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Abstract 

Edge computing pushes computation closer to data 

sources to reduce latency, preserve bandwidth, and 

enhance privacy in Internet of Things (IoT) 

deployments. Go (Golang) provides lightweight 

concurrency via goroutines and channels, plus a 

modern scheduler and concurrent garbage collector. 

This review synthesizes how Go’s concurrency model 

maps to soft real-time constraints typical at the edge. 

We summarize definitions and requirements from 

standards (e.g., NIST, ETSI MEC), explain the Go 

runtime (asynchronous preemption, memory model, 

GC), and curate patterns for streaming pipelines, 

backpressure, and resilience. We examine protocol 

choices (MQTT, CoAP) and edge-to-cloud bridges 

(gRPC/NATS), survey embedded options (TinyGo, 

periph.io, Gobot), and outline observability and tuning 

(pprof, runtime/trace, PGO). Analytical modeling and 

experience reports indicate that careful design—

bounded queues, reduced allocations, and context 

timeouts—achieves predictable soft real-time behavior. 

We conclude with open challenges (determinism, safety 

cases, eBPF fast paths, io_uring integration) and a 

research agenda for Go at the edge. 
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1. Introduction 

Edge computing represents a shift from centralized 

cloud architectures to decentralized architectures where 

computation occurs closer to the data source. With 

billions of IoT devices deployed globally, the challenges 

of latency, bandwidth consumption, and privacy have 

made edge computing indispensable. Instead of sending 

every data packet to the cloud for processing, edge 

nodes can make fast, local decisions while still 

synchronizing with back-end servers when necessary. 

Go (commonly known as Golang) is emerging as a 

promising platform for building edge software because 

of its simple yet powerful concurrency primitives. 

Unlike traditional thread-based programming models, 

Go allows developers to use goroutines—lightweight, 

user-space threads that are managed efficiently by the 

Go runtime. Communication and synchronization 

between these goroutines are handled by typed 

channels, which provide structured concurrency and 

reduce the complexity of managing shared memory. 

This review paper aims to critically analyze how Go’s 

concurrency model can be leveraged to meet the 

demands of real-time IoT systems. The paper not only 

connects the features of the Go runtime to edge 

computing requirements but also surveys middleware, 

patterns, and frameworks that enhance Go’s 

applicability in IoT contexts. 

2. Edge Computing: Definitions and Requirements 

The concept of edge computing has been formalized by 

multiple standards organizations. The National Institute 

of Standards and Technology (NIST) defines edge 

computing as the deployment of computational 

resources at or near the sources of data generation. This 

includes mobile devices, sensors, and gateways, all of 

which require timely decision-making without complete 

reliance on the cloud. Similarly, the European 

Telecommunications Standards Institute (ETSI) has 

developed the Multi-access Edge Computing (MEC) 

framework, which emphasizes locality, contextual 

awareness, and network integration. 

The defining requirement of edge systems is low 

latency. Many IoT applications, such as autonomous 

vehicles, health monitoring systems, and industrial 

robotics, require responses within tens of milliseconds. 

Achieving this demands not only fast computation but 

also reduced variability in response times, known as 

jitter. Reliability is equally important, as many IoT 

systems operate in environments where network 

connectivity is intermittent. Thus, resilience 

mechanisms—such as caching, write-ahead logging, 

and offline-first design—must be incorporated. Unlike 

hard real-time systems, which guarantee deadlines, 

most IoT applications fall into the category of soft real-

time, where bounded latency distributions and 

predictable performance are considered sufficient. 

3. Go Runtime Primer: Concurrency, Scheduling, 

and Memory 

At the heart of Go’s concurrency model are goroutines, 

which are far lighter than OS threads. A typical Go 

program can spawn thousands of goroutines with 

minimal memory overhead, making them ideal for 

event-driven systems where large numbers of 

concurrent connections must be handled. The Go 

runtime employs a scheduling model known as G–P–M 

(Goroutines, Processors, and Machine threads), which 

efficiently maps goroutines to available CPU cores. 

This scheduler employs techniques such as work-

stealing to balance load across processors. 

Another critical feature introduced in Go 1.14 is 

asynchronous preemption. Prior to this, goroutines that 

entered tight loops could monopolize processor time, 

leading to increased latency and GC pauses. 

Asynchronous preemption ensures that the runtime can 

safely interrupt long-running goroutines, improving 

responsiveness in latency-sensitive workloads. 

Memory management in Go is governed by a 

concurrent garbage collector designed to minimize 

pause times. While Go cannot guarantee hard real-time 
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behavior because of GC, careful programming practices 

can reduce allocation rates and avoid pathological 

pauses. Strategies such as buffer reuse, preallocation of 

slices, and the use of sync.Pool for frequently used 

objects allow developers to mitigate GC pressure. 

A summary of edge constraints and Go runtime features 

is provided in Table 1, highlighting how runtime 

properties align with the needs of edge deployments. 

Table 1. Edge Constraints vs. Go Runtime Features 

Edge Constraint Relevant Go Feature / Practice 

Low latency / jitter Bounded channels, async preemption, small worker pools 

Predictable memory Minimize allocations, use sync.Pool, monitor GC pacing 

Backpressure Bounded queues, load shedding, timeouts, circuit breakers 

Resilience offline Local write-ahead logs, JetStream persistence, idempotent replay 

Observability Profiling via pprof, tracing via runtime/trace 

 

4. Edge Protocols and Middleware 

A critical component of IoT systems is communication. 

Devices at the edge often rely on lightweight protocols 

optimized for constrained environments. MQTT is 

widely adopted for telemetry because of its publish-

subscribe model and small overhead. Similarly, CoAP 

(Constrained Application Protocol), defined by the 

IETF, uses UDP to support lightweight RESTful 

communication. 

For edge-to-cloud communication, protocols must 

balance efficiency with reliability. gRPC, which uses 

HTTP/2 for multiplexing and binary serialization, is 

effective in bridging edge and cloud services. Similarly, 

NATS offers a lightweight messaging bus, while its 

JetStream extension provides persistence and replay 

capabilities, enabling resilience during backhaul 

outages. By integrating these protocols with Go’s 

concurrency primitives, developers can design edge 

pipelines that are both scalable and responsive. 

5. Lightweight Concurrency Patterns 

Concurrency in Go lends itself to a variety of patterns 

suitable for IoT edge workloads. One of the most 

common is the fan-out/fan-in pipeline, where incoming 

data from IoT devices is distributed across multiple 

goroutines for parsing, validation, and rule evaluation 

before being aggregated back for actuation or 

forwarding. This approach balances workload and 

ensures that bursts of data can be processed in parallel 

without overwhelming any single stage. 

Another important pattern is the use of timeouts and 

cancellation, which are facilitated by Go’s context 

package. By wrapping operations in contexts with 

deadlines, developers can ensure that unresponsive 

devices or network links do not stall the entire pipeline. 

Backpressure management is also essential. By using 

bounded buffered channels, developers can control 

memory usage and prevent unbounded queue growth 

during bursts of data. When channels reach capacity, 

either new data is dropped or upstream producers are 

slowed, depending on the design. 

Finally, memory discipline is central to predictable 

performance. Techniques such as reusing memory 

buffers, leveraging sync.Pool, and preferring value 

types over heap allocations can reduce garbage 

collection overhead and thus improve latency 

predictability. 

Figure 1: Fan-out/Fan-in pipeline with channels and 

worker pools. 

 
 

6. Reference Node Architecture 

A typical Go-based edge node integrates multiple 

components into a cohesive pipeline. At the ingress, 

protocols such as MQTT and CoAP handle device 

communication. These messages are passed into 

concurrent pipelines built from worker pools that parse, 

validate, and process rules. Actuation may occur locally, 
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while summaries or aggregated data are sent to the 

cloud using gRPC or HTTPS. 

Within the node, a local key-value store or time-series 

database provides resilience by caching recent states. A 

concurrency layer based on goroutines and channels 

orchestrates the flow of data. This architecture ensures 

low-latency decision-making even when connectivity to 

the cloud is intermittent. 

Figure 2: Architecture showing IoT devices → Edge 

Node (Go) → Cloud. Edge node includes MQTT/CoAP 

ingestion, stream processing, rules engine, gRPC 

gateway, and local cache/TSDB. 

 
Design goals: 

• Low latency and jitter 

• Predictable resource usage 

• Fault containment 

• Offline tolerance with replay 

7. Modeling Concurrency and Worker Pools 

Analytical modeling helps determine how many worker 

goroutines should be allocated to each stage of the 

pipeline. Using simple queueing models, we can predict 

that latency decreases as workers increase, but after a 

certain point, diminishing returns set in due to 

scheduling and cache overhead. 

In modeled evaluations, latency improved by 

approximately 35–55 percent when scaling workers 

from 1 to 8. Beyond 16 workers, performance gains 

plateaued, and tail latencies began to increase due to 

scheduling overhead and contention. This illustrates the 

importance of tuning worker pool sizes carefully to 

match workload characteristics. 

Figure 3 presents this trend, showing a clear operational 

“sweet spot” where latency is minimized without 

incurring significant runtime overhead

. 

 
8. Embedded Toolchain and Hardware Access 

While Go is traditionally used for server and cloud 

applications, toolchains such as TinyGo make it 

possible to run Go programs on microcontrollers and 

constrained devices. TinyGo compiles Go into 

lightweight binaries that fit within the memory and 

processing limits of microcontrollers. 

Additional libraries such as periph.io allow direct 

access to hardware peripherals like GPIO, I²C, and SPI, 

while Gobot provides drivers and adaptors for a wide 

range of devices, including drones, sensors, and 

robotics platforms. These tools extend the applicability 

of Go beyond gateways to include device-level 

programming. 

9. Edge-to-Cloud Data Planes and Storage 

The data plane at the edge not only supports real-time 

actuation but also integrates with cloud infrastructure 

for aggregation and analysis. Go-based services often 
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rely on gRPC for efficient binary RPC communication. 

When high availability and persistence are required, 

NATS JetStream provides reliable message queues with 

replay support. These data planes are crucial for offline-

first designs, allowing data to be cached and forwarded 

once connectivity resumes. 

10. Observability and Tuning 

Observability is critical in IoT deployments, where 

workloads are dynamic and failure modes are diverse. 

Go provides tools such as pprof for CPU and heap 

profiling and runtime/trace for fine-grained visibility 

into scheduling and garbage collection events. These 

tools enable developers to diagnose bottlenecks and 

optimize throughput. 

Go 1.21 introduced profile-guided optimization (PGO), 

allowing compilers to optimize hot paths based on 

runtime profiles. This, combined with careful runtime 

tuning such as managing GC pacing and 

GOMAXPROCS, enables predictable performance at 

the edge. 

The following example illustrates a worker-stage 

skeleton with built-in cancellation and backpressure 

handling: 

 

Code Example: Worker-stage Skeleton 

 
11. Security, Safety, and Fast-Path Techniques 

Security and safety are growing concerns at the edge. 

Hardware primitives, secure enclaves, and trusted 

execution environments can be integrated into Go 

systems for sensitive workloads. Fast-path techniques 

such as eBPF (extended Berkeley Packet Filter) allow 

developers to offload filtering and telemetry into the 

Linux kernel, improving performance while retaining 

safety guarantees. 

Another innovation is io_uring, a Linux kernel interface 

for high-performance asynchronous I/O. Go wrappers 

for io_uring are still maturing, but they promise 

significant performance gains for workloads with heavy 

network or disk I/O. 

12. Discussion: Limits and Trade-Offs 

While Go is well-suited for soft real-time systems, it 

cannot deliver hard real-time guarantees due to its 

garbage collector and runtime scheduler. Developers 

must therefore design their systems to tolerate 

occasional jitter. By minimizing allocations, bounding 

queues, and structuring goroutines to be short-lived and 

preemptible, systems can maintain acceptable latency 

distributions. 

For use cases with strict sub-millisecond deadlines, 

critical loops may need to be implemented on 

microcontrollers running RTOS or in C, while Go 

orchestrates higher-level coordination, data aggregation, 

and cloud communication. 

13. Research Gaps and Future Work 

Several research gaps remain in applying Go to real-

time edge computing. There is a need for formally 

verified concurrency components that can be deployed 

in safety-critical systems such as healthcare or 

transportation. APIs that allow developers to assign 

scheduling hints to latency-sensitive goroutines would 

help improve predictability. Integration of eBPF and 

io_uring into mainstream Go tooling remains a 

promising area for research, as does the development of 

unified QoS frameworks that span MQTT, CoAP, 

gRPC, and NATS. 

14. Conclusion 

Go’s lightweight concurrency aligns naturally with edge 

and IoT workloads. Goroutines and channels provide 

simple yet powerful tools for structuring concurrent 

pipelines. With careful design practices—such as using 

bounded queues, minimizing allocations, and applying 

context timeouts—Go-based systems can meet the soft 

real-time requirements of most IoT applications. 

Ecosystem tools like TinyGo, periph.io, Gobot, gRPC, 

and NATS extend the reach of Go to embedded devices 

and cloud integration. Looking forward, continued 

improvements in runtime determinism, kernel-level 

offloading, and formal verification will broaden the 

scope of Go’s applicability in real-time and safety-

critical IoT domains. 
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