
1

 ISSN 2347–3657

Volume 8, Issue 2, June 2020

37

Predicting the Price of Bitcoin Using Machine Learning

Mrs. Lakshmi Lavanya Tumu, Mrs. Mukka Shirisha, Mrs. Gangula Pavani

Abstract—

The purpose of this article is to assess the feasibility of predicting the future U.S. dollar price of Bitcoin.
The pricing data is obtained from the Bitcoin Price Index. It's a matter of accomplished with varied levels of success

by using a Bayesian optimised recurrent neural network (RNN) and a Long Short Term Memory (LSTM) network.

The RMSE for the LSTM is 8%, and its classification accuracy is 52%. The famous ARIMA model for time series

forecasting \sis constructed as a contrast to the deep learning algorithms. As predicted, the non-linear deep learning

algorithms outperform the ARIMA prediction which performs badly. Finally, both deep learning models are

benchmarked on both a GPU and a CPU \switch the training time on the GPU surpassing the CPU implementation

by 67.7%.

I. INTRODUCTION

The most valued crypto currency, Bit coin [1], is

traded on more than 40 exchanges in more than 30

different countries and regions. The current market

value of the company is according to

https://www.blockchain.info/, has a daily transaction

volume of over 250,000 and a market cap of $9

billion USD. Due to Bit coin’s relative youth and the

associated volatility, which is significantly higher

than that of fiat currencies [2], it presents a unique

opportunity for price prediction. In addition, its

decentralized structure sets it apart from other fiat

currencies; for example, there is no comprehensive

database of cash transactions or money in circulation

for conventional fiat currencies. Prediction of

developed financial markets like the stock market has

been the subject of much study [3, 4]. As a time

series prediction issue in a market that is still in its

infancy, Bitcoin provides an intriguing analogy. Time

series prediction techniques, such as the Holt-Winters

exponential smoothing model, need data that can be

decomposed into trend, seasonality, and noise in

order to be useful [5]. When there are seasonal

influences, such as in sales forecasting, this strategy

performs better. These techniques are ineffective

because the Bitcoin market is very volatile and does

not follow a predictable seasonal pattern. Deep

learning is necessary since the job is so difficult.

Offers a promising technical answer, supported by its

success in analogous settings. Considering the time-

1,2,3 Assistant Professor

1,2,3 Department of CSE

1,2,3 Global Institute of Engineering and Technology Moinabad, Ranga Reddy District,

Telangana State.

http://www.blockchain.info/
http://www.blockchain.info/

 ISSN 2347–3657

Volume 8, Issue 2, June 2020

38

Dependent nature of Bitcoin data, recurrent neural

networks (RNNs) and Long short-term memories

(LSTMs) are preferred over MLPs. The purpose of

this article is to examine how well machine learning

can forecast Bit coin’s price, and to evaluate

parallelization approaches run on multi-core and

GPU systems. These are the contributions this paper

makes: Seven articles out of around 653 published on

Bitcoin [6] deal on machine learning for prediction.

An ARIMA time series model is also built to

compare the neural network models' performance to

that of more conventional methods used in financial

forecasting. A day's worth of Bitcoin's closing price

as measured by the Coin desk Bitcoin Price Index

serves as the independent variable here. We don't

zero on on a single conversation, but rather a

weighted average of the values listed on the five

largest Bitcoin markets (Bitstamp, Bitfinex, Coin

base, Ocean, and itBit). It would be more efficient to

concentrate on a single exchange if we were to

execute transactions based on the indications. We

measure model quality by calculating the root-mean-

squared error (RMSE) of the closing price and then

encoding the forecast price into a categorical variable

showing an increase, a decrease, or no change in the

price. After taking this extra step, traders may get

additional performance measures that might aid in the

development of a trading strategy, including

classification accuracy, specificity, sensitivity, and

precision. This paper's data were culled from the

websites Coin desk and Blockchain.info. Block chain

information, such as the mining difficulty and hash

rate, are presented in addition to the closing price,

starting price, daily high, and daily low. Two simple

moving averages (SMAs) and a smoothed-out closing

price are among the elements that have been built

(and are used as technical analysis indicators [7]).

II. RELATED WORK

There is a dearth of studies that focus on utilizing

machine learning algorithms to forecast Bitcoin

prices. As proposed by [9], latent source modeling

was put into action in [8] to enable cost forecasting.

Bitcoin's 89 percent return in 50 days and 4.1 Sharpe

ratios are highlighted. Predictions of Bitcoin values

have also been attempted using text data gleaned

from social media and other sources. In [10]

researchers looked at employing support vector

machines, the number of times Wikipedia was seen,

and the network hash rate to do sentiment analysis.

[11] Looked at the correlation between the value of

Bitcoin, the number of tweets about Bitcoin, and the

number of page views for Bitcoin on Google Trends.

In a similar vein, [12] used Google Trends views to

forecast trade volume rather than Bitcoin price. Small

sample sizes and the ease with which false

information may spread via (social) media platforms

like Twitter or message boards like Reddit might be

drawbacks of this kind of research. [13]. There is a

severe lack of liquidity in Bitcoin exchanges. There is

a higher potential for market manipulation as a

consequence. This is why the general mood on social

media is disregarded. [14] Used a combination of

support vector machines (SVM) and artificial neural

networks (ANN) to analyze the Bitcoin Block chain

and provide price predictions for Bitcoin, claiming a

price direction accuracy of 55% with a standard

ANN. Block chain data alone, they reasoned, could

not provide enough information for reliable

forecasting. Additionally, in [15], Block chain data

was used to implement SVM, Random Forests, and

Binomial GLM (generalized linear model), with the

authors noting a prediction accuracy of over 97%;

however, because the authors did not cross-validate

their models, their findings were not applicable to a

broader audience. The use of wavelets to forecast

Bitcoin values has also been documented [16, 17],

where it is shown that there are significant positive

connections between search engine impressions,

network hash rate, and mining difficulty.

These results are expanded upon by include

information from the Block chain itself, in the form

of the hash rate and the difficulty, as well as

information from the main exchanges as given by

Coin Desk.

III. METHODOLOGY

The CRISP approach to data mining was used for this

work. 1 CRISP-justification DM's over KDD [26],

which is more often used for data mining, is based on

the commercial context of the prediction problem.

Task. The time period covered by the Bitcoin dataset

utilized is from August 19, 2013, to July 19, 2016.

Figure 1 shows a time series visualization of these

data. Since it no longer correctly depicts the network,

data collected before to August 2013 has been

omitted. The Block chain is used to get the difficulty

and hash rate in addition to the Open, High, Low,

Close (OHLC) statistics from Coin Desk. The

information was also normalized such that its mean

was zero and its standard deviation was one.

Standardization \saws selected over normalization

since it better matches the activation \functions

utilized by the deep learning models.

 ISSN 2347–3657

Volume 8, Issue 2, June 2020

39

Figure 1: Decomposition of the Bitcoin Time Series

Data

A. Feature Engineering and Feature Evaluation

The goal of feature engineering is to simplify

prediction by machine learning models by isolating

relevant patterns in data. One of the essential

components of data mining to successfully complete

prediction tasks [27], [28]. Indicators like the Simple

Moving Average (SMA) have been used in many

recent articles [29, 30] to aid in machine learning

categorization tasks. A suitable technical indicator,

such as a simple moving average (SMA) of the price

over the last x days, is provided as an example.

Borate (a wrapper over the random forest

classification technique) was utilized to decide which

characteristics to include in the evaluation. Multiple

classifiers are used to make a final determination, as

in an ensemble technique. Similar to the random

forest classifier, this method uses a similar approach

to get its results.

It introduces uncertainty into the model by amassing

data from an ensemble of random samples used to

assess qualities, and it reveals which attributes are

more significant [31].

The random forest analysis indicated that all

characteristics were crucial to the model, but the

simple moving average (SMA) across 5 and 10 days

had the most relevance. Also crucial was the final

pricing once noise was removed.
B. Deep Learning Models

Models built using deep learning must have their

network settings well thought out for optimal

performance. These are the three most common

methods of parameter selection:

Search strategies like genetic algorithms and grid

search are examples of heuristic search strategies that

may be used for deep learning models. Specifically,

this research used both manual grid search and

Bayesian optimization. Elman RNN uses grid search,

which entails picking two hyperparameters with a

minimum and maximum value. The best-performing

parameters may then be found by searching that

feature space. This method was used instead of

Bayesian optimization since it was more applicable to

the parameters in question. Keras, a Python library,

was used to create this model [32]. Whenever

feasible, Bayesian optimization was opted for when

picking LTSM parameters in a manner similar to the

RNN. Based on the assumption that the function was

sampled from a Gaussian process, this heuristic

search strategy keeps track of the posterior

distribution of the function as the effects of changing

the hyperparameters are noticed. After that, one may

choose hyperparameters for the next trial by

optimizing the predicted improvement over the best

result [33]. On validation data, both the RNN and the

LSTM network's performance are measured with

safeguards in place to avoid over fitting. We employ

dropout in both layers and terminate model training if

validation loss does not decrease after 5 iterations.

IV. IMPLEMENTATION
A. RNN

The time interval window was the first variable

examined. Literature suggests that such networks

have difficulty learning long-term dependencies [34].

Optimization based on gradients. To analyze the

connection between the present closing price and past

or future closing prices, an autocorrelation function

(ACF) was performed on the closing price time

series. This is not a foolproof method of prediction at

this length, but it beats out the others. In most

instances, there is a lag of up to 20 days between the

opening price and the closing price, with rarer

instances occurring at 34, 45, and 47 days.

Consequently, the time period tested over the grid

ranged from 2 days to 20 days, 34 days to 45 days,

and 47 days to a month. Larger time intervals, up to

one hundred days in increments of five, were also

tried to guarantee a thorough search. We found that

duration of 24 for the window provided the best

results. There are more hyperparameters to adjust

besides the time window: The network's learning

process, known as stochastic gradient descent (SGD),

is controlled by the learning rate parameter. In a

similar vein, momentum adjusts the learning rate to

prevent the model from reaching a local minimum (in

terms of error) and instead push it towards the global

minimum [35]. The RMSprop optimizer was

employed to enhance SGD because it maintains a

moving average of recent gradients and is therefore

more resistant to data loss [36]. Heaton [37] claims

 ISSN 2347–3657

Volume 8, Issue 2, June 2020

40

that the bulk of non-linear functions may be

approximated adequately by a single hidden layer.

Two more hidden layers were considered, but the

results were not as good, therefore the two selected

layers were the ones with the lowest validation error.

To choose between the input and output nodes,

Heaton suggests choosing the number of hidden

nodes. If there were less than 20 nodes in each

stratum, performance would suffer. Good

performance was seen with both 50 and 100 nodes in

the tests.

However, this may lead to over fitting and a

considerable increase in training time if there are too

many nodes. It was decided that the final model

should consist of 20 nodes since it was the minimum

number required to achieve satisfactory performance.

A nonlinear step-by-step equation called an

activation function is also required to transmit signals

across layers. Tanh, ReLu, and Sigmoid were among

the possibilities considered. There was no statistically

significant difference between Tanh and the others.

B. LSTM

The LSTM excels at learning long-term dependencies

over shorter time scales. Therefore, selecting a long

window had less of an effect on the LSTM. This

procedure mirrored the RNN's in that it followed a

method based on autocorrelation lag. When using a

narrower window, the LSTM struggled. The optimal

duration was 100 days, and two concealed LSTM

layers were selected. With just two layers, you may

uncover nonlinear associations in a time series. The

RNN model also dictated the selection of 20 hidden

nodes across both layers. Bayesian optimization of

the network parameters was implemented using the

Hyper as library2. The optimum model was sought

by the optimizer, which took into account dropout

levels in each layer and the best optimizer to use.

When compared to other methods, RMSprop once

again proved to be the most effective. Due of the

LSTM's fixed sequence of tanh and sigmoid

activation functions for its various gates inside the

cell; these functions were not modified in the LSTM

model. Between 50 and 100 epochs, LSTM models

converged with early halting. It was observed that, as

with the RNN, the batch size had a more significant

impact on running time than accuracy. Possible

explanation: the dataset is too tiny.

C. Model Comparison

The evaluation metrics are calculated using a

confusion matrix that shows the percentage of correct

and incorrect classifications. One definition of

accuracy is the sum of all the times an estimate was

percentages (up, down and unchanged) of right

forecasts for price movements. Analysis of

sensitivity, specificity, and accuracy is also

conducted to address the problem of asymmetrical

distribution of benefits (the bitcoin price tends to

rise). Detection sensitivity indicates how well a

model can identify true positives. How well a model

avoids false positives is measured by its specificity.

Accuracy, lastly, is a measure of how many correctly

categorized forecasts were really useful. Evaluation

and comparison of regression accuracy is performed

using Root Mean Square Error (RMSE). An 80/20

holdout validation technique is utilized to instrument

model assessment.

Since ARIMA models have been widely utilized in

price prediction applications, we constructed (and

optimized) one in order to simplify a comparison of

the deep learning approaches to more conventional

ones (e.g. [38], [39]). The data was divided into 5

time intervals, and then projections were made for the

next 30 days using an ARIMA model. Several

ARIMA models were fitted to the data after first

being differenced. The R forecast package's

auto.arima function provided the best fit.

V. EVALUATION
As can be seen in Table I, LSTM obtained the highest

\accuracy while the RNN achieved the lowest RMSE.

When it comes to accuracy and reliability, the

ARIMA forecast failed miserably. RMSE. The

ARIMA model estimated that the price would grow

slightly every day. The model did not produce any

false positives. One cause for this may be due \stop

the class imbalance in predictive section of the

ARIMA \forecast (the price tends to constantly grow)

(the price tends to always increase). Because of this,

the specificity and accuracy were both very high

(both 100%). This doesn't prove stellar efficiency

overall, but it does show that it's rather excellent at

picking up on shifts in price trend (s).

Table I: Model Results

Inconclusive findings on the validation dataset show

that all models had trouble properly learning from the

data. The model achieved an error rate of less than

1% on the training data. On evidence of validity

comparatively, the RNN had an error rate of 7.15%

and the LSTM was at 8.07%. The neural network

 ISSN 2347–3657

Volume 8, Issue 2, June 2020

41

models' 50.25 and 52.78 percent accuracy is only a

hair better than the probabilities of a 50-50 guess in a

binary classification challenge (price up vs. down).

The RNN was basically of \sno benefit when utilizing

a temporal duration above 50 days. Conversely, the

LSTM excelled between 50 and 100 days, with

optimal performance being achieved at 100 days.

Table II contrasts many methods to assess their

training. The Intel Core i7 2.6 GHz processor was

used. The graphics processing unit (GPU) was a 2GB

NVIDIA George 940M. Each computer has Ubuntu

14.04 LTS loaded onto a solid-state drive. So that the

RNN and LSTM could be compared, we gave them

both a batch size of 50 and a temporal duration of 50.

When compared to the central processing unit (CPU),

the graphics processing unit excelled. When

comparing the total amount of time spent training

both networks, the GPU was 67.7 percent more

efficient. When compared to CPU-only training,

RNNs benefited from a 58.8% speedup while LSTMs

saw a 70% boost in training speed when using a

GPU. Based on the results of the Glances monitoring,

the CPU split the algorithm into 7 separate threads. A

higher level of parallelism is made possible by the

GPU's 384 CUDA cores. In terms of data size, these

models were quite modest, consisting of just two

layers. Implementing on a GPU will be especially

beneficial for more complex models with more layers

or more datasets. It's possible that the LSTM's

lengthier training time compared to the RNN with the

same network parameters is related to the LSTM's

need to solve more equations, since more activation

functions means more equations. This makes one

wonder whether or not an LSTM is worth it over an

RNN given the additional computation required. In

the world of stock market forecasting, the tiniest of

deviations may have a huge impact. That's why it

makes sense to use an LSTM in this scenario. In

other contexts, the extra calculation isn't worth the

marginal performance boost.

VI. CONCLUSION AND FUTURE

WORK
Evidently useful for Bitcoin prediction are deep

learning models like the RNN and LSTM, with the

LSTM being better adept of recognizing longer-term

relationships. Contrarily, an excessive variation it’s

challenging to turn this into spectacular validation

findings because of the nature of this assignment.

Therefore, it is still a challenging undertaking to do.

There's a delicate balance between making sure a

model is accurate and letting it learn too much. The

dropout function is a great help in doing so.

However, although Bayesian optimization helped to

improve dropout selection, it was not enough to

provide reliable validation findings.

Although the ARIMA prediction seemed to perform

well according to the sensitivity, specificity, and

accuracy measures, its actual performance was much

poorer than the neural network models. The LSTM

fared somewhat better than the RNN. The training

time for the LSTM, however, is much longer.

An increase of 70.7% in training speed for the LSTM

is indicative of the performance improvements

derived from the parallelization of machine learning

algorithms on a GPU. Model. Better outcomes could

be attainable if the work were seen only via a

categorization lens. The study is limited in that the

model has not been deployed in a real-world situation

where it may be used for predictive purposes as

opposed to historical analysis. In addition, the model

should perform better if predictions can be made

using streaming data. In the future, it may be possible

to provide sliding window validation, which is not

done so in current work. The data itself is noisy,

which is an issue.

By examining the model's weights, we may

determine whether the dataset's complexity and hash

rate variables should be eliminated. To train

efficiently, deep learning models need a large

quantity of information. There would be 512,640 data

points in a year if the data granularity was set to per

minute. This kind of information is unavailable for

the past, but it is being collected daily from Coin

Desk in preparation for the future. As we've seen,

parallelization of algorithms is not restricted to

graphics processing units (GPUs). There is some

evidence that machine learning models perform

better on Field Programmable Gate Arrays (FPGA)

than on a GPU [40], making FPGAs an intriguing

option to GPU devices for parallelization.

REFERENCES
[1] S. Nakamoto, ―Bitcoin: A peer-to-peer electronic

cash system,‖ 2008.

 ISSN 2347–3657

Volume 8, Issue 2, June 2020

42

[2] M. Bri`ere, K. Oosterlinck, and A. Szafarz,

―Virtual currency, tangible return: Portfolio

diversification with bitcoins,‖ Tangible Return:

Portfolio Diversification with Bitcoins (September

12, 2013), 2013.

[3] I. Kaastra and M. Boyd, ―Designing a neural

network for forecasting financial and economic time

series,‖ Neurocomputing, vol. 10, no. 3, pp. 215–236,

1996.

[4] H. White, ―Economic prediction using neural

networks: The case of IBM daily stock returns,‖ in

Neural Networks, 1988. IEEE International

Conference on. IEEE, 1988, pp. 451–458.

[5] C. Chatfield and M. Yar, ―Holt-winters

forecasting: some practical issues,‖ The Statistician,

pp. 129–140, 1988.
[6] B. Scott, ―Bitcoin academic paper database,‖

suitpossum blog, 2016.

[7] M. D. Rechenthin, ―Machine-learning

classification techniques for the analysis and

prediction of high-frequency stock direction,‖ 2014.

[8] D. Shah and K. Zhang, ―Bayesian regression and

bitcoin,‖ in Communication, Control, and Computing

(Allerton), 2014 52nd Annual Allerton Conference

on. IEEE, 2014, pp. 409–414.

[9] G. H. Chen, S. Nikolov, and D. Shah, ―A latent

source model for nonparametric time series

classification,‖ in Advances in Neural Information

Processing Systems, 2013, pp. 1088–1096.
[10] I. Georgoula, D. Pournarakis, C. Bilanakos, D.

N. Sotiropoulos, and G. M. Giaglis, ―Using time-

series and sentiment analysis to detect the

determinants of bitcoin prices,‖ Available at SSRN

2607167, 2015.

[11] M. Matta, I. Lunesu, and M. Marchesi, ―Bitcoin

spread prediction using social and web search

media,‖ Proceedings of DeCAT, 2015.

[12] ——, ―The predictor impact of web search
media on bitcoin trading volumes.‖

[13] B. Gu, P. Konana, A. Liu, B. Rajagopalan, and J.

Ghost, ―Identifying information in stock message

boards and its implications for stock market

efficiency,‖ in Workshop on Information Systems and

Economics, Los Angeles, CA, 2006.

[14] A. Greaves and B. Au, ―Using the bitcoin

transaction graph to predict the price of bitcoin,‖

2015.

[15] I. Madan, S. Saluja, and A. Zhao, ―Automated

bitcoin trading via machine learning algorithms,‖

2015.

