
ISSN 2347–3657

Volume 13, Issue 3, 2025

100

Attribute-Based Encryption Approach For Storage, Sharing And

Retrieval Of Data
Dr M Sandhya Rani, D Pranisha Reddy, Ch Udaya Sree, G Vibha Maithreyi

1Associate Professor, Department of Information Technology, Bhoj Reddy Engineering College for Women
2.3.4B,tech students, Department of Information Technology, Bhoj Reddy Engineering College for Women

pranishareddy21@gmail.com

ABSTRACT

In the era of cloud computing, secure data storage

and controlled data access are critical challenges.

Traditional encryption techniques, while offering

data confidentiality, often hinder efficient data

retrieval and lack fine-grained access control. This

project presents FABECS (Fully Attribute-Based

Encryption Scheme for Cloud Storage), a secure,

efficient, and privacy-preserving framework that

enables encrypted data storage, searchable

encryption, and attribute-based access control.

FABECS incorporates an index-based searchable

encryption mechanism that allows data users to

perform secure keyword searches without

revealing content to the cloud service provider. The

system ensures only authorized users can decrypt

and access relevant files based on predefined

attributes, offering fine-grained security, low

computational overhead, and scalability.

Developed using Python and Django, and deployed

on a cloud server, FABECS effectively addresses

the limitations of existing systems while aligning

with modern data privacy requirements.

Keywords: Attribute-Based Encryption (ABE),

Ciphertext-Policy ABE (CP-ABE), Searchable

Encryption, Fine-Grained Access Control,

Privacy-Preserving Retrieval, Encrypted Indexing,

Secure Data Sharing, Cloud Security, Data

Confidentiality.

1. INTRODUCTION

Cloud storage has become one of the most cost-

effective services for businesses and individuals.

However, storing sensitive data on untrusted cloud

servers raises security and privacy concerns. Users

need to encrypt their data before outsourcing it, but

traditional encryption methods limit searchability

and sharing [1], [2]. The challenge is to store, share,

and retrieve encrypted data efficiently while

maintaining security. Existing systems either require

heavy computational power for searching encrypted

data [3] or lack fine-grained access control [4],

making them impractical. This project proposes a

secure, searchable, and access-controlled cloud

storage system using Attribute-Based Encryption

(ABE) [5].

Existing system:

Traditional cloud storage systems rely on encryption

to protect sensitive data before outsourcing it to the

cloud [1]. However, these systems face several

challenges, such as limited searchability, inefficient

access control, and high computational overhead [6],

[3]. Users must download encrypted data, decrypt it,

search for relevant information, and then re encrypt

and upload it, making the process slow and resource-

intensive. Moreover, conventional encryption

methods lack fine-grained access control, meaning

all authorized users either have full access or none,

leading to security risks. Additionally, centralized

key management systems are prone to attacks,

increasing the risk of unauthorized access [8].

 Proposed System:

 We propose FABECS (Fully Attribute-Based

Encryption Scheme for Cloud Storage, Sharing, and

Retrieval), a comprehensive security framework that

ensures secure and efficient data management in

cloud environments. FABECS leverages Attribute-

Based Encryption (ABE) to provide fine-grained

access control, enabling data owners to encrypt

documents under specific attribute-based policies

and distribute keys securely through a trusted

authority. To support efficient retrieval without

compromising data privacy, FABECS employs an

encrypted, index-based structure [3], [9] that allows

data users (DUs) to locate and query relevant

documents using trapdoors generated from their

attributes, all without revealing search terms or

access patterns to the Cloud Service Provider (CSP)

[10]. The scheme ensures that only authorized users

can access or search encrypted data, thus

maintaining confidentiality and access control

simultaneously. Furthermore, FABECS prioritizes

the retrieval of the most relevant documents based

on query relevance, optimizing user experience

while maintaining strong security guarantees.

Importantly, the system adheres to modern

cryptographic standards by enforcing encryption

levels of at least 128 bits [5], thereby complying

with industry-recommended security benchmarks.

Through these mechanisms, FABECS effectively

meets the demands of secure storage, controlled

sharing, and efficient retrieval in cloud-

based environments.

2-RELATED WORK

Cloud storage systems have become widely adopted

due to their convenience and scalability. However,

storing sensitive data on untrusted servers poses

significant security and privacy risks. To address

these issues, various encryption techniques have

been developed. Traditional encryption methods like

symmetric and public-key encryption provide basic

data confidentiality but are limited when it comes to

efficient data sharing and retrieval. These systems

typically require users to download, decrypt, search,

mailto:pranishareddy21@gmail.com

ISSN 2347–3657

Volume 13, Issue 3, 2025

101

re-encrypt, and re-upload data, which introduces

unnecessary computational overhead and delays [1],

[3].

Searchable encryption (SE) was proposed to allow

keyword-based search over encrypted data without

decryption [2], [6]. While this approach improves

usability, most SE schemes do not provide adequate

access control. For example, anyone with a search

token can retrieve the data, which is not ideal in a

multi-user environment. Researchers like Curtmola

et al. and Boneh et al. introduced early SE models,

such as symmetric SE and public key encryption

with keyword search (PEKS) [2], [7], but these

models still lacked support for fine-grained user

authorization. To introduce more refined access

control, Attribute-Based Encryption (ABE) was

developed. ABE enables encryption based on user

attributes rather than identities, allowing data

owners to define flexible access policies. Key

developments in this area include Key-Policy ABE

(KP-ABE) proposed by Goyal et al. and Ciphertext-

Policy ABE (CP-ABE) by Bethencourt et al. These

models provided the foundation for role-based

access but still lacked efficient support for data

search and retrieval [4], [5].

3. REQUIREMENT ANALYSIS

Functional Requirements:

 These define the core operations that the system must

perform to ensure secure cloud storage, sharing, and

retrieval using Attribute-Based Encryption (ABE).

They include encryption, access control, searchable

encryption, and secure data retrieval. Secure user

registration & authentication.

• Efficient encryption & decryption for secure data

storage.

• Role-based access control using attribute-based

encryption.

• Index-based search for encrypted data retrieval

• Cloud service provider (CSP) executes encrypted

queries securely

• Returns k-most relevant results while preserving

privacy.

3.2 Non-Functional Requirements:

Secure cloud storage using Attribute-Based

Encryption (ABE) offers a robust solution for

protecting sensitive data in distributed

environments, and its effectiveness greatly depends

not only on core functionality but also on well-

defined non-functional requirements. These

requirements play a critical role in ensuring that the

system operates securely, efficiently, and reliably

under real-world conditions. They encompass

various essential aspects such as performance,

which ensures that encryption, decryption, and

search operations are completed within acceptable

time frames even as data volume and user numbers

grow; data privacy, which guarantees that

unauthorized entities, including the Cloud Service

Provider (CSP), cannot access plaintext data or infer

sensitive metadata; and scalability, which allows the

system to accommodate increasing loads, users, and

data sizes without degradation in service quality.

Additionally, non-functional requirements

emphasize usability and responsiveness, making the

system intuitive and practical for end users who

must access, search, and share encrypted files

without facing complexity.

Software Requirements:

• Programming Language / Platform : Python

• IDE

 : PyCharm

• Web Framework : Django

• Database : SQLITE

• Cloud Server : DriveHQ

• Front End : HTML ,CSS

,JS

• Testing Framework :

Pyunit

3.3.2 Hardware Requirements:

• RAM : 4GB

and Higher

• Hard Disk : 20

GB or More

• Operating System :

Windows 10, macOS, or Linux

4. DESIGN

System Architecture:

The system architecture of the proposed FABECS

(Fully Attribute-Based Encryption Scheme for

Cloud Storage) outlines the interaction between

various components such as the data owner, data

user, cloud service provider, and the encryption

modules. The data owner is responsible for

encrypting the files using Attribute-Based

Encryption (ABE) before uploading them to the

cloud [4]. Along with encryption, the data owner

defines access policies based on user attributes and

creates searchable keyword indexes for efficient

retrieval [6].

The data user can register, authenticate, and then

perform encrypted keyword-based searches on the

cloud-stored data. If the required data is found, the

user sends a key request to the data owner. Upon

verifying that the user’s attributes match the defined

access policies, the data owner grants the decryption

key [7]. The user can then download and decrypt the

file. The cloud service provider acts only as a storage

medium and executes encrypted searches but cannot

view or manipulate the data contents [8]. This

architecture ensures a secure, efficient, and privacy-

preserving mechanism for data sharing and retrieval

in a multi-user cloud environment.

ISSN 2347–3657

Volume 13, Issue 3, 2025

102

Fig. 4.1.1.1 System Architecture

Technical Architecture:

The technical architecture describes the technology

stack and environment used to build and deploy the

FABECS system. The frontend of the system is

developed using HTML, CSS, and JavaScript,

providing a clean and user-friendly interface for

both data owners and users. Users can easily

navigate through options such as registration, login,

file upload, search, key requests, and downloads.

The backend is implemented in Python using the

Django framework, which handles all co re

operations including user authentication, file

encryption/decryption, access control, and secure

communication with the cloud. The system uses

SQLite as the database to store user information, file

metadata, access logs, and keyword indexes. For

cloud storage, services like DriveHQ are used to

securely host the encrypted files and indexes.

 Fig. 4.1.2.1 Technical Architecture

Algorithm:

The algorithm used in your project is Ciphertext-

Policy Attribute-Based Encryption (CP-ABE),

which allows data access based on user attributes

instead of specific identities [9], [10]. In a hospital

management context, this means that access to

sensitive patient data, medical reports, or internal

documents is granted only to users whose attributes

match certain predefined policies. For example, a

medical report might be encrypted with a policy like

“Role: Doctor AND Department: Cardiology,”

ensuring that only a cardiologist has permission to

view that file [9].

In this system, a doctor (data owner) uploads

encrypted patient records to the cloud. Before

uploading, the doctor defines an access policy and

uses the CP-ABE algorithm to encrypt the file

accordingly. Simultaneously, they also encrypt

keywords like "ECG report" or "heart patient" and

generate encrypted indexes using searchable

encryption [2], [6]. This allows for secure, privacy-

preserving searches on encrypted data.

Later, a data user, such as a nurse from the

cardiology department, logs into the system and

searches for relevant records using keywords. The

system encrypts the nurse’s search query and sends

it to the cloud service provider, which performs the

ISSN 2347–3657

Volume 13, Issue 3, 2025

103

search using the encrypted indexes and returns

matching encrypted files [2], [6], [8]. Importantly,

the cloud never learns the actual data or the

keyword, keeping everything fully private and

secure [6], [8].

Once the nurse identifies a needed file, she sends a

key request to the doctor (data owner). The system

checks whether the nurse’s attributes (e.g., "Role:

Nurse", "Department: Cardiology") satisfy the

policy under which the file was encrypted. If the

nurse's attributes match, she receives the decryption

key and gains access to the file. If not, access is

denied, even if the file was found in the search [9].

This approach ensures fine-grained access control,

meaning that sensitive hospital data is only

accessible to appropriate medical staff. A

receptionist or a lab technician, for example, would

not be able to view a cardiologist’s reports, even if

they are part of the hospital network. Moreover,

since users can search encrypted data without

decrypting everything, the system remains efficient

and scalable, suitable for large healthcare databases

[8].

5. IMPLEMENTATION

5.1.1 asgiref==3.8.1:

ASGI (Asynchronous Server Gateway Interface)

reference implementation used primarily in Django

to support asynchronous programming. It helps

bridge synchronous and asynchronous code,

enabling modern features like WebSockets and

async views. This library is lightweight yet essential

for Django apps requiring concurrency support.

5.1.2 Cffi:

It stands for C Foreign Function Interface and

allows Python code to interact with C code

efficiently. It's widely used by libraries like

cryptography to achieve high performance

while maintaining safety and portability. It is

essential for low-level operations and

interfacing with C libraries from Python.

5.1.3 cryptography :

It is a robust library that provides

cryptographic recipes and primitives such as

encryption, decryption, digital signatures,

and secure key management. Built on top of

OpenSSL, it is widely trusted for

implementing security features in Python

applications. It's essential for HTTPS, JWTs,

and password protection.

5.1.4 Django:

It is a high-level web framework that

encourages rapid development and clean,

pragmatic design. It includes an ORM, admin

panel, authentication system, and built-in

security features. Based on the MTV (Model-

Template-View) pattern, Django is a popular

choice for building secure and scalable web

applications.

5.1.5 nltk (Natural Language Toolkit):

It is a powerful library for natural language

processing and computational linguistics. It

provides tools for tasks like tokenization,

stemming, tagging, parsing, and access to

large corpora. It's commonly used in

academic and research settings for exploring

text data.

6. SCREENSHOTS

Screenshot 6.1 Home Page

ISSN 2347–3657

Volume 13, Issue 3, 2025

104

Screenshot 6.2 Admin Page

Screenshot 6.3 Admin Functionalities

Screenshot 6.4 Django login

ISSN 2347–3657

Volume 13, Issue 3, 2025

105

Screenshot 6.5 Django Administration

Screenshot 6.6 User Login Page

7-CONCLUSION

In this project, we have designed and implemented

FABECS — a Flexible Attribute-Based Encryption

and Cloud Storage system aimed at providing a

highly secure and privacy-preserving framework for

storing, sharing, and retrieving sensitive data in the

cloud. FABECS addresses some of the critical

challenges faced in cloud-based environments, such

as data confidentiality, unauthorized access, and the

inability to perform secure searches over encrypted

data. By incorporating Attribute-Based Encryption

(ABE), the framework enforces fine-grained access

control, allowing only authorized users — based on

defined attributes or policies — to decrypt and

access the data.

One of the key features of FABECS is its support for

secure, keyword-based searchable encryption. This

allows users to search for specific content within

encrypted documents without revealing either the

search keywords or the actual document contents to

the cloud service provider. To facilitate this, an

index-based retrieval mechanism is integrated,

ensuring that the system remains efficient and

scalable even with large volumes of encrypted data.

REFERENCES

[1] A. Bagherzandi, B. Hore, and S. Mehrotra,

Search over Encrypted Data. Boston, MA, USA:

Springer, 2011, pp. 1088–1093.

[2] R. Curtmola, J. Garay, S. Kamara, and R.

Ostrovsky, ‘‘Searchable symmetric encryption:

Improved definitions and efficient constructions,’’

in Proc. 13th ACM Conf. Comput. Commun. Secur.,

New York, NY, USA, 2011, pp. 79–88, 2006.

[3] W. Song, B. Wang, Q. Wang, Z. Peng, W. Lou,

and Y. Cui, ‘‘A privacypreserved full-text retrieval

algorithm over encrypted data for cloud storage

applications,’’ J. Parallel Distrib. Comput., vol. 99,

pp. 14–27, Jan. 2017.

[4] H. Yin, J. Zhang, Y. Xiong, L. Ou, F. Li, S. Liao,

and K. Li, ‘‘CP-ABSE: A ciphertext-policy

attribute-based searchable encryption scheme,’’

IEEE Access, vol. 7, pp. 5682–5694, 2019.

[5] A. Sahai and B. Waters, ‘‘Fuzzy identity-based

encryption,’’ in Advances in Cryptology (Lecture

Notes in Computer Science), vol. 3494, R. Cramer,

Ed. Berlin, Germany: Springer-Verlag, 2005, pp.

457–473.

ISSN 2347–3657

Volume 13, Issue 3, 2025

106

[6] H. Pham, J. Woodworth, and M. A. Salehi,

‘‘Survey on secure search over encrypted data on the

cloud,’’ Concurrency Comput. Pract. Exper., vol.

31, p. 1– 15, Apr. 2019.

[7] M. Zeng, H.-F. Qian, J. Chen, and K. Zhang,

‘‘Forward secure public key encryption with

keyword search for outsourced cloud storage,’’

IEEE Trans. Cloud Comput., early access, Sep. 27,

2019, doi: 10.1109/TCC.2019.2944367.

[8] A. G. Kumbhare, Y. Simmhan, and V. Prasanna,

‘‘Designing a secure storage repository for sharing

scientific datasets using public clouds,’’ in Proc. 2nd

Int. workshop Data Intensive Comput. Clouds, 2011,

pp. 31–40.

[9] Z. Yang, J. Tang, and H. Liu, ‘‘Cloud

information retrieval: Model description and scheme

design,’’ IEEE Access, vol. 6, pp. 15420–15430,

2018.

[10] S. Kamara, C. Papamanthou, and T. Roeder,

‘‘Cs2: A searchable cryptographic cloud storage

system,’’ Microsoft Res., Redmond, WA, USA,

Tech. Rep. MSR-TR-2011-58, May 2011.

