherent single-

threaded nature might limit this without deployment

considerations, but it's a good NFR for a robust

system).

Software Requirements:

Programming Language : Python 3.7

 IDE :

Visual Studio Code

Front end Technologies : Streamlit

Libraries :

generativeai,pythondotenv,youtubetranscriptapi

Backend : Python,

Google Gemini Ai

Hardware Requirements:

 Processor : Intel core i5

 Ram : 8GB

 Hard Disk : 500GB

4.DESIGN

System Architecture:

The system architecture of "Vocal Gist" adheres to

a robust client-server model, ensuring an efficient

and seamless flow for processing user requests and

delivering summarized, translated video notes. At its

forefront, the Presentation Layer encompasses the

ISSN 2347–3657

Volume 13, Issue 3, 2025

54

user's web browser, which dynamically renders the

interactive interface generated by Streamlit. This

layer empowers users to input YouTube video

URLs, initiate summarization or translation, select

desired target languages, and view all displayed

outputs, including video thumbnails, directly within

their browser. All user-driven interactions are

captured at this layer and securely transmitted as

requests to the underlying Application Layer for

processing.

The Application Layer serves as the central

processing unit, implemented as a Python-based

Streamlit Application running on a dedicated server.

This core component is responsible for orchestrating

the entire workflow: it receives and validates user

requests, accurately extracts video IDs from the

provided URLs, and then interacts with the External

Services Layer. This interaction involves making

calls to the youtube_transcript_api for retrieving raw

video transcripts from YouTube. Subsequently, the

extracted transcript is sent to Google's Generative AI

(specifically the gemini-2.0-flash model via the

google-generativeai library) for performing

intelligent summarization and, upon request,

multilingual translation. After processing, the

Application Layer manages the internal state of the

application and efficiently sends the processed data

back to the Presentation Layer for display.

Finally, the External Services Layer is crucial,

comprising specialized external resources that

provide the necessary raw data and advanced AI

capabilities. This includes the YouTube Transcript

API, which supplies the textual content of videos,

and Google Generative AI, which performs the

complex summarization and translation operations.

This integrated, multi-layered architecture ensures

modularity, efficiency, and clear separation of

concerns, providing a highly responsive and user-

friendly experience by distributing tasks

appropriately between the client, the application

server, and external cloud services.

Fig. 4.1.1.1 System Architecture

 Technical Architecture:

The technical architecture of "Vocal Gist" is

fundamentally a Python-based web application

leveraging the Streamlit framework, meticulously

designed to provide a robust, scalable, and intuitive

solution for comprehensive video content analysis.

At the Front-End Layer, the user engages with a

dynamically generated graphical interface, entirely

constructed through Streamlit's Python components.

This innovative approach means that despite the

browser ultimately rendering standard web

technologies like HTML, CSS, and JavaScript,

developers are entirely abstracted from writing this

low-level web code. Instead, all UI elements and

their associated interaction logic, such as

st.text_input for precise URL entry, st.button for

triggering core actions like summarization and

translation, st.selectbox for seamless language

selection, and st.write/st.markdown for displaying

the processed outputs and informative messages, are

elegantly defined within the app.py Python script.

This unique methodology significantly accelerates

the development lifecycle, facilitating rapid

prototyping and efficient deployment, as the entire

user interface and its underlying interaction

mechanisms are managed cohesively within a

single, highly readable Python codebase, rendered

ISSN 2347–3657

Volume 13, Issue 3, 2025

55

dynamically and responsively in the client's web

browser.

The Application Logic Layer forms the operational

heart of Vocal Gist, residing on the server where the

app.py Streamlit script is actively executed. This

critical layer is meticulously engineered

toorchestrate the entire workflow of the application,

serving as the central hub for all data processing and

control. It robustly processes incoming user requests

originating from the web browser, accurately

extracts crucial video identifiers from various

YouTube URL formats utilizing Python's re module,

and intelligently manages the application's state

across diverse user interactions through

st.session_state. This state management mechanism

is absolutely vital for maintaining persistent context,

such as the current summary or previously translated

text, thereby preventing redundant data re-

processing and optimizing performance.In such

instances, it provides clear, actionable, and

informative messages directly to the user through

Streamlit's integrated alert mechanisms, ensuring a

smooth and resilient user experience.

Fig. 4.1.2.1 Technical Architectur

5.IMPLEMENTATION

 5.1Libraries

• Streamlit: This is the foundational library for the

application's front-end and overall structure.

Streamlit enables the rapid creation of interactive

web applications entirely in Python, abstracting

away the complexities of HTML, CSS, and

JavaScript. It provides intuitive components like

st.text_input for user input, st.button for triggering

actions, st.selectbox for language selection, and

st.write and st.image for displaying dynamic

content. Streamlit also manages the session state

(st.session_state), which is vital for maintaining data

(like the generated summary or translated text)

across user interactions without re-running entire

scripts unnecessarily. This significantly simplifies

development and allows for a pure Python

development experience for web applications.

• python-dotenv (via load_dotenv): The dotenv

library is essential for securely managing

environment variables within the project.

Specifically, load_dotenv() is called at the

application's startup to load key-value pairs from a

.env file into the operating system's environment

variables. This is particularly critical for protecting

sensitive information, such as the

ISSN 2347–3657

Volume 13, Issue 3, 2025

56

GOOGLE_API_KEY, by keeping it out of the main

codebase and public repositories. By using this

library, the application adheres to best practices for

credential management, making the system more

secure and flexible for deployment in various

environments.

• google.generativeai (genai): This is the core library

for integrating "Vocal Gist" with Google's advanced

Artificial Intelligence capabilities. It provides the

necessary interface to interact with Google's

Generative AI models, specifically the gemini-2.0-

flash model. Through this library, the application

sends raw video transcripts to the AI for abstractive

summarization, crafting concise, bullet-pointed

notes. Furthermore, it facilitates on-demand

multilingual translation of these summaries,

enabling the application to break down language

barriers. The genai library handles the

communication protocols, authentication, and data

formatting required to leverage Google's powerful

cloud-based AI services effectively.

• youtube_transcript_api: This specialized library is

crucial for the initial data acquisition step, allowing

"Vocal Gist" to retrieve the raw textual content from

YouTube videos. It provides programmatic access to

the timed transcripts (subtitles or closed captions)

associated with a given YouTube video ID. The

library handles the complexities of interacting with

YouTube's data services, parsing the transcript data,

and providing it in a usable format. It also includes

robust error handling .

• re (Regular Expressions): The built-in Python re

module is fundamental for precise pattern matching

and string manipulation within "Vocal Gist." Its

primary use case is the robust extraction of the

unique YouTube video_id from various formats of

YouTube URLs that users might input. Regular

expressions allow the application to identify and

isolate the 11-character video ID from long

watch?v= links, shortened youtu.be/ links, or

embed/ links. This ensures that regardless of the

URL format provided by the user, the application

can consistently obtain the correct identifier needed

to access the video's transcript.

• os (Operating System Interface): The built-in

Python os module provides a way of interacting with

the operating system. In "Vocal Gist," its primary

role is to access environment variables, most notably

os.getenv("GOOGLE_API_KEY"). This function

retrieves the Google API key that was loaded into

the environment by python-dotenv, allowing the

google.generativeai library to be securely

configured for AI model access.

• xml.etree.ElementTree (ET): While not explicitly

called directly for standard operations, this built-in

Python module is implicitly referenced and crucial

for robust error handling within the

youtube_transcript_api. When the

youtube_transcript_api attempts to parse XML-

formatted transcript data received from YouTube, it

can sometimes encounter malformed or empty

XML. Catching ET.ParseError explicitly helps

"Vocal Gist" to specifically identify and handle

situations where transcript data is invalid or missing,

providing more accurate error messages to the user

and preventing the application from crashing

unexpectedly.

6.SCREENSHOTS

Screenshot 6.1 Enter URL

ISSN 2347–3657

Volume 13, Issue 3, 2025

57

Screenshot 6.2 youtube video thumbnail

Screenshot 6.3 Generate summary

Screenshot 6.4 Download Summary

Screenshot 6.5 translation

ISSN 2347–3657

Volume 13, Issue 3, 2025

58

Screenshot 6.6 Translate Summary

7. CONCLUSION

The "Vocal Gist" project successfully delivers a

robust and intuitive web-based solution that

significantly enhances the efficiency of consuming

information from YouTube videos. By effectively

addressing the challenges of information overload

and time-consuming manual data extraction, the

application streamlines the process of transforming

lengthy video content into concise, actionable, and

multilingual summaries. Through its seamless

integration of Streamlit for a user-friendly interface,

youtube_transcript_api for reliable transcript

retrieval, and Google's gemini-2.0-flash AI model

for advanced summarization and translation, Vocal

Gist stands as a practical tool for diverse users, from

students and researchers to content creators, who

require quick access to video insights. Its modular

architecture and robust error handling further

contribute to its reliability and maintainability.

In essence, Vocal Gist not only automates a

traditionally manual and tedious process but also

democratizes access to video knowledge by

overcoming language barriers and providing easily

downloadable notes. This empowers users to derive

maximum value from video content with minimal

effort, fostering greater productivity and more

efficient learning. The project demonstrates the

powerful synergy between modern web

development frameworks and advanced artificial

intelligence, laying a strong foundation for future

enhancements and broader applications in digital

content analysis.

REFERENCES

[1] IJCRT.ORG.“YOUTUBE TRANSCRIPT

SUMMARIZER.” Ijcrt.org.

[2] Analytic Vidya. “Creating a Youtube Summariser –

Mini NLP Project.” Analytics Vidhya.

[3] Rice, Damien, and Matt Galbraith. Video Transcript

Summarizer, Atluri Naga Sai Sri Vybhavi.

[4] “YouTube Transcript Summarizer using Natural

Language Processing.” International Journal of

Advanced Research in Science, Communication and

Technology.

