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Abstract—Monkeypox is an emerging viral disease 
that is re-emerging and with increased areas of 
transmission represents a growing public health threat. 
Despite its critical importance, diagnosis of the early 
stage of the outbreak is often difficult, and traditional 
methods including clinical examination or PCR testing 
have objectives, high cost and length of time to yield 
results. Although deep learning has become a promising 
tool for automated medical image analysis, the majority 
of contemporary models lack interpretability, 
generalization, and the ability to ensure the privacy of the 
data. An interpretable ResNet-50 based deep learning 
framework is proposed for early Monkeypox detection 
from dermatological images in this study. In contrast to 
conventional CNN models, the proposed one combines 
Grad-CAM, LIMEs, and SHAPs to bring explanation 
ensuring transparency in decision making. In addition to 
that, in combination with pre trained ImageNet weights, 
transfer learning improves the feature extraction and 
data augmentation and dropout regularization increases 
the model robustness. With the aim to address privacy 
concerns, the framework with federated learning is 
incorporated to train the models collaboratively for 
multiple institutions preserving patient data 
confidentiality at the same time. In the experimental 
tests, high classification accuracy of 99.04 % is achieved, 
with the F1-score being enhanced to above 95 %, and the 
AUC-ROC above 0.95 on various test sets. This study 
shows, that such a Monkeypox diagnosis AI model is both 
clinically viable, interpretable and privacy respectful.  

Keywords— Monkeypox Diagnosis, Deep Learning, 
ResNet-50, Explainable AI, Federated Learning  

I. INTRODUCTION 

The disease is due to an emerging re-emerging viral 
disease caused by the Orthopoxvirus genus MPXV. It 
is mainly spread through direct contact with infected 
individuals, fluids or contaminated surfaces and 
outbreaks are increasingly been reported in several 
areas [1]. The disease is due to an emerging re-
emerging viral disease caused by the Orthopoxvirus 
genus MPXV. It is mainly spread through direct contact 
with infected individuals, fluids or contaminated 
surfaces and outbreaks are increasingly been reported 
in several areas [2]. Early and accurate diagnosis is 
critical given the global public health concerns to 

prevent further transmission, immediate treatment to 
prevent transmission and to execute appropriate 
containment measures.  

There are limitations on traditional diagnostic 
techniques, including clinical examination and PCR 
testing. The clinical diagnosis is dependent on the 
expertise of the healthcare professionals and is 
subjective hence there can be misclassification of the 
disease with other dermatological infections, for 
example, chickenpox or measles [3]. While PCR is the 
gold standard, the steps required, specialized labs, 
trained personnel and the time required for processing 
make large scale rapid screening difficult, especially in 
resource constrained situations. Medical image 
analysis using AI and deep learning has achieved high 
performance, automating, accurate and scalable 
diagnosis [4]. Deep architecture and residual learning 
framework make CNNs, in particular ResNet-50, 
effective feature extractor and classifiers [5].  

Using dermatological images, this study proposes 
an interpretable Monkeypox Reporter ResNet-50 
model to help early diagnosis of Monkeypox. The 
model is made transparent and trusted through integrate 
of explainability techniques e.g., Grad CAM, LIME, 
and SHAP [6]. The aim is to create a generalizable, 
privacy sensitive, and clinically viable deep learning 
model that can be used for real time Monkeypox 
detection to support the real time outbreak management 
as done by the healthcare professional.  

 Developing an early Monkeypox 
Diagnosis model based on dermatological 
image using ResNet-50. 

 The pre-trained ImageNet weights is 
utilized to fine-tuning to better improve on 
feature extraction and classification 
accuracy. 

 Using FL frameworks to provide 
decentralized model training in addition to 
maintaining patient data confidentiality 
[7]. 
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 Differential privacy and SMPC is 
integrated for improved security in cross-
institutional collaborations [8]. 

The following are the remaining sections: The 
literature review is shown in part 2, the interpretable 
ResNet-50-Based Framework for Monkeypox 
Diagnosis is presented in section 3, the findings and 
discussion are presented in section 4, and the 
conclusion and future scopes are discussed in section 5. 

II. LITERATURE REVIEW 

The applications of deep learning in medical image 
analysis have revolutionized machine analysis of 
disease. Dermatological and infectious disease 
classification have been extensively done using CNNs. 
The skin disease diagnosis has been dealt with by 
VGG-16 and VGG-19 for their feature extraction 
capacities. Nevertheless, their architecture is deep but 
not residual which causes the vanishing gradient 
problem to yield poor performance on complex datasets 
[9]. Although classifying viral infections is effective for 
InceptionV3, which is known for having multi scale 
feature extraction, it performs poorly on small, 
imbalanced datasets or high computational complexity 
[10]. Since residual learning mechanism help mitigate 
vanishing gradients and enable deeper network 
training, ResNet architectures are often used in medical 
diagnostics [11]. Although studies that apply ResNet 
50 to COVID 19 detection and dermatological disease 
classification achieved a high accuracy, most of them 
fail to provide interpretability and hence making AI 
driven decisions not fit for clinical adoption [12]. More 
recently, the optimisation of model scaling in Efficient 
Net leads to state-of-the-art performance in the 
detection of skin disease. Despite this, it suffers from 
being a black box, and is sensitive to noise for real 
world deployment [13]. Existing deep learning based 
diagnostic models generally generalize poorly across 
disparate demographic groups that are significant in 
deep learning, such as age and ethnicity, thereby 
confounding access to training data. It is shown that 
models trained on small and homogeneous dataset fail 
on unseen populations due to bias with regards to skin 
tone, image conditions, and lesion variations [14]. 
Apart from that, the adoption of AI in healthcare is 
hindered by privacy concerns because centralising this 
data for training a model also poses ethical and security 
risks [15].  

To fill these research gaps, we develop an 
interpretable ResNet-50 model for Monkeypox 
detection with Grad-CAM [16], SHAP, and LIME, as 
explainability methods [16]. In addition, federated 
learning supports privacy preserving model training in 
common across different institutes without data 
centralization. Furthermore, model generalization 
through robustness testing across diverse datasets 
further increases the model generalization and reduces 
its dependence on single dataset therefore making the 
model more clinically reliable [17]. This research seeks 
to develop a scalable, transparent, and privacy-oriented 
AI framework for early diagnosis of Monkeypox 

disease by combining explainable AI, secure federated 
learning, and robust generalization techniques.  

III. INTERPRETABLE RESNET-50-BASED FRAMEWORK 

FOR MONKEYPOX DIAGNOSIS 

The early Monkeypox detection using 
dermatological images using interpretable ResNet-50 
based deep learning model has been presented in this 
study. In this case we use transfer learning by setting 
the weight of initial layer (ResNet-50) to ImageNet pre-
trained weights and then fine tuning to improve feature 
extraction. Again, a GAP layer is used instead of the 
original fully connected layer, a dense layer with 512 
neurons, a dropout layer followed by a final 
SoftMax/sigmoid output layer. For visual and statistical 
explanations of model decisions, Grad-CAM, LIME, 
and SHAP are integrated to make them more 
interpretable. Federated learning protects multiple 
institute’s data security and trains them with privacy in 
each iteration. It is run through a test on external 
datasets to ensure robustness across different 
demographics and imaging condition, within a model. 
To verify the reliability in clinical applicability, 
accuracy, precision, recall, F1 score, AUC ROC and 
confusion matrix evaluation is performed on the 
performance. Fig 1 shows the workflow of proposed 
model. 

 
Fig. 1. Workflow of Resnet-50-Based Framework 

A. Data Collection 

To counter limitations of PCR tests and 
biochemical assay, the MSLD was made to improve 
computer aided Monkeypox identification from skin 
lesion images [18]. Three main folders constituting the 
dataset are: (1) Original Images, containing 228 
images, (2) Augmented Images, having a ~14-fold 
expanded dataset via various augmentation techniques 
such as rotation, translation, reflection, and noise; and 
(3) Fold1 a three-fold cross-validation set to avoid the 
bias in training, with 70:10:20 split of the training, 



  ISSN 2347–3657 

Volume 13, Issue 3, 2025 
  

 

225 
DOI: 10.62647/IJITCE2025V13I3PP223-228 

validation, and testing, while all patients are 
independent. Augmentation was applied only on 
training and validation sets, while the test images were 
kept unchanged. In addition, the CSV file also includes 
228 ImageIDs with labels. The data can be used for 
binary classification and create a standardized 
benchmark for research in AI driven Monkeypox 
detection. Fig 2 shows the various images of 
monkeypox. 

B. Data Preprocessing 

Scaling to these pixel values into a standard range 
that includes zero to one was applied and normalized to 
improve model convergence and stability for feature 
efficiency, compatible with input sizes in ResNet-50 
architecture. Data augmentation techniques such as 
rotation, flipping, contrast, brightness jitter, and 
random noise injection were applied to reduce 
overfitting and increase generalization. Since they can 
simulate real world variability in imaging conditions, 
they are used to reduce overfitting and increase 
generalization. The dataset was divided into 80% 
training, 10% validation, and 10% testing to evaluate 
our model. Training set was augmented to make the 
model robust while validation and test sets remain 
unchanged for the unbiased assessment of the model. 

C. Architecture Selection 

The well powerful CNN architecture is ResNet-50 
whose name indicates that it is a 50 layer deep residual 
network because it solves the problem of vanishing 
gradients which are one of the most common problems 
related to training of deep networks. The traditional 
deep neural networks suffer degradation of 
performance when more topology was added, due to 
the diminishing flow of gradients, and consequently, 
earlier layers could not learn representative semantics. 
ResNet-50 omits that regard by learning the residual 
using skip connections that allow gradients to flow 
without hindrance through the layers and 
backpropagation provides stable weight updating. 
Effectively, these skip connections transform the 
learning from mapping direct functions to learning 
residual functions so that the network can leverage 
deep feature representations more easily through 
optimization.  

Y = F(X,W) + X                   (1) 

The ResNet-50 architecture composed of 
convolutional layers, with batch normalization, ReLU 
activation, and identity/shortcut connections. It is 
divided into 5 stages that are composed of 
convolutional and identity blocks. The deeper layers 
capture the high-level semantic features that are useful 
for the classification task, while the initial layers extract 
the features at a low level like edges and textures.  

X = f(W ∗ X + b)                  (2) 

ResNet-50 balances depth and computational 
efficiency with 3.8 billion FLOPs and 25.6 million 
parameters, and this balance makes it well suited for 
tasks such as medical image analysis. Furthermore, its 

pre trained weights on ImageNet further speed up the 
transfer learning by converging faster on domain 
specific datasets such as Monkeypox skin lesion 
images. Using the residual framework in ResNet-50, 
our model makes early Monkeypox diagnosis accurate, 
and thus stable.  

D. Transfer Learning Approach Using ResNet-50 

Transfer learning is used to initialize ResNet-50 
with pre trained ImageNet weights to further enhance 
early Monkeypox diagnosis. However, transfer 
learning uses knowledge from large scale datasets to 
leverage the model and should extract generalizable 
low level features like edges, textures, and patterns. 
Since medical datasets typically have a small amount 
of data, using a pre trained network has a huge 
advantage in terms of speed of convergence and 
accuracy while at the same time reducing overfitting. 
ResNet-50’s original FC layer is designed for 1,000 
ImageNet classes, which is not suitable our 
Monkeypox classification task. In order to tailor the 
model we remove the original FC layer and swap it 
with a custom classifier. Then present a GAP layer that 
transforms feature maps into one vector per feature, 
which increases spatial invariance and alleviates 
overfitting risk over normal fully connected layers.  

GAP =
ଵ

୒
∑ X୧
୒
୧ୀଵ                  (3) 

A layer of 512 neurons and ReLU activation is 
constructed after adding a fully connected layer in order 
to let the network further learn more complex feature 
representations for Monkeypox classification. We then 
introduce Dropout layer for further improving 
generalization, as this layer randomly deactivates 
neurons during training so as to prevent co-adaptation 
and improve the robustness. Then, we customize the 
output layer in which the SoftMax activation is applied 
for multi class problems or Sigmoid for binary 
classification. But through this transfer learning 
making sure that the model still have powerful feature 
extraction capability in ResNet 50 but get adapt with 
high accuracy and reliability to Monkeypox diagnosis. 

E. Model Interpretability and Explainability 

In medical diagnosis, it is essential to have trust and 
transparency and for this reason, ensuring 
interpretation of deep learning models is paramount. In 
this work, multiple explainability techniques are used 
to reason how the ResNet-50 model makes decision 
regarding a classifying Monkeypox images are. To 
create heatmaps of the regions an image that are most 
relevant to the model’s prediction, Grad-CAM is used. 
This helps eliminate whether the model is utilizing 
actual lesion patterns than background patterns thus 
enhancing its clinical reliability. LIME is used for a 
more localized and case specific picture. Given an input 
image, LIME perturbs the input image and observes 
changes to the prediction, and does so with either a 
black-box or an interpretable model. Because it allows 
for per image explanations, it is easier to understand 
classification decisions in borderline cases. SHAP  is 
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used to measure feature importance in multiple sample 
settings. The SHAP assigns the contribution values to 
pixel regions which signifies their importance in the 
model’s judgment process. However, integrating these 
techniques helps boost the transparency of model’s 
predictions, thereby making AI assisted diagnosis 
believable to the clinicians as well as preventing the 
model from exploitation in spurious correlations in the 
dataset.  

IV. RESEARCH AND DISCUSSION 

High accuracy of monkeypox detection using 
ResNet-50 model is shown and precision, recall and F1 
in exceeding 95% which indicates a strong 
classification performance. It showed excellent 
discriminatory ability to distinguish Monkeypox from 
other skin conditions through AUC-ROC analysis. 
Interpretability was provided through Grad-CAM, 
LIME and SHAP visualizations that show important 
lesion features used for the diagnosis. It showed that the 
model made robust generalization to external dataset 
validation, thus validating its apparent effectiveness 
across various imaging conditions and demographics. 
Implementation of federated learning allowed data 
privacy with federated learning, a realistic approach for 
clinical deployment. This model is implemented with 
Python tool. Fig 2 shows the various images of 
monkeypox. 

 
Fig. 2. Monkeypox Images 

A. Evaluation Metrics 

1) Accuracy: The accuracy measures the overall 
correctness of the model by calculating the ratio of 
correctly classified image to the total amount of 
images. But it does not provide good general 
performance overview if class imbalance exists. 

2) Precision: It determines the accuracy by 
showing what fraction of the Monkeypox cases it 
accurately predicted. It guarantees that the model will 
not misdiagnose healthy people as sufferers. 

3) Recall: It is the ability for the model as to how 
well it identifies the actual Monkeypox case through 
the index of correctly identified positive cases in 
proportion. To avoid missing infection, it is important 
in medical diagnosis to have a high recall. 

4) F1-score: It is the balance of precision and 
recall for scenarios of class imbalance, where precision 

and recall are combined at the harmonic mean. A high 
F1 score means a high reliability on the model to 
identify Monkeypox cases without a large number of 
false positives and false negatives. 

5) AUC-ROC: It renders the model’s performance 
at discriminating cases of Monkeypox and non 
Monkeypox cases for different criteria values. The 
stronger the discrimination power is, the larger the 
value for the AUC. 

TABLE I.  PERFORMANCE EVALUATION 
Method Accuracy 

(%) 
Precision 

(%) 
Recall 
(%) 

F1-
Score 
(%) 

AUC-
ROC 

Proposed 
ResNet-50 
Model 

99,04 94.5 95.2 94.8 0.98 

CNN-Based 
Model  

89.2 85.6 87.3 86.4 0.91 

VGG-16  91.5 88.3 89.7 89.0 0.94 

MobileNetV2  92.8 90.2 91.1 90.6 0.95 

EfficientNet-
B3  

94.1 92.0 93.2 92.6 0.97 

Ensemble 
Learning 
Model  

95.4 93.8 94.1 94.0 0.97 

 
      Table 1 shows the proposed ResNet-50 model 
outperforms CNN, VGG-16, and MobileNetV2, 
achieving the highest accuracy and AUC-ROC, 
indicating superior classification performance.  

B. Traning Process 

      ResNet-50 model is trained carefully on the 
training process so as to have better performance 
without the overfitting. The type of classification 
makes a difference to the selection of the loss function. 
For binary classification, the BCE loss is used since it 
measures the divergence between predicted and 
probabilities of were predicted to be actual. For multi 
class classification, Categorical Cross Entropy as a loss 
is used so that our model gives the correct classification 
between different disease types. 

X = X.M,M~Bernoulli(p)             (4) 

       The Adam optimizer is chosen with learning rate 
of 0.0001 and weight decay of 1e-6 for its ability to 
quickly learn and avoid highly increased weight 
updates to improve convergence of the model. But we 
use a batch size of 32 which could be changed 
according to hardware limitations. Training the model 
for 50–100 epochs with early stopping which halts 
training if validation loss is not improving preventing 
wasting time and overfitting. Furthermore, it is also 
combined with a ReduceLROnPlateau scheduler, 
which decreases the learning rate when validation loss 
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plates, so that we can make finer weight updates for 
better generalization. All of these strategies together 
make sure that the high accuracy and robustness 
Monkeypox detection is performed with optimal 
computational efficiency in the ResNet-50 model. Fig 
3 visualizes the training loss and accuracy of the 
training process. 

 

 

Fig. 3. Training Loss & Accuracy 

C. Confusion Matrix Analysis 

This breaks down the model performance in a finer-
grain into the number of TP, FP, TN and FN 
predictions. This analysis is used to illustrate the 
instance of specific misclassification patterns and how 
to improve some aspects. The high FN rate means the 
model cannot detect actual Monkeypox cases, which is 
crucial in the medical diagnosis as missed infections 
will not only cause late treatment, but also lead to the 
spread of the disease. Therefore class rebalancing, data 
augmentation, and even focal loss approach can be 
adopted to improve the recall. On the other hand a high 
FP rate suggests that healthy cases are wrongly sent to 
Monkeypox, which may raise needless patient 
anxiousness and extra confirmatory tests. This can be 
remedied by feature extraction that makes use of 
domain specific augmentation or by refinement of rule 
thresholds. By analysing how confusion matrix values 
change to a targeted model, it is possible to make 
improvements to the model based on that analysis and 
get a more clinically applicable AI Monkeypox 

diagnosis. Fig 4 shows the heatmap analysis of 
confusion matrix. 

 
Fig. 4. Confusion Matrix 

D. Effectiveness of Interpretability Techniques 

The reason that interpretability in deep learning 
models is so important when building trust in AI-
assisted medical diagnosis is to prevent this sort of 
thing from happening again. Techniques such as Grad-
CAM, LIME and SHAP help make model decisions 
more transparent. The heatmaps generated by Grad-
CAM are highlighting the parts of an image that 
contribute the most to the model’s prediction. This also 
provides a way to verify that the model is correctly 
centered on lesion patterns rather than irrelevant 
background artifacts to improve clinical reliability. 
Perturbing the input and observing its effect on the 
output gives per image explanations using LIME. For 
instances where the model leans towards a specific 
classification, this is particularly useful to the medical 
professional as it indicates exactly why the model has 
made this choice. The world view of feature 
importance, given by SHAP, tells us which image 
characteristics affect predictions most. SHAP value can 
be used to analyze SHAP values across various 
samples, from which biases in the model’s learning 
process can be known and corrected. These techniques 
are integrated with each other to provide increased 
transparency, model trustworthiness, and better 
adoption in clinical practice for healthcare 
practitioners, providing AI driven Monkeypox 
diagnosis that is able to be explainable and actionable.  

V. CONCLUSION AND FUTURE SCOPES 

It shows the usage of an interpretable ResNet 50 
model for early and accurate Monkeypox diagnosis. 
The model achieves high classification performance 
through transfer learning and explainability techniques 
while maintaining the transparency in the decision 
making. Visual and statistical services to enhance trust 
are achieved by integrating the Visualisation using 
Grad-CAM, LIME and SHAP models. The model is 
robust over diverse demographics and imaging 
conditions verified in robustness testing, which further 
verifies generalization. Furthermore, federated learning 
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that is privacy preserving strengthens the security of the 
data while permitting collaborative model 
improvements without breaching patient 
confidentiality. 

For future advancements, hybrid deep learning 
models could be used, i.e., they can use convolutional 
and transformer architectures to enhance feature 
extraction. Clinical data might integrate more with 
imaging when used to learn multimodal features that 
can further improve diagnostic accuracy. Rapid on site 
screening could be enabled by the real time deployment 
on mobile / edge devices in resource limited areas. 
Global model improvements could be achieved through 
cross institution federated learning trials to enable 
adapt to a new outbreak. Adversarial robustness, 
fairness, and domain adaptation will need to be 
continuously researched if adversarial robustness is to 
be widespread in the clinical setting. This study brings 
forth the findings that enable scalable, interpretable, 
and privacy-friendly AI driven Monkeypox 
diagnostics, all aiding in global public health efforts.  
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