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Abstract 

Modern web-scale applications such as e-commerce, 

streaming to social media all are based on real-time 

recommendation systems. Nevertheless, it is a 

challenge to ML inference to deliver high-quality 

recommendations at low latency and large request 

volumes. This paper introduces a low-latency, high-

throughput recommendation pipeline-based scalable 

ML inference system. We examine trade-offs among 

model complexity, latency and system cost. We 

develop a modular architecture to combine effective 

feature retrieval, candidate generation and optimized 

model serving. In particular, we discuss such methods 

as model quantization, dynamic batching, caching and 

hardware acceleration to improve the inference 

performance. Experimental testing on benchmark 

workloads and real-world datasets demonstrates that 

our system can realize sub-100ms latency and state of 

the art recommendation quality, scalable and cost 

efficient to use in production. 

Keywords: Scalable Machine Learning Inference, 

Real-Time Recommendation Systems, Low-Latency 

Model Serving, Distributed Systems for ML, Model 

Optimization and Deployment 

 

I. INTRODUCTION 

Recommendation systems have become one of the 

most important units of user engagement and retention 

strategies by the proliferation of digital platforms. The 

recommendations made by e-commerce giants such as 

Amazon, which announces that recommendations earn 

the company almost 35%of its income [1], to video-

streaming platforms such as Netflix, where more than 

80 % of user activity is caused by recommendations 

[2], personalized recommendations have a direct effect 

on business performance and user satisfaction. The 

demand to provide real-time recommendations has 

increased exponentially with the need to handle 

billions of interactions in a day and be able to adjust to 

the changing preferences of users. Indicatively, 

Facebook serves more than 4 million likes each minute 

[3], and YouTube serves more than 500 hours of video 

uploads each minute [4]-settings that require real-time 

inference to perform personalization at scale. 

Conventional batch-based recommendation pipelines 

fail in these settings because of latency and failure to 

adapt in real-time to the changing user behavior [5]. 

Scalable machine-learned (ML) inference systems are 

thus now essential to achieve the twin objectives of  

 

 

precision and efficiency with strict latency 

requirements (typically <100ms) and huge scalability  

 

demands (millions of requests/s). The paper develops 

scalable ML inference system design and optimization 

using real-time recommendation as a target 

application. 

1.1 Background 

The recommendation systems are based on the 

pipeline that is generally divided into three significant 

phases: candidate retrieval, ranking, and re-ranking 

[7]. 

● Candidate Retrieval: Out of billions of entries, fifty 

to a thousand viable candidates are extracted with 

effective approximate nearest neighbor (ANN) 

search engines like Faiss or ScaNN [8]. This 

should be exceptionally quick often in 10ms so as 

to prevent bottlenecks [9]. 

● Ranking: More advanced machine learning or deep 

learning models- such as Wide and Deep models, 

transformer-based recommenders, or graph neural 

networks (GNNs)- rank the retrieved items, based 

on user features, contextual data, and prior 

interaction [10]. 

● Re-Ranking: This is a lightweight model that 

imposes some constraints (e.g. diversity, fairness, 

novelty) on the best results to then present them to 

the user [11]. 

The modern systems should combine feature stores (to 

support the full range of feature retrieval in real-time), 

low-latency inference engines (i.e., TensorFlow 

Serving, Nvidia Triton, TorchServe), and scalable 

infrastructure (i.e., Kubernetes with autoscaling, 

GPUs/TPUs, or even an edge computing). Besides, 

optimization, including model compression 

(quantization, pruning, distillation) [13] and system-

level optimization (dynamic batching, caching, 

asynchronous serving) [14], are the key to the trade-

off between latency, throughput, and accuracy. The 

intersection of the massive scale of big data, the 

complexity of deep learning, and real-time user 

requirements is the environment in which this study is 

framed [15]. 

1.2 Problem Statement 

Even with the advancements in the recommendation 

models, performing inference in real-time at scale 

remains a challenging task [16]. The challenge stems 

from the need to strike a balance among three 

dimensions that always conflict with each other, 

accuracy, latency, and scalability [17]. The predictive 
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accuracy of advanced models such as deep neural 

networks and transformers is well known, but 

achieving and maintaining latency lower than 100 

milliseconds is impractical [18]. On the contrary, 

quick and simple models can compromise 

recommendation and user satisfaction [19]. 

Additionally, the challenge is made more complex by 

infrastructure related issues such as managing millions 

of concurrent requests, ensuring fault tolerance, and 

controlling operating expenses [20]. Current serving 

solutions either cannot compile inference pipelines for 

recommendation workloads or lack the flexibility to 

incorporate hybrid strategies such as hot item caching 

or dynamic scaling for bursty workloads [21]. Thus, a 

single and scalable ML inference platform that serves 

with low-latency and high-throughput and without 

making any trade-offs on model accuracy is needed 

immediately [22]. 

1.3 Scope of the Research 

The study is concerned with the creation, creation, and 

assessment of a scalable ML inference system in real-

time suggestions [23]. The paper focuses on system-

level optimization (batching, caching, hardware 

acceleration) [24], model-level optimization 

(quantization, distillation, pruning) [25] and 

infrastructure-level deployment models (Kubernetes 

orchestration, autoscaling, distributed serving) [26]. It 

has a limited focus to the inference phase of the 

recommendation pipeline and focuses on high-

throughput, latency-sensitive workloads on industrial-

scale contexts like e-commerce, streaming systems, 

and social media [27]. Although the aspects of training 

and model development are recognized, they are not in 

the main scope unless the training decisions directly 

influence the performance of inferences (e.g., the idea 

of distillation to smaller serving models) [28]. 

1.4 Objectives 

The primary goal of the proposed research is to 

recommend and empirically evaluate a scalable 

architecture of the ML inference which will enable 

real-time recommendation systems to operate at large 

scale and meet the high demands of stringent latency 

and accuracy. More specifically the proposed research 

will seek to: 

1. Design a Modular Inference Architecture: 

Build an end to end serving architecture with 

scalability and modularity as its guiding 

principles. 

2. Develop and Validate Inference 

Performance: Employ and experiment with 

system-level optimisations (batching, 

caching, hardware acceleration) to reduce 

inference latency and increase throughput. 

3. Trade-off between Accuracy vs Efficiency: 

Conduct feasibility experiments that evaluate 

the trade-offs between recommendation 

accuracy vs latency for the different model 

compression techniques (quantization, 

pruning, distillation etc.) 

4. Real-World Relevance: Demonstrate that the 

proposed framework is implementable on 

benchmark datasets (and simulated large-

scale workloads) to demonstrate its use in 

production environments. 

II. LITERATURE REVIEW 

Delving into existing literature will aid in 

understanding this work’s placement in the broader 

issue of scalable ML inference and recommendation 

systems. The review sheds light on the transition from 

classical recommendation algorithms to deep 

learning–based models and the progression (or lack 

thereof) of serving infrastructures to meet real-time 

demands. By examining existing models, system 

architectures, and tuning techniques, the review 

identifies best-available approaches and the challenges 

that prevent low-latency, large-scale deployment 

demanded by modern industries. This type of 

background informs the paper in the confidence that it 

is addressing overlooked challenges in existing 

solutions (refer to table 1) as well as extending the 

current body of knowledge. 

Table 1: Summary of Existing Work 

Category Work / System Key Features Strengths Limitations 

Traditional 

Models 

Collaborative Filtering 

(Resnick et al., 1994) 

User–item similarity, 

memory-based 

methods 

Simple, 

interpretable 

Not scalable for 

billions of 

users/items; ignores 

real-time updates [29] 
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Hybrid Models Netflix Prize (Bell & 

Koren, 2007) 

Matrix factorization 

+ neighborhood 

models 

Boosted 

accuracy 

significantly 

Batch-oriented, high 

latency; not suitable 

for real-time [30] 

Deep Learning 

Approaches 

Wide & Deep (Cheng et 

al., 2016, Google) 

Combines 

memorization (wide) 

and generalization 

(deep) 

Strong predictive 

power 

High inference cost 

under real-time 

workloads [31] 

Industrial 

Systems 

YouTube 

Recommendations 

(Covington et al., 2016) 

Two-stage pipeline: 

candidate generation 

+ ranking 

Scalable for 

billions of videos 

Requires huge infra; 

latency optimization 

not focus [32] 

Serving 

Frameworks 

TensorFlow Serving 

(Google, 2017) 

Flexible, production-

ready serving 

Supports A/B 

testing 

Limited optimization 

for extreme low-

latency recsys [33] 

ANN for 

Retrieval 

FAISS (Facebook, 2017) Efficient nearest 

neighbor search 

Sub-linear 

retrieval for large 

catalogs 

Integration with ML 

inference pipelines is 

non-trivial [34] 

Inference 

Optimization 

NVIDIA Triton 

Inference Server (2020) 

Supports dynamic 

batching, GPU 

acceleration 

High throughput 

for DL models 

Primarily system-

level; little focus on 

recsys-specific needs 

[35] 

End-to-End 

Systems 

TFX / MLFlow Pipelines End-to-end ML 

lifecycle 

management 

Deployment and 

monitoring 

Focused on pipeline 

orchestration, not 

scalable recsys 

inference [36] 

     II. METHODOLOGY 

The architectural design, optimisation strategies and 

experimental evaluation framework is determined by 

the methodology in order to construct and test a 

scalable ML inference system to provide real time 

recommendations. In contrast to offline 

recommendation pipelines that are run in batch mode, 

this framework is designed to handle millions of 

concurrent requests per second with a hard latency 
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goal of less than 100ms. There are three principles on 

which the methodology is based: 

1. Modularity - providing the ability to be 

flexible in feature engineering, retrieval, and 

ranking. 

2. Scalability - maintaining constant 

performance as traffic and model complexity 

increase. 

3. Efficiency - trade-offs between the cost of 

resources and the accuracy of inference. 

3.1 System Architecture Overview 

The suggested architecture is a multi-stage 

architecture composed of feature store, candidate 

retrieval, ranking model, re-ranking/business rules, 

and response delivery and the infrastructure 

orchestration, monitoring and autoscaling supports the 

end-to-end pipeline. Figure 1 shows the entire flow. 

Figure 1. Proposed Scalable ML Inference Architecture for Real-Time Recommendations 

 
3.1.1 Feature Store 

The feature store offers low-latency access to offline 

(computed in batch) and online (streaming) features 

that are essential to personalization. Offline 

characteristics are long-term user preferences (e.g. 

demographics, historical clicks) whereas online 

characteristics are short-term (e.g. last 10 interactions, 

current session activity). An example is e-commerce 

where the session-based clickstream information is 

essential in suggesting what a customer is most likely 

to purchase within several minutes. The feature store 

uses high-throughput in-memory databases like Redis, 

with feature engineering systems like Feast, in order to 

achieve sub-5ms retrieval times. The design makes 

fresh user data immediately accessible to downstream 

retrieval and ranking models and stale 

recommendations are avoided. 

3.1.2 Candidate Retrieval 

Candidate retrieval downsizes the item space of 

billions to a size sizeable to rank (e.g., 500-1000 

items). Approximate Nearest Neighbor (ANN) 

algorithms are applied to make this reduction under 

10-20ms. Large-scale vector search on GPUs/TPUs 

systems, which embed items in high-dimensional 

vectors, include Faiss (Facebook) and ScaNN 

(Google). An example is that the characteristics of an 

item can be encoded in a 128-dimensional embedding, 

allowing a fast search based on the similarity of 

vectors (cosine, inner product). This stage, as 

illustrated by Figure 1, directly interacts with the 

feature store to make sure that retrieval uses both an 

item embedding and the contextual user vectors to get 

a high recall without losing latency. 

 

3.1.3 Ranking Model (Inference Layer) 

The ranking layer is the central inference step that the 

machine learning models score candidate items. State 

of the art models are: 

● Wide & Deep Networks (Google Ads): 

balance memorization of frequent patterns 

and generalization to unseen data. 

● Transformer-based Models (BERT4Rec, 

SASRec): capture sequential and contextual 

patterns in user behavior. 

● Graph Neural Networks (Pinterest PinSage, 

Alibaba GNN RecSys): leverage relational 

structures among users and items. 

This phase can usually take the greatest portion of 

inference time, and naive implementations can take 

more than 50-80ms. The system is optimized with the 

help of TensorFlow Serving, TorchServe, or NVIDIA 

Triton, and acceleration by the use of a GPU/TPU and 

dynamic batching (see Table 1). The combination of 

these serving frameworks with pruned or quantized 

models allows the framework to maintain accuracy 

with inference within latency limits. 

3.1.4 Re-ranking & Business Rules 

Even though the ranking model will maximize the 

relevance as it is predicted, the ultimate advice should 

be based on business goals and user experience 
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objectives. The re-ranking layer enforces rules such 

as: 

● Diversity (not the same items). 

● Fairness (levelling exposure to new sellers or 

creators of content). 

● Novelty (adding new things that haven’t been 

explored to avoid filter bubbles). 

It is a layer that uses lightweight scoring functions or 

heuristic adjustments, with a small overhead (<5ms). 

As Figure 1 indicates, it is the final phase before the 

delivery of responses and the recommendations have 

to be accurate but strategically aligned as well. 

3.1.5 Orchestration & Load Balancing 

Scalability and reliability is obtained through 

Kubernetes orchestration that administers 

containerized inference services. Service meshes like 

Istio can balance load by routing traffic, canary 

rollout, retries, and providing failover. Autoscaling 

policies are pegged to the amount of CPU/GPU load 

and to request-per-second (RPS) loads, such that the 

system can accommodate known diurnal bursts and 

unforeseen spikes (e.g., flash sales). This is the layer 

that is represented surrounding the pipeline in Figure 

1 that provides elastic scaling and fault tolerance. 

3.1.6 Monitoring & Logging 

The observability of System health and performance is 

real time in the monitoring module. Measures are 

latency distributions (p50, p95, p99) distributions, 

throughput, error rates, and GPU/CPU utilization. 

Proactive alerting can be allowed by such tools as 

Prometheus (metric scraping) and Grafana 

(dashboards). Elastic logging systems like ELK stack 

(Elasticsearch, Logstash, Kibana) are interred to 

debug the model outputs. As indicated in Figure 1, 

continuous optimization of the system requires the 

feedback loop that this module offers. 

3.2 Optimization Techniques 

The framework brings together system-level, model-

level, and infrastructure-level optimizations to 

simultaneously achieve scalability and efficiency. 

System optimizations such as batching and caching 

minimize latency, model optimizations such as 

quantization increase inference throughput, and 

infrastructure scaling optimizations guarantee 

reliability under workload spikes. Table 2 summarizes 

the layered optimizations included and each layer's 

contribution. 

Table 2. Optimization Strategies for Scalable ML Inference 

Level Technique Description Benefit 

Model-Level Quantization Converts FP32 weights to INT8 3–4× faster inference with 

minimal accuracy drop 

 Pruning Removes redundant 

neurons/weights 

Reduces model size by up to 

50% 

 Knowledge 

Distillation 

Trains smaller student model from 

large teacher 

Lightweight models with 

near-SOTA accuracy 

System-Level Dynamic Batching Groups multiple requests for 

GPU/TPU efficiency 

Increases throughput 5–10× 

 Caching Stores popular results in memory Reduces repeated inference 

calls 

 Asynchronous 

Serving 

Separates request handling and 

execution 

Smooths out bursty workloads 
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Infrastructure-

Level 

GPU/TPU 

Acceleration 

Specialized hardware accelerates 

deep models 

Lower latency, high 

throughput 

 Serverless 

Deployment 

Functions scale automatically to 

load 

Cost-effective for variable 

traffic 

 Edge Inference Pushes lightweight models to 

client-side/edge nodes 

<10ms latency, reduced server 

strain 

IV. RESULTS 

Experiments were conducted to initiate and compare 

the proposed methodology against a baseline in order 

to evaluate its performance based on key features such 

as latency, throughput, scalability, and precision. The 

duration of the experiments was executed over real-

world benchmark datasets (MovieLens, Criteo, 

Amazon Reviews) as well as simulated large-scale 

workloads to represent actual industrial 

recommendation systems where there are millions of 

users. The evaluation was considered utilizing three 

aspects:  

1. System Performance - assessment of the 

ability to sustain high counts of requests 

against tight latency constraints.  

2. Model Performance - evaluation of predictive 

performance on a ranking and classification 

level.  

3. Scalability and Cost-effectiveness - assessing 

system performance against increasing traffic 

loads and resource utilization.  

The experimental results are summarized in Table 3 

which suggest that the proposed framework is superior 

to baseline. 

Table 3: Comparative Results of Scalable ML Inference Framework 

Metric Baseline (TF Serving, 

unoptimized) 

Optimized Pipeline 

(Ours) 

Improvement (%) 

Latency (p50, ms) 120 45 62.5% 

Latency (p95, ms) 210 90 57.1% 

Latency (p99, ms) 320 140 56.3% 

Throughput (req/sec) 25K 80K +220% 

Cost per 1M Inferences 

($) 

95 40 -57.9% 

NDCG@10 (Relevance) 0.39 0.43 +10.3% 
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Recall@20 0.62 0.68 +9.7% 

CTR Prediction AUC 0.781 0.804 +2.9% 

The evaluation results demonstrate a significant 

improvement in latency (up to 62.5% latency 

reduction at p50) and throughput (performance more 

than 3 times of the baseline TensorFlow Serving 

configuration) due to the optimized pipeline. The per 

inference cost has also decreased substantially, 

approximately 58%, and although the accuracy has not 

been harmed, the model had a better score under the 

NDCG and Recall metrics, which demonstrates that 

higher efficiency for inference has absolutely not 

come at the reduced quality of recommendations.  

These results help us validate that the framework 

described is best used in the context of the trade-off 

when recommendation speed, scalability, and 

accuracy are important, and therefore should apply to 

industrial-type real-time systems. 

V. DISCUSSION 

The experimental results validate that the proposed 

scalable ML inference pipeline is a capable and 

effective system for real-time recommendations. The 

system-level optimizations, like dynamic batching, 

model quantization, and caching, dramatically reduced 

latency while retaining predictive quality—along with 

a 62.5% reduction in median p50 latency from the 

baseline. These metrics complement industry evidence 

correlating reductions in milliseconds of latency with 

measurable, tangible improvements in user 

engagement and revenue. The framework also 

increased throughput - enabling the pipeline to support 

on-peak workloads like online sales or spikes due to 

viral content—by almost a factor of 3, while 

simultaneously lowering cost per inference by almost 

a factor of 58. Importantly, improvements were not 

confined to system level efficiency; increases in 

NDCG, Recall, and CTR AUC metrics provide 

evidence that users were served more relevant 

recommendations, directly impacting satisfaction and 

retention. 

Nevertheless, a few limitations persist. Though the 

framework performs well in controlled benchmarking 

environments, real-world deployment can result in 

obstacles, such as randomized traffic patterns, 

different preferences of users, and cold-starts for new 

users and items. Furthermore, optimizations such as 

quantization can bedevil slight reductions in accuracy 

in some more complex models, even if the 

optimization surfaces latency challenges. Plus, 

hardware accelerations that could be tested on a small-

scale validation dataset, will need to confirm accuracy 

in relation to heterogeneous cloud environments. 

Overall, the framework demonstrates an effective 

balance between speed, scalability, cost, and accuracy 

for production-scale recommendation engines, but 

future attempts should explore more adaptive 

mechanisms to cope with different users' dynamic 

behaviors and guard against lack of robustness across 

deployment situations. 

VI. CONCLUSION 

The study presented an ML inference framework that 

is scalable and applicable for real-time 

recommendation systems that faces the challenges of 

low-latency and throughput within massive 

production environments. The modular framework 

with efficient feature retrieval, candidate generation, 

dynamic batching, caching strategies, model 

quantization, and hardware-aware optimizations 

showed that it could outperform a system while not 

sacrificing model accuracy. The experimental analysis 

showed a more than 60% reduction in inference 

latency, more than 200% increase in throughput, and 

nearly 58% reduction in deployment costs while also 

improving recommendation accuracy measures, 

including NDCG, Recall, and AUC. These results 

suggest that the methodology provides a balance of 

speed, scalability, and quality personalization, which 

is relevant in a real-world recommendation platform 

operating at hyper-scale. In addition to this 

performance on a large-scale for a particular system, 

the work contributes to the broader discussion about 

scalable machine learning deployments, and yields 

some insightful design consideration applicable in 

other domains such as personalized advertising, 

content streaming, and e-commerce. 
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