
ISSN 2347–3657

Volume 13, Issue 3, 2025

182

Smart Teaching Assistant
Ishrath Nousheen, Ruthvika Saluvadi, Saanvi Macha

1Assistant Professor, Department of Information Technology, Bhoj Reddy Engineering College for Women.
2.3B,tech students, Department of Information Technology, Bhoj Reddy Engineering College for Women.

ruthvika369@gmail.com

ABSTRACT

The Smart Teaching Assistant (STA) is an AI-

powered educational tool designed to automate the

creation and assessment of academic questions. It

uses Natural Language Processing (NLP) and

machine learning techniques, especially Recurrent

Neural Networks (RNNs), to generate relevant,

diverse questions from provided text and evaluate

student answers effectively. The system enables

teachers to upload learning material, from which

questions such as multiple-choice, short answer, and

descriptive types are generated. It also evaluates

answers based on semantic similarity with

predefined responses, providing accurate feedback

and scores. STA addresses major challenges in

traditional education systems, such as time

constraints, inconsistencies in evaluation, and lack

of personalization. With a modular design

supporting continuous model improvement via user

feedback, the system ensures scalability,

adaptability.

1. INTRODUCTION

In today’s digital era, the integration of artificial

intelligence into educational systems is becoming

increasingly essential. One of the most promising

applications is in automating the assessment process,

which is often time-consuming and resource-

intensive when handled manually. Teachers spend

hours preparing question papers and evaluating

student answers, which can result in delays,

inconsistencies, and educator fatigue. Furthermore,

students do not always receive timely feedback,

which affects learning continuity and performance

tracking. The Smart Teaching Assistant (STA) is an

AI-based system designed to automate two core

functions of the academic evaluation cycle: question

generation and answer evaluation. It uses deep

learning models, specifically Recurrent Neural

Networks (RNNs), to generate contextually relevant

questions from educational content provided by

teachers. These questions are not limited to a specific

type—they include multiple choice, short answer,

and long descriptive formats, allowing for

comprehensive assessments. Additionally, the

system includes a sophisticated evaluation module

that assesses student responses based on semantic

similarity with ideal answers. This approach ensures

fairness and consistency in grading, especially for

subjective questions. STA not only reduces the

workload of educators but also enhances learning by

offering personalized, immediate feedback to

students. The system is designed to be scalable,

adaptable, and easy to integrate with existing

Learning Management Systems (LMS).

Existing System:

The existing system uses rule-based approaches and

automated grading for educational assessments.

Rule-based methods rely on predefined templates to

generate questions, which limits flexibility and

adaptability across domains. Automated grading

systems apply natural language processing

techniques such as keyword matching, syntactic

analysis, and semantic similarity to evaluate

answers. However, these systems face challenges

with accuracy and reliability, especially with

complex or ambiguous input. They are often biased

due to limited training data and lack adaptability

across languages and educational levels.

Consequently, these systems require significant

manual customization, limiting their scalability and

effectiveness in dynamic, real-world educational

environments.

Proposed System:

The proposed Smart Teaching Assistant system

utilizes advanced artificial intelligence, specifically

Recurrent Neural Networks (RNNs), to enhance

question generation and answer evaluation. It

automates the creation of diverse question types—

MCQs, short answers, and descriptive—by

understanding the context of input text. The RNN

model is fine-tuned using techniques like teacher

forcing and beam search for better accuracy and

variation. For evaluation, another RNN model

assesses student responses by comparing them with

ideal answers using semantic similarity and rubric-

based scoring, providing detailed feedback. The

system supports continuous learning through model

updates and user feedback, ensuring adaptability,

scalability, and personalized learning experiences in

various educational and training environments.

2-RELATED WORK

The development of automated educational tools has

evolved significantly, with early systems relying on

rule-based methods for question generation and

answer evaluation. These systems used predefined

templates and rigid algorithms to create questions

from textual input. While simple to implement, they

lacked the flexibility to handle diverse content, adapt

to different subject domains, or generate varied

question types. This limitation led to reduced

mailto:ruthvika369@gmail.com

ISSN 2347–3657

Volume 13, Issue 3, 2025

183

effectiveness in real-world educational settings

[5].Subsequent research introduced automated

grading systems using Natural Language Processing

(NLP) techniques. These systems leveraged keyword

matching, syntactic parsing, and semantic similarity

metrics to evaluate the correctness of student

answers. Although more sophisticated than rule-

based systems, they still faced issues with accuracy,

particularly when evaluating descriptive or complex

responses [4]. Moreover, these systems often failed

to provide personalized feedback, which is crucial

for effective learning [3].Recent advances in

artificial intelligence have enabled the use of

machine learning models, particularly Recurrent

Neural Networks (RNNs), to process sequential data

such as natural language. Studies have shown that

RNNs can generate contextually relevant and

coherent questions from educational content,

significantly improving the quality and diversity of

assessments [1][2]. Additionally, RNNs used for

answer evaluation can provide nuanced scoring and

meaningful feedback by understanding the semantic

structure of student responses. Research also

emphasizes the importance of fairness and bias

mitigation in educational AI. Ensuring unbiased

evaluation and equitable learning opportunities

remains a priority. Continuous learning and

adaptation based on user feedback are emerging

trends to keep the system relevant and accurate [1].

These advancements form the foundation for

building robust smart teaching assistants.

3. REQUIREMENT ANALYSIS

Functional Requirements:

The Smart Teaching Assistant system is designed to

deliver intelligent educational support through two

core functionalities: automated question generation

and answer evaluation. Key functional requirements

include:

User Management

• Role-based access (Student, Teacher, Admin)

including registration, login, and profile handling.

Content Input & Preprocessing

• Accepts textual data (paragraphs, articles, etc.) and

prepares it using tokenization, cleaning, and

segmentation for downstream processing.

Question Generation

• Uses an RNN model to generate multiple types of

questions (objective,subjective) based on the

provided content.

 Answer Submission

• Enables students to input and submit responses

through the platform interface.

 Answer Evaluation

• Evaluates answers using semantic similarity metrics

between student answers and model-generated ideal

responses; provides rubric-based scores.

 Data Management

• Handles storage and retrieval of uploaded content,

generated questions, submitted answers, and student

performance.

Model Training & Updates

• Incorporates continuous learning by training the

RNN model with new data.

Non-Functional Requirements:

 Performance

• Real-time response for question generation

and answer evaluation; optimized model inference

for smooth user experience.

 Scalability

• Easily extendable to support large student

bases and additional educational content..

 Usability

• Intuitive UI built with HTML/CSS; clear

navigation across modules for all user roles.

• Software Requirements:

• Operating System :

 Windows

• Frontend

 : HTML, CSS, JavaScript

• Machine Learning Libraries

 : TensorFlow, NLTK, Scikit-learn

• Backend :

 Python

• Web Development Framework :

Flask

• Storage :

 MySQL

•

• Hardware Requirements:

• Processor

 : Intel i5

• RAM

 : 8GB

• Storage :

 250GB SSD

• System-type

 : 64-bit / 32-bit OS

4. DESIGN

System Architecture:

The Smart Teaching Assistant system is designed

with a modular, client-server-based architecture

focused on scalability, efficiency, and ease of

integration. This architecture divides the system into

three main layers: the frontend interface, the backend

processing engine, and the data storage layer. Each

component operates independently yet

communicates seamlessly to provide a responsive

and intelligent educational experience for students,

teachers, and administrators. The frontend,

developed using HTML, CSS, and Node.js, serves as

ISSN 2347–3657

Volume 13, Issue 3, 2025

184

the primary user interaction point. It provides a clean

and intuitive web interface that adapts to the needs of

different user roles. Students can view dynamically

generated questions, submit answers, and receive

feedback, while teachers and administrators can

upload learning content, create quizzes, and monitor

student progress. All frontend-to-backend

communication is handled through secure HTTP

requests, ensuring smooth data transmission and

role-based access control. The backend, built using

Python and the Flask framework, functions as the

system’s processing core. It handles content

preprocessing, question generation, answer

evaluation, and feedback delivery. Central to these

tasks are two AI models based on Recurrent Neural

Networks (RNNs)—one dedicated to generating

questions from uploaded materials and another for

evaluating student answers. These models are trained

on domain-specific datasets and continually refined

using real user feedback, enabling accurate and

context-aware performance. The system’s MySQL

database manages structured data such as user

information, uploaded content, questions, responses,

scores, and feedback records. It supports efficient

data retrieval and secure storage, with strict role-

based access control to ensure data privacy and

integrity. The overall architecture allows for real-

time processing, high responsiveness under load, and

the integration of additional intelligent features like

quizzes, speech processing, and performance

analytics—making the Smart Teaching Assistant a

robust and future-ready educational tool.

Fig. 4.1.1.1 System Architecture

ISSN 2347–3657

Volume 13, Issue 3, 2025

185

Technical Architecture:

The technical architecture of the Smart Teaching

Assistant is built upon a robust and scalable full-

stack web framework, seamlessly integrating a

responsive frontend with intelligent, AI-powered

backend services. This architecture is designed to

deliver a dynamic, real-time educational experience

for users, ensuring efficient content management,

automated assessmentsall within a secure and

modular framework. The frontend of the application

is developed using HTML, CSS, and Node.js,

creating a responsive and interactive user interface.

This interface allows students, teachers, and

administrators to perform key tasks such as

uploading learning content (like notes or lecture

materials), viewing auto-generated questions, and

submitting answers. The design is role-sensitive,

meaning each user type gets access to features

tailored specifically to their needs. The frontend

communicates with the backend through secure

RESTful APIs, enabling smooth and efficient data

transmission. The backend is developed in Python

using the lightweight Flask framework, which serves

as the central processing hub for the system. It

manages core functionalities such as content

preprocessing, automatic question generation, and

answer evaluation. At the core of these functions are

Recurrent Neural Network (RNN)-based machine

learning models. The question generation model

intelligently transforms educational content into

relevant and context-aware questions, while the

answer evaluation model interprets student responses

to determine their correctness, completeness, and

relevance. To power these AI features, the system

leverages advanced machine learning libraries

including TensorFlow for neural network

construction and training, NLTK (Natural Language

Toolkit) for natural language preprocessing and

tokenization, and Scikit-learn for additional ML

utilities and evaluation metrics. These libraries allow

the models to perform tasks such as semantic

understanding, syntactic analysis, and sequence

prediction—crucial for educational NLP tasks. For

structured data storage, the system uses a MySQL

relational database. It efficiently manages and stores

user information, uploaded content, generated

questions, student responses, evaluation scores, and

feedback records. The database schema is optimized

for relational integrity, quick retrieval, and

scalability. It supports role-based access control,

ensuring that sensitive data is accessible only to

authorized users. This integrated architecture ensures

modularity, allowing individual components (like AI

models, UI modules, or the database) to be updated

or scaled independently. It supports seamless data

flow between layers and enables real-time AI

processing, ensuring a responsive experience for

users. Combined with encryption, session

management, and access control mechanisms, the

system maintains a secure environment while

offering intelligent support for teaching and learning

activities

.

 Fig. 4.1.2.1 Technical Architecture

ISSN 2347–3657

Volume 13, Issue 3, 2025

186

5. IMPLEMENTATION

The Smart Teaching Assistant project is

implemented as a web-based application that

combines front-end user interaction with back-end

AI-driven logic. The development involves multiple

components including user management, content

handling, question generation, and answer

evaluation. The system is built using Python (Flask)

for backend logic, HTML/CSS with Node.js for the

frontend, and MySQL for database management. AI

models are developed and integrated using machine

learning libraries such as TensorFlow, NLTK, and

Scikit-learn.

Libraries Used:

5.1.1 Flask – Lightweight web framework used to

build RESTful backend APIs and manage server-

side rendering.

5.1.2 TensorFlow – Used for training and deploying

the Recurrent Neural Networks (RNNs) that generate

questions and evaluate answers.

5.1.3 NLTK (Natural Language Toolkit) – Used

for natural language processing tasks like

tokenization, stemming, lemmatization, and sentence

segmentation.

5.1.4 Scikit-learn – Utilized for calculating cosine

similarity and implementing TF-IDF vectorization

for answer evaluation.

5.1.5 LanguageTool – Checks grammatical

accuracy and identifies errors in student-submitted

answers.

5.1.6 RAKE (Rapid Automatic Keyword

Extraction) – Extracts keywords from text for

question generation and evaluation.

6. SCREENSHOTS

Screenshot 6.1 Home Page

ISSN 2347–3657

Volume 13, Issue 3, 2025

187

Screenshot 6.2 Admin Login Page

Screenshot 6.3 Upload Page

Screenshot 6.5 Input data

ISSN 2347–3657

Volume 13, Issue 3, 2025

188

7. CONCLUSION

The Smart Teaching Assistant project demonstrates

a powerful integration of artificial intelligence with

education technology to automate and enhance

learning experiences. By leveraging Recurrent

Neural Networks (RNNs), the system effectively

generates contextually accurate and diverse

questions from any input text. It also evaluates

student responses through semantic similarity and

keyword analysis, providing immediate and

meaningful feedback. This not only reduces the

workload for educators but also enables personalized

learning for students through adaptive assessment

techniques. The modular architecture, combining a

web-based interface with robust backend models,

ensures the system is scalable, efficient, and user-

friendly. It supports multiple user roles, secure data

handling, and continuous model improvement

through user feedback. The implementation of AI-

driven evaluation and question generation bridges

the gap between manual teaching methods and

modern intelligent tutoring systems. Overall, the

Smart Teaching Assistant provides a practical,

innovative solution for digital education, promoting

efficiency, fairness, and deeper understanding in

academic assessments and self-paced learning

environments.

 REFERENCES

[1] E. Aflalo, “Students generating questions as a

way of learning,” Act. Learn. Higher Educ., vol. 22,

no. 1, pp. 63–75, 2021, doi:

10.1177/1469787418769120.

[2]

L.Maplethorpe,H.Kim,M.R.Hunte,M.Vincett,andE.

E.Jang,“Student generated questions in literacy

education and assessment,” J. Lit. Res., vol. 54, no.

1, pp. 74–97, 2022, doi:

10.1177/1086296X221076436.

[3] F. Y. Yu, “Multiple peer-assessment modes to

augment online student question-generation

processes,” Comput. Educ., vol. 56, no. 2, pp. 484–

494, 2011, doi: 10.1016/j.compedu.2010.08.025.

[4] F. Y. Yu and Y. H. Liu, “Creating a

psychologically safe online space for a student-

generated questions learning activity via different

identity revelation modes,” Brit. J. Educ. Technol.,

vol. 40, no. 6, pp. 1109–1123, 2009.

[5] F. Y. Yu, “Scaffolding student-generated

questions: Design and develop ment of a

customizable online learning system,” Comput.

Hum. Behav., vol. 25, no. 5, pp. 1129–1138, 2009.

