
1 

 

 



           
           ISSN 2347–3657 
 

Volume 8, Issue 2, June 2020 
 

 
 

 

37 

 

 

Predicting the Price of Bitcoin Using Machine Learning 

Mrs. Lakshmi Lavanya Tumu, Mrs. Mukka Shirisha, Mrs. Gangula Pavani 

Abstract— 

The purpose of this article is to assess the feasibility of predicting the future U.S. dollar price of Bitcoin. 
The pricing data is obtained from the Bitcoin Price Index. It's a matter of accomplished with varied levels of success 

by using a Bayesian optimised recurrent neural network (RNN) and a Long Short Term Memory (LSTM) network. 

The RMSE for the LSTM is 8%, and its classification accuracy is 52%. The famous ARIMA model for time series 

forecasting \sis constructed as a contrast to the deep learning algorithms. As predicted, the non-linear deep learning 

algorithms outperform the ARIMA prediction which performs badly. Finally, both deep learning models are 

benchmarked on both a GPU and a CPU \switch the training time on the GPU surpassing the CPU implementation 

by 67.7%. 

 

I. INTRODUCTION 
 

The most valued crypto currency, Bit coin [1], is 

traded on more than 40 exchanges in more than 30 

different countries and regions. The current market 

value of the company is according to 

https://www.blockchain.info/, has a daily transaction 

volume of over 250,000 and a market cap of $9 

billion USD. Due to Bit coin’s relative youth and the 

associated volatility, which is significantly higher 

than that of fiat currencies [2], it presents a unique 

opportunity for price prediction. In addition, its 

decentralized structure sets it apart from other fiat 

currencies; for example, there is no comprehensive 

database of cash transactions or money in circulation 

for conventional fiat currencies. Prediction of 

developed financial markets like the stock market has 

been the subject of much study [3, 4]. As a time 

series prediction issue in a market that is still in its 

infancy, Bitcoin provides an intriguing analogy. Time 

series prediction techniques, such as the Holt-Winters 

exponential smoothing model, need data that can be 

decomposed into trend, seasonality, and noise in 

order to be useful [5]. When there are seasonal 

influences, such as in sales forecasting, this strategy 

performs better. These techniques are ineffective 

because the Bitcoin market is very volatile and does 

not follow a predictable seasonal pattern. Deep 

learning is necessary since the job is so difficult. 

Offers a promising technical answer, supported by its 

success in analogous settings. Considering the time- 
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Dependent nature of Bitcoin data, recurrent neural 

networks (RNNs) and Long short-term memories 

(LSTMs) are preferred over MLPs. The purpose of 

this article is to examine how well machine learning 

can forecast Bit coin’s price, and to evaluate 

parallelization approaches run on multi-core and 

GPU systems. These are the contributions this paper 

makes: Seven articles out of around 653 published on 

Bitcoin [6] deal on machine learning for prediction. 

An ARIMA time series model is also built to 

compare the neural network models' performance to 

that of more conventional methods used in financial 

forecasting. A day's worth of Bitcoin's closing price 

as measured by the Coin desk Bitcoin Price Index 

serves as the independent variable here. We don't 

zero on on a single conversation, but rather a 

weighted average of the values listed on the five 

largest Bitcoin markets (Bitstamp, Bitfinex, Coin 

base, Ocean, and itBit). It would be more efficient to 

concentrate on a single exchange if we were to 

execute transactions based on the indications. We 

measure model quality by calculating the root-mean- 

squared error (RMSE) of the closing price and then 

encoding the forecast price into a categorical variable 

showing an increase, a decrease, or no change in the 

price. After taking this extra step, traders may get 

additional performance measures that might aid in the 

development of a trading strategy, including 

classification accuracy, specificity, sensitivity, and 

precision. This paper's data were culled from the 

websites Coin desk and Blockchain.info. Block chain 

information, such as the mining difficulty and hash 

rate, are presented in addition to the closing price, 

starting price, daily high, and daily low. Two simple 

moving averages (SMAs) and a smoothed-out closing 

price are among the elements that have been built 

(and are used as technical analysis indicators [7]). 

 

II. RELATED WORK 

There is a dearth of studies that focus on utilizing 

machine learning algorithms to forecast Bitcoin 

prices. As proposed by [9], latent source modeling 

was put into action in [8] to enable cost forecasting. 

Bitcoin's 89 percent return in 50 days and 4.1 Sharpe 

ratios are highlighted. Predictions of Bitcoin values 

have also been attempted using text data gleaned 

from social media and other sources. In [10] 

researchers looked at employing support vector 

machines, the number of times Wikipedia was seen, 

and the network hash rate to do sentiment analysis. 

[11] Looked at the correlation between the value of 

Bitcoin, the number of tweets about Bitcoin, and the 

number of page views for Bitcoin on Google Trends. 

In a similar vein, [12] used Google Trends views to 

forecast trade volume rather than Bitcoin price. Small 

sample sizes and the ease with which false 

information may spread via (social) media platforms 

like Twitter or message boards like Reddit might be 

drawbacks of this kind of research. [13]. There is a 

severe lack of liquidity in Bitcoin exchanges. There is 

a higher potential for market manipulation as a 

consequence. This is why the general mood on social 

media is disregarded. [14] Used a combination of 

support vector machines (SVM) and artificial neural 

networks (ANN) to analyze the Bitcoin Block chain 

and provide price predictions for Bitcoin, claiming a 

price direction accuracy of 55% with a standard 

ANN. Block chain data alone, they reasoned, could 

not provide enough information for reliable 

forecasting. Additionally, in [15], Block chain data 

was used to implement SVM, Random Forests, and 

Binomial GLM (generalized linear model), with the 

authors noting a prediction accuracy of over 97%; 

however, because the authors did not cross-validate 

their models, their findings were not applicable to a 

broader audience. The use of wavelets to forecast 

Bitcoin values has also been documented [16, 17], 

where it is shown that there are significant positive 

connections between search engine impressions, 

network hash rate, and mining difficulty. 

These results are expanded upon by include 

information from the Block chain itself, in the form 

of the hash rate and the difficulty, as well as 

information from the main exchanges as given by 

Coin Desk. 

 

III. METHODOLOGY 

 
The CRISP approach to data mining was used for this 

work. 1 CRISP-justification DM's over KDD [26], 

which is more often used for data mining, is based on 

the commercial context of the prediction problem. 

Task. The time period covered by the Bitcoin dataset 

utilized is from August 19, 2013, to July 19, 2016. 

Figure 1 shows a time series visualization of these 

data. Since it no longer correctly depicts the network, 

data collected before to August 2013 has been 

omitted. The Block chain is used to get the difficulty 

and hash rate in addition to the Open, High, Low, 

Close (OHLC) statistics from Coin Desk. The 

information was also normalized such that its mean 

was zero and its standard deviation was one. 

Standardization \saws selected over normalization 

since it better matches the activation \functions 

utilized by the deep learning models. 
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Figure 1: Decomposition of the Bitcoin Time Series 

Data 

A. Feature Engineering and Feature Evaluation 

The goal of feature engineering is to simplify 

prediction by machine learning models by isolating 

relevant patterns in data. One of the essential 

components of data mining to successfully complete 

prediction tasks [27], [28]. Indicators like the Simple 

Moving Average (SMA) have been used in many 

recent articles [29, 30] to aid in machine learning 

categorization tasks. A suitable technical  indicator, 

such as a simple moving average (SMA) of the price 

over the last x days, is provided as an example. 

Borate (a wrapper over the random forest 

classification technique) was utilized to decide which 

characteristics to include in the evaluation. Multiple 

classifiers are used to make a final determination, as 

in an ensemble technique. Similar to the random 

forest classifier, this method uses a similar approach 

to get its results. 

It introduces uncertainty into the model by amassing 

data from an ensemble of random samples used to 

assess qualities, and it reveals which attributes are 

more significant [31]. 

The random forest analysis indicated that all 

characteristics were crucial to the model, but the 

simple moving average (SMA) across 5 and 10 days 

had the most relevance. Also crucial was the final 

pricing once noise was removed. 
B. Deep Learning Models 

Models built using deep learning must have their 

network settings well thought out for optimal 

performance. These are the three most common 

methods of parameter selection: 

Search strategies like genetic algorithms and grid 

search are examples of heuristic search strategies that 

may be used for deep learning models. Specifically, 

this research used both manual grid search and 

Bayesian optimization. Elman RNN uses grid search, 

which entails picking two hyperparameters with a 

minimum and maximum value. The best-performing 

parameters may then be found by searching that 

feature space. This method was used instead of 

Bayesian optimization since it was more applicable to 

the parameters in question. Keras, a Python library, 

was used to create this model [32]. Whenever 

feasible, Bayesian optimization was opted for when 

picking LTSM parameters in a manner similar to the 

RNN. Based on the assumption that the function was 

sampled from a Gaussian process, this heuristic 

search strategy keeps track of the posterior 

distribution of the function as the effects of changing 

the hyperparameters are noticed. After that, one may 

choose hyperparameters for the next trial by 

optimizing the predicted improvement over the best 

result [33]. On validation data, both the RNN and the 

LSTM network's performance are measured with 

safeguards in place to avoid over fitting. We employ 

dropout in both layers and terminate model training if 

validation loss does not decrease after 5 iterations. 

 

IV. IMPLEMENTATION 
A. RNN 

The time interval window was the first variable 

examined. Literature suggests that such networks 

have difficulty learning long-term dependencies [34]. 

Optimization based on gradients. To analyze the 

connection between the present closing price and past 

or future closing prices, an autocorrelation function 

(ACF) was performed on the closing price time 

series. This is not a foolproof method of prediction at 

this length, but it beats out the others. In most 

instances, there is a lag of up to 20 days between the 

opening price and the closing price, with rarer 

instances occurring at 34, 45, and 47 days. 

Consequently, the time period tested over the grid 

ranged from 2 days to 20 days, 34 days to 45 days, 

and 47 days to a month. Larger time intervals, up to 

one hundred days in increments of five, were also 

tried to guarantee a thorough search. We found that 

duration of 24 for the window provided the best 

results. There are more hyperparameters to adjust 

besides the time window: The network's learning 

process, known as stochastic gradient descent (SGD), 

is controlled by the learning rate parameter. In a 

similar vein, momentum adjusts the learning rate to 

prevent the model from reaching a local minimum (in 

terms of error) and instead push it towards the global 

minimum [35]. The RMSprop optimizer was 

employed to enhance SGD because it maintains a 

moving average of recent gradients and is therefore 

more resistant to data loss [36]. Heaton [37] claims 
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that the bulk of non-linear functions may be 

approximated adequately by a single hidden layer. 

Two more hidden layers were considered, but the 

results were not as good, therefore the two selected 

layers were the ones with the lowest validation error. 

To choose between the input and output nodes, 

Heaton suggests choosing the number of hidden 

nodes. If there were less than 20 nodes in each 

stratum, performance would suffer. Good 

performance was seen with both 50 and 100 nodes in 

the tests. 

However, this may lead to over fitting and a 

considerable increase in training time if there are too 

many nodes. It was decided that the final model 

should consist of 20 nodes since it was the minimum 

number required to achieve satisfactory performance. 

A nonlinear step-by-step equation called an 

activation function is also required to transmit signals 

across layers. Tanh, ReLu, and Sigmoid were among 

the possibilities considered. There was no statistically 

significant difference between Tanh and the others. 

B. LSTM 

The LSTM excels at learning long-term dependencies 

over shorter time scales. Therefore, selecting a long 

window had less of an effect on the LSTM. This 

procedure mirrored the RNN's in that it followed a 

method based on autocorrelation lag. When using a 

narrower window, the LSTM struggled. The optimal 

duration was 100 days, and two concealed LSTM 

layers were selected. With just two layers, you may 

uncover nonlinear associations in a time series. The 

RNN model also dictated the selection of 20 hidden 

nodes across both layers. Bayesian optimization of 

the network parameters was implemented using the 

Hyper as library2. The optimum model was sought 

by the optimizer, which took into account dropout 

levels in each layer and the best optimizer to use. 

When compared to other methods, RMSprop once 

again proved to be the most effective. Due of the 

LSTM's fixed sequence of tanh and sigmoid 

activation functions for its various gates inside the 

cell; these functions were not modified in the LSTM 

model. Between 50 and 100 epochs, LSTM models 

converged with early halting. It was observed that, as 

with the RNN, the batch size had a more significant 

impact on running time than accuracy. Possible 

explanation: the dataset is too tiny. 

C. Model Comparison 

The evaluation metrics are calculated using a 

confusion matrix that shows the percentage of correct 

and incorrect classifications. One definition of 

accuracy is the sum of all the times an estimate was 

percentages (up, down and unchanged) of right 

forecasts for price movements. Analysis of 

sensitivity, specificity, and accuracy is also 

conducted to address the problem of asymmetrical 

distribution of benefits (the bitcoin price tends to 

rise). Detection sensitivity indicates how well a 

model can identify true positives. How well a model 

avoids false positives is measured by its specificity. 

Accuracy, lastly, is a measure of how many correctly 

categorized forecasts were really useful. Evaluation 

and comparison of regression accuracy is performed 

using Root Mean Square Error (RMSE). An 80/20 

holdout validation technique is utilized to instrument 

model assessment. 

Since ARIMA models have been widely utilized in 

price prediction applications, we constructed (and 

optimized) one in order to simplify a comparison of 

the deep learning approaches to more conventional 

ones (e.g. [38], [39]). The data was divided into 5 

time intervals, and then projections were made for the 

next 30 days using an ARIMA model. Several 

ARIMA models were fitted to the data after first 

being differenced. The R forecast package's 

auto.arima function provided the best fit. 

 

V. EVALUATION 
As can be seen in Table I, LSTM obtained the highest 

\accuracy while the RNN achieved the lowest RMSE. 

When it comes to accuracy and reliability, the 

ARIMA forecast failed miserably. RMSE. The 

ARIMA model estimated that the price would grow 

slightly every day. The model did not produce any 

false positives. One cause for this may be due \stop 

the class imbalance in predictive section of the 

ARIMA \forecast (the price tends to constantly grow) 

(the price tends to always increase). Because of this, 

the specificity and accuracy were both very high 

(both 100%). This doesn't prove stellar efficiency 

overall, but it does show that it's rather excellent at 

picking up on shifts in price trend (s). 
 

Table I: Model Results 

 

 
Inconclusive findings on the validation dataset show 

that all models had trouble properly learning from the 

data. The model achieved an error rate of less than 

1% on the training data. On evidence of validity 

comparatively, the RNN had an error rate of 7.15% 

and the LSTM was at 8.07%. The neural network 
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models' 50.25 and 52.78 percent accuracy is only a 

hair better than the probabilities of a 50-50 guess in a 

binary classification challenge (price up vs. down). 

The RNN was basically of \sno benefit when utilizing 

a temporal duration above 50 days. Conversely, the 

LSTM excelled between 50 and 100 days, with 

optimal performance being achieved at 100 days. 
 

Table II contrasts many methods to assess their 

training. The Intel Core i7 2.6 GHz processor was 

used. The graphics processing unit (GPU) was a 2GB 

NVIDIA George 940M. Each computer has Ubuntu 

14.04 LTS loaded onto a solid-state drive. So that the 

RNN and LSTM could be compared, we gave them 

both a batch size of 50 and a temporal duration of 50. 

When compared to the central processing unit (CPU), 

the graphics processing unit excelled. When 

comparing the total amount of time spent training 

both networks, the GPU was 67.7 percent more 

efficient. When compared to CPU-only training, 

RNNs benefited from a 58.8% speedup while LSTMs 

saw a 70% boost in training speed when using a 

GPU. Based on the results of the Glances monitoring, 

the CPU split the algorithm into 7 separate threads. A 

higher level of parallelism is made possible by the 

GPU's 384 CUDA cores. In terms of data size, these 

models were quite modest, consisting of just two 

layers. Implementing on a GPU will be especially 

beneficial for more complex models with more layers 

or more datasets. It's possible that the LSTM's 

lengthier training time compared to the RNN with the 

same network parameters is related to the LSTM's 

need to solve more equations, since more activation 

functions means more equations. This makes one 

wonder whether or not an LSTM is worth it over an 

RNN given the additional computation required. In 

the world of stock market forecasting, the tiniest of 

deviations may have a huge impact. That's why it 

makes sense to use an LSTM in this scenario. In 

other contexts, the extra calculation isn't worth the 

marginal performance boost. 

VI. CONCLUSION AND FUTURE 

WORK 
Evidently useful for Bitcoin prediction are deep 

learning models like the RNN and LSTM, with the 

LSTM being better adept of recognizing longer-term 

relationships. Contrarily, an excessive variation it’s 

challenging to turn this into spectacular validation 

findings because of the nature of this assignment. 

Therefore, it is still a challenging undertaking to do. 

There's a delicate balance between making sure a 

model is accurate and letting it learn too much. The 

dropout function is a great help in doing so. 

However, although Bayesian optimization helped to 

improve dropout selection, it was not enough to 

provide reliable validation findings. 

Although the ARIMA prediction seemed to perform 

well according to the sensitivity, specificity, and 

accuracy measures, its actual performance was much 

poorer than the neural network models. The LSTM 

fared somewhat better than the RNN. The training 

time for the LSTM, however, is much longer. 

An increase of 70.7% in training speed for the LSTM 

is indicative of the performance improvements 

derived from the parallelization of machine learning 

algorithms on a GPU. Model. Better outcomes could 

be attainable if the work were seen only via a 

categorization lens. The study is limited in that the 

model has not been deployed in a real-world situation 

where it may be used for predictive purposes as 

opposed to historical analysis. In addition, the model 

should perform better if predictions can be made 

using streaming data. In the future, it may be possible 

to provide sliding window validation, which is not 

done so in current work. The data itself is noisy, 

which is an issue. 

By examining the model's weights, we may 

determine whether the dataset's complexity and hash 

rate variables should be eliminated. To train 

efficiently, deep learning models need a large 

quantity of information. There would be 512,640 data 

points in a year if the data granularity was set to per 

minute. This kind of information is unavailable for 

the past, but it is being collected daily from Coin 

Desk in preparation for the future. As we've seen, 

parallelization of algorithms is not restricted to 

graphics processing units (GPUs). There is some 

evidence that machine learning models perform 

better on Field Programmable Gate Arrays (FPGA) 

than on a GPU [40], making FPGAs an intriguing 

option to GPU devices for parallelization. 
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