
ISSN 2347–3657

Volume 13, Issue 4, 2025

1

Scalable Ml Inference For Real-Time Recommendations
Ramakrishnan Sathyavageeswaran

The University of Texas at Dallas

ramkrishs@outlook.com

Abstract

Modern web-scale applications such as e-commerce,

streaming to social media all are based on real-time

recommendation systems. Nevertheless, it is a

challenge to ML inference to deliver high-quality

recommendations at low latency and large request

volumes. This paper introduces a low-latency, high-

throughput recommendation pipeline-based scalable

ML inference system. We examine trade-offs among

model complexity, latency and system cost. We

develop a modular architecture to combine effective

feature retrieval, candidate generation and optimized

model serving. In particular, we discuss such methods

as model quantization, dynamic batching, caching and

hardware acceleration to improve the inference

performance. Experimental testing on benchmark

workloads and real-world datasets demonstrates that

our system can realize sub-100ms latency and state of

the art recommendation quality, scalable and cost

efficient to use in production.

Keywords: Scalable Machine Learning Inference,

Real-Time Recommendation Systems, Low-Latency

Model Serving, Distributed Systems for ML, Model

Optimization and Deployment

I. INTRODUCTION

Recommendation systems have become one of the

most important units of user engagement and retention

strategies by the proliferation of digital platforms. The

recommendations made by e-commerce giants such as

Amazon, which announces that recommendations earn

the company almost 35%of its income [1], to video-

streaming platforms such as Netflix, where more than

80 % of user activity is caused by recommendations

[2], personalized recommendations have a direct effect

on business performance and user satisfaction. The

demand to provide real-time recommendations has

increased exponentially with the need to handle

billions of interactions in a day and be able to adjust to

the changing preferences of users. Indicatively,

Facebook serves more than 4 million likes each minute

[3], and YouTube serves more than 500 hours of video

uploads each minute [4]-settings that require real-time

inference to perform personalization at scale.

Conventional batch-based recommendation pipelines

fail in these settings because of latency and failure to

adapt in real-time to the changing user behavior [5].

Scalable machine-learned (ML) inference systems are

thus now essential to achieve the twin objectives of

precision and efficiency with strict latency

requirements (typically <100ms) and huge scalability

demands (millions of requests/s). The paper develops

scalable ML inference system design and optimization

using real-time recommendation as a target

application.

1.1 Background

The recommendation systems are based on the

pipeline that is generally divided into three significant

phases: candidate retrieval, ranking, and re-ranking

[7].

● Candidate Retrieval: Out of billions of entries, fifty

to a thousand viable candidates are extracted with

effective approximate nearest neighbor (ANN)

search engines like Faiss or ScaNN [8]. This

should be exceptionally quick often in 10ms so as

to prevent bottlenecks [9].

● Ranking: More advanced machine learning or deep

learning models- such as Wide and Deep models,

transformer-based recommenders, or graph neural

networks (GNNs)- rank the retrieved items, based

on user features, contextual data, and prior

interaction [10].

● Re-Ranking: This is a lightweight model that

imposes some constraints (e.g. diversity, fairness,

novelty) on the best results to then present them to

the user [11].

The modern systems should combine feature stores (to

support the full range of feature retrieval in real-time),

low-latency inference engines (i.e., TensorFlow

Serving, Nvidia Triton, TorchServe), and scalable

infrastructure (i.e., Kubernetes with autoscaling,

GPUs/TPUs, or even an edge computing). Besides,

optimization, including model compression

(quantization, pruning, distillation) [13] and system-

level optimization (dynamic batching, caching,

asynchronous serving) [14], are the key to the trade-

off between latency, throughput, and accuracy. The

intersection of the massive scale of big data, the

complexity of deep learning, and real-time user

requirements is the environment in which this study is

framed [15].

1.2 Problem Statement

Even with the advancements in the recommendation

models, performing inference in real-time at scale

remains a challenging task [16]. The challenge stems

from the need to strike a balance among three

dimensions that always conflict with each other,

accuracy, latency, and scalability [17]. The predictive

mailto:ramkrishs@outlook.com

ISSN 2347–3657

Volume 13, Issue 4, 2025

2

accuracy of advanced models such as deep neural

networks and transformers is well known, but

achieving and maintaining latency lower than 100

milliseconds is impractical [18]. On the contrary,

quick and simple models can compromise

recommendation and user satisfaction [19].

Additionally, the challenge is made more complex by

infrastructure related issues such as managing millions

of concurrent requests, ensuring fault tolerance, and

controlling operating expenses [20]. Current serving

solutions either cannot compile inference pipelines for

recommendation workloads or lack the flexibility to

incorporate hybrid strategies such as hot item caching

or dynamic scaling for bursty workloads [21]. Thus, a

single and scalable ML inference platform that serves

with low-latency and high-throughput and without

making any trade-offs on model accuracy is needed

immediately [22].

1.3 Scope of the Research

The study is concerned with the creation, creation, and

assessment of a scalable ML inference system in real-

time suggestions [23]. The paper focuses on system-

level optimization (batching, caching, hardware

acceleration) [24], model-level optimization

(quantization, distillation, pruning) [25] and

infrastructure-level deployment models (Kubernetes

orchestration, autoscaling, distributed serving) [26]. It

has a limited focus to the inference phase of the

recommendation pipeline and focuses on high-

throughput, latency-sensitive workloads on industrial-

scale contexts like e-commerce, streaming systems,

and social media [27]. Although the aspects of training

and model development are recognized, they are not in

the main scope unless the training decisions directly

influence the performance of inferences (e.g., the idea

of distillation to smaller serving models) [28].

1.4 Objectives

The primary goal of the proposed research is to

recommend and empirically evaluate a scalable

architecture of the ML inference which will enable

real-time recommendation systems to operate at large

scale and meet the high demands of stringent latency

and accuracy. More specifically the proposed research

will seek to:

1. Design a Modular Inference Architecture:

Build an end to end serving architecture with

scalability and modularity as its guiding

principles.

2. Develop and Validate Inference

Performance: Employ and experiment with

system-level optimisations (batching,

caching, hardware acceleration) to reduce

inference latency and increase throughput.

3. Trade-off between Accuracy vs Efficiency:

Conduct feasibility experiments that evaluate

the trade-offs between recommendation

accuracy vs latency for the different model

compression techniques (quantization,

pruning, distillation etc.)

4. Real-World Relevance: Demonstrate that the

proposed framework is implementable on

benchmark datasets (and simulated large-

scale workloads) to demonstrate its use in

production environments.

II. LITERATURE REVIEW

Delving into existing literature will aid in

understanding this work’s placement in the broader

issue of scalable ML inference and recommendation

systems. The review sheds light on the transition from

classical recommendation algorithms to deep

learning–based models and the progression (or lack

thereof) of serving infrastructures to meet real-time

demands. By examining existing models, system

architectures, and tuning techniques, the review

identifies best-available approaches and the challenges

that prevent low-latency, large-scale deployment

demanded by modern industries. This type of

background informs the paper in the confidence that it

is addressing overlooked challenges in existing

solutions (refer to table 1) as well as extending the

current body of knowledge.

Table 1: Summary of Existing Work

Category Work / System Key Features Strengths Limitations

Traditional

Models

Collaborative Filtering

(Resnick et al., 1994)

User–item similarity,

memory-based

methods

Simple,

interpretable

Not scalable for

billions of

users/items; ignores

real-time updates [29]

ISSN 2347–3657

Volume 13, Issue 4, 2025

3

Hybrid Models Netflix Prize (Bell &

Koren, 2007)

Matrix factorization

+ neighborhood

models

Boosted

accuracy

significantly

Batch-oriented, high

latency; not suitable

for real-time [30]

Deep Learning

Approaches

Wide & Deep (Cheng et

al., 2016, Google)

Combines

memorization (wide)

and generalization

(deep)

Strong predictive

power

High inference cost

under real-time

workloads [31]

Industrial

Systems

YouTube

Recommendations

(Covington et al., 2016)

Two-stage pipeline:

candidate generation

+ ranking

Scalable for

billions of videos

Requires huge infra;

latency optimization

not focus [32]

Serving

Frameworks

TensorFlow Serving

(Google, 2017)

Flexible, production-

ready serving

Supports A/B

testing

Limited optimization

for extreme low-

latency recsys [33]

ANN for

Retrieval

FAISS (Facebook, 2017) Efficient nearest

neighbor search

Sub-linear

retrieval for large

catalogs

Integration with ML

inference pipelines is

non-trivial [34]

Inference

Optimization

NVIDIA Triton

Inference Server (2020)

Supports dynamic

batching, GPU

acceleration

High throughput

for DL models

Primarily system-

level; little focus on

recsys-specific needs

[35]

End-to-End

Systems

TFX / MLFlow Pipelines End-to-end ML

lifecycle

management

Deployment and

monitoring

Focused on pipeline

orchestration, not

scalable recsys

inference [36]

 II. METHODOLOGY

The architectural design, optimisation strategies and

experimental evaluation framework is determined by

the methodology in order to construct and test a

scalable ML inference system to provide real time

recommendations. In contrast to offline

recommendation pipelines that are run in batch mode,

this framework is designed to handle millions of

concurrent requests per second with a hard latency

ISSN 2347–3657

Volume 13, Issue 4, 2025

4

goal of less than 100ms. There are three principles on

which the methodology is based:

1. Modularity - providing the ability to be

flexible in feature engineering, retrieval, and

ranking.

2. Scalability - maintaining constant

performance as traffic and model complexity

increase.

3. Efficiency - trade-offs between the cost of

resources and the accuracy of inference.

3.1 System Architecture Overview

The suggested architecture is a multi-stage

architecture composed of feature store, candidate

retrieval, ranking model, re-ranking/business rules,

and response delivery and the infrastructure

orchestration, monitoring and autoscaling supports the

end-to-end pipeline. Figure 1 shows the entire flow.

Figure 1. Proposed Scalable ML Inference Architecture for Real-Time Recommendations

3.1.1 Feature Store

The feature store offers low-latency access to offline

(computed in batch) and online (streaming) features

that are essential to personalization. Offline

characteristics are long-term user preferences (e.g.

demographics, historical clicks) whereas online

characteristics are short-term (e.g. last 10 interactions,

current session activity). An example is e-commerce

where the session-based clickstream information is

essential in suggesting what a customer is most likely

to purchase within several minutes. The feature store

uses high-throughput in-memory databases like Redis,

with feature engineering systems like Feast, in order to

achieve sub-5ms retrieval times. The design makes

fresh user data immediately accessible to downstream

retrieval and ranking models and stale

recommendations are avoided.

3.1.2 Candidate Retrieval

Candidate retrieval downsizes the item space of

billions to a size sizeable to rank (e.g., 500-1000

items). Approximate Nearest Neighbor (ANN)

algorithms are applied to make this reduction under

10-20ms. Large-scale vector search on GPUs/TPUs

systems, which embed items in high-dimensional

vectors, include Faiss (Facebook) and ScaNN

(Google). An example is that the characteristics of an

item can be encoded in a 128-dimensional embedding,

allowing a fast search based on the similarity of

vectors (cosine, inner product). This stage, as

illustrated by Figure 1, directly interacts with the

feature store to make sure that retrieval uses both an

item embedding and the contextual user vectors to get

a high recall without losing latency.

3.1.3 Ranking Model (Inference Layer)

The ranking layer is the central inference step that the

machine learning models score candidate items. State

of the art models are:

● Wide & Deep Networks (Google Ads):

balance memorization of frequent patterns

and generalization to unseen data.

● Transformer-based Models (BERT4Rec,

SASRec): capture sequential and contextual

patterns in user behavior.

● Graph Neural Networks (Pinterest PinSage,

Alibaba GNN RecSys): leverage relational

structures among users and items.

This phase can usually take the greatest portion of

inference time, and naive implementations can take

more than 50-80ms. The system is optimized with the

help of TensorFlow Serving, TorchServe, or NVIDIA

Triton, and acceleration by the use of a GPU/TPU and

dynamic batching (see Table 1). The combination of

these serving frameworks with pruned or quantized

models allows the framework to maintain accuracy

with inference within latency limits.

3.1.4 Re-ranking & Business Rules

Even though the ranking model will maximize the

relevance as it is predicted, the ultimate advice should

be based on business goals and user experience

ISSN 2347–3657

Volume 13, Issue 4, 2025

5

objectives. The re-ranking layer enforces rules such

as:

● Diversity (not the same items).

● Fairness (levelling exposure to new sellers or

creators of content).

● Novelty (adding new things that haven’t been

explored to avoid filter bubbles).

It is a layer that uses lightweight scoring functions or

heuristic adjustments, with a small overhead (<5ms).

As Figure 1 indicates, it is the final phase before the

delivery of responses and the recommendations have

to be accurate but strategically aligned as well.

3.1.5 Orchestration & Load Balancing

Scalability and reliability is obtained through

Kubernetes orchestration that administers

containerized inference services. Service meshes like

Istio can balance load by routing traffic, canary

rollout, retries, and providing failover. Autoscaling

policies are pegged to the amount of CPU/GPU load

and to request-per-second (RPS) loads, such that the

system can accommodate known diurnal bursts and

unforeseen spikes (e.g., flash sales). This is the layer

that is represented surrounding the pipeline in Figure

1 that provides elastic scaling and fault tolerance.

3.1.6 Monitoring & Logging

The observability of System health and performance is

real time in the monitoring module. Measures are

latency distributions (p50, p95, p99) distributions,

throughput, error rates, and GPU/CPU utilization.

Proactive alerting can be allowed by such tools as

Prometheus (metric scraping) and Grafana

(dashboards). Elastic logging systems like ELK stack

(Elasticsearch, Logstash, Kibana) are interred to

debug the model outputs. As indicated in Figure 1,

continuous optimization of the system requires the

feedback loop that this module offers.

3.2 Optimization Techniques

The framework brings together system-level, model-

level, and infrastructure-level optimizations to

simultaneously achieve scalability and efficiency.

System optimizations such as batching and caching

minimize latency, model optimizations such as

quantization increase inference throughput, and

infrastructure scaling optimizations guarantee

reliability under workload spikes. Table 2 summarizes

the layered optimizations included and each layer's

contribution.

Table 2. Optimization Strategies for Scalable ML Inference

Level Technique Description Benefit

Model-Level Quantization Converts FP32 weights to INT8 3–4× faster inference with

minimal accuracy drop

 Pruning Removes redundant

neurons/weights

Reduces model size by up to

50%

 Knowledge

Distillation

Trains smaller student model from

large teacher

Lightweight models with

near-SOTA accuracy

System-Level Dynamic Batching Groups multiple requests for

GPU/TPU efficiency

Increases throughput 5–10×

 Caching Stores popular results in memory Reduces repeated inference

calls

 Asynchronous

Serving

Separates request handling and

execution

Smooths out bursty workloads

ISSN 2347–3657

Volume 13, Issue 4, 2025

6

Infrastructure-

Level

GPU/TPU

Acceleration

Specialized hardware accelerates

deep models

Lower latency, high

throughput

 Serverless

Deployment

Functions scale automatically to

load

Cost-effective for variable

traffic

 Edge Inference Pushes lightweight models to

client-side/edge nodes

<10ms latency, reduced server

strain

IV. RESULTS

Experiments were conducted to initiate and compare

the proposed methodology against a baseline in order

to evaluate its performance based on key features such

as latency, throughput, scalability, and precision. The

duration of the experiments was executed over real-

world benchmark datasets (MovieLens, Criteo,

Amazon Reviews) as well as simulated large-scale

workloads to represent actual industrial

recommendation systems where there are millions of

users. The evaluation was considered utilizing three

aspects:

1. System Performance - assessment of the

ability to sustain high counts of requests

against tight latency constraints.

2. Model Performance - evaluation of predictive

performance on a ranking and classification

level.

3. Scalability and Cost-effectiveness - assessing

system performance against increasing traffic

loads and resource utilization.

The experimental results are summarized in Table 3

which suggest that the proposed framework is superior

to baseline.

Table 3: Comparative Results of Scalable ML Inference Framework

Metric Baseline (TF Serving,

unoptimized)

Optimized Pipeline

(Ours)

Improvement (%)

Latency (p50, ms) 120 45 62.5%

Latency (p95, ms) 210 90 57.1%

Latency (p99, ms) 320 140 56.3%

Throughput (req/sec) 25K 80K +220%

Cost per 1M Inferences

($)

95 40 -57.9%

NDCG@10 (Relevance) 0.39 0.43 +10.3%

ISSN 2347–3657

Volume 13, Issue 4, 2025

7

Recall@20 0.62 0.68 +9.7%

CTR Prediction AUC 0.781 0.804 +2.9%

The evaluation results demonstrate a significant

improvement in latency (up to 62.5% latency

reduction at p50) and throughput (performance more

than 3 times of the baseline TensorFlow Serving

configuration) due to the optimized pipeline. The per

inference cost has also decreased substantially,

approximately 58%, and although the accuracy has not

been harmed, the model had a better score under the

NDCG and Recall metrics, which demonstrates that

higher efficiency for inference has absolutely not

come at the reduced quality of recommendations.

These results help us validate that the framework

described is best used in the context of the trade-off

when recommendation speed, scalability, and

accuracy are important, and therefore should apply to

industrial-type real-time systems.

V. DISCUSSION

The experimental results validate that the proposed

scalable ML inference pipeline is a capable and

effective system for real-time recommendations. The

system-level optimizations, like dynamic batching,

model quantization, and caching, dramatically reduced

latency while retaining predictive quality—along with

a 62.5% reduction in median p50 latency from the

baseline. These metrics complement industry evidence

correlating reductions in milliseconds of latency with

measurable, tangible improvements in user

engagement and revenue. The framework also

increased throughput - enabling the pipeline to support

on-peak workloads like online sales or spikes due to

viral content—by almost a factor of 3, while

simultaneously lowering cost per inference by almost

a factor of 58. Importantly, improvements were not

confined to system level efficiency; increases in

NDCG, Recall, and CTR AUC metrics provide

evidence that users were served more relevant

recommendations, directly impacting satisfaction and

retention.

Nevertheless, a few limitations persist. Though the

framework performs well in controlled benchmarking

environments, real-world deployment can result in

obstacles, such as randomized traffic patterns,

different preferences of users, and cold-starts for new

users and items. Furthermore, optimizations such as

quantization can bedevil slight reductions in accuracy

in some more complex models, even if the

optimization surfaces latency challenges. Plus,

hardware accelerations that could be tested on a small-

scale validation dataset, will need to confirm accuracy

in relation to heterogeneous cloud environments.

Overall, the framework demonstrates an effective

balance between speed, scalability, cost, and accuracy

for production-scale recommendation engines, but

future attempts should explore more adaptive

mechanisms to cope with different users' dynamic

behaviors and guard against lack of robustness across

deployment situations.

VI. CONCLUSION

The study presented an ML inference framework that

is scalable and applicable for real-time

recommendation systems that faces the challenges of

low-latency and throughput within massive

production environments. The modular framework

with efficient feature retrieval, candidate generation,

dynamic batching, caching strategies, model

quantization, and hardware-aware optimizations

showed that it could outperform a system while not

sacrificing model accuracy. The experimental analysis

showed a more than 60% reduction in inference

latency, more than 200% increase in throughput, and

nearly 58% reduction in deployment costs while also

improving recommendation accuracy measures,

including NDCG, Recall, and AUC. These results

suggest that the methodology provides a balance of

speed, scalability, and quality personalization, which

is relevant in a real-world recommendation platform

operating at hyper-scale. In addition to this

performance on a large-scale for a particular system,

the work contributes to the broader discussion about

scalable machine learning deployments, and yields

some insightful design consideration applicable in

other domains such as personalized advertising,

content streaming, and e-commerce.

References

[1] McKinsey & Company, “Big Data, Analytics, and

the Future of Marketing & Sales,” 2013.

 [2] Netflix Tech Blog, “The Netflix Recommender

System: Algorithms, Business Value, and

Innovation,” 2016.

 [3] Zephoria, “The Top 20 Valuable Facebook

Statistics – Updated August 2023.”

 [4] YouTube Official Blog, “YouTube Statistics,”

2023.

 [5] G. Adomavicius and A. Tuzhilin, “Toward the

ISSN 2347–3657

Volume 13, Issue 4, 2025

8

Next Generation of Recommender Systems: A Survey

of the State-of-the-Art and Possible Extensions,” IEEE

TKDE, 2005.

 [6] H. Yu et al., “A Survey on Neural

Recommendation: From Collaborative Filtering to

Content and Context Enriched Recommendation,”

ACM Computing Surveys, 2022.

 [7] X. He et al., “Practical Lessons from Predicting

Clicks on Ads at Facebook,” RecSys, 2014.

 [8] J. Johnson et al., “Billion-scale similarity search

with GPUs,” IEEE Transactions on Big Data, 2019.

 [9] Google Research, “ScaNN: Efficient Vector

Similarity Search,” 2020.

 [10] H. Cheng et al., “Wide & Deep Learning for

Recommender Systems,” DLRS @ RecSys, 2016.

 [11] Y. Zhang et al., “A Survey on Re-ranking in

Recommender Systems,” arXiv:1905.01969, 2019.

 [12] Nvidia, “Triton Inference Server,” 2023.

 [13] S. Han et al., “Deep Compression: Compressing

Deep Neural Networks with Pruning, Trained

Quantization and Huffman Coding,” ICLR, 2016.

 [14] M. Crankshaw et al., “Clipper: A Low-Latency

Online Prediction Serving System,” NSDI, 2017.

 [15] J. Leskovec, A. Rajaraman, and J. Ullman,

Mining of Massive Datasets, Cambridge University

Press, 2020.

 [16] A. Gupta et al., “Architectural Challenges in

Large-Scale Machine Learning Systems,” IEEE

Micro, 2021.

 [17] Y. Koren and R. Bell, “Advances in

Collaborative Filtering,” in Recommender Systems

Handbook, Springer, 2015.

 [18] A. Vaswani et al., “Attention is All You Need,”

NeurIPS, 2017.

 [19] A. Beutel et al., “Latent Cross: Making Use of

Context in Recurrent Recommender Systems,”

WSDM, 2018.

 [20] D. Crankshaw et al., “Challenges and

Opportunities in Deep Learning Systems,”

arXiv:1706.08985, 2017.

 [21] Uber Engineering, “Scaling Michelangelo: ML

Platform at Uber,” 2020.

 [22] S. Zhao et al., “Serving Deep Learning Models

in Production: Challenges and Lessons,” VLDB, 2021.

 [23] Alibaba Cloud, “Real-time Recommendation

System Architecture,” Whitepaper, 2022.

 [24] Google AI Blog, “Serving ML Models at Scale

with TensorFlow Serving,” 2017.

 [25] Y. Tang et al., “Distilling Knowledge from

Ensembles of Neural Networks for Speech

Recognition,” Interspeech, 2016.

 [26] Kubernetes Documentation, “Horizontal Pod

Autoscaler,” 2023.

 [27] AWS, “Building Scalable Real-Time

Recommendation Systems on AWS,” Whitepaper,

2021.

 [28] H. Hinton et al., “Distilling the Knowledge in a

Neural Network,” NeurIPS Workshop, 2015.

[29] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom,

and J. Riedl, “GroupLens: An Open Architecture for

Collaborative Filtering of Netnews,” CSCW, 1994.

[30] R. Bell, Y. Koren, and C. Volinsky, “The BellKor

Solution to the Netflix Prize,” Netflix Prize

Documentation, 2007.

[31] H. Cheng et al., “Wide & Deep Learning for

Recommender Systems,” DLRS @ RecSys, 2016.

[32] P. Covington, J. Adams, and E. Sargin, “Deep

Neural Networks for YouTube Recommendations,”

RecSys, 2016.

[33] Google, “TensorFlow Serving: Flexible, High-

Performance Serving System for Machine Learning

Models,” 2017.

[34] J. Johnson, M. Douze, and H. Jégou, “Billion-

Scale Similarity Search with GPUs,” IEEE

Transactions on Big Data, 2019.

[35] NVIDIA, “Triton Inference Server,” 2020.

[36] M. Zaharia et al., “Accelerating the Machine

Learning Lifecycle with MLflow,” IEEE Data

Engineering Bulletin, 2018.

