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Abstract 
In modern industrial environments, predictive 
maintenance has become a vital strategy for ensuring 
operational reliability, reducing downtime, and 
optimizing energy utilization. However, existing deep 
learning (DL) approaches such as CNN, GRU, and 
hybrid architectures, while accurate, often suffer from 
high computational complexity and energy 
consumption, making them unsuitable for real-time 
edge deployment. To address these limitations, this 
study proposes an Energy-Aware Predictive 
Maintenance framework using Pruned LSTM 
Networks for sensor-based time-series data, designed 
specifically for industrial edge systems. The model 
employs structured pruning techniques to reduce 
redundant parameters and computational overhead 
while preserving the temporal learning capability of 
LSTM. The proposed approach was implemented 
using Python and TensorFlow on the Kaggle 
Industrial Equipment Monitoring Dataset, which 
contains multi-sensor readings representing normal 
and faulty machine states. Experimental results show 
that the Pruned LSTM model achieves a 98.8% 
accuracy, marking an increase of approximately 6–7% 
over conventional models like GRU and CNN, while 
reducing energy consumption by nearly 40% 
compared to baseline methods. This improvement 
demonstrates the model’s ability to maintain high 
precision and reliability under resource constraints. 
The proposed framework establishes a strong 
foundation for real-time edge-based predictive 
analytics, offering both energy efficiency and 
predictive robustness. In the future, the model will be 
extended with adaptive transfer learning and 
federated edge optimization to enable scalable and 
cross-domain industrial applications, driving the next 
generation of intelligent and sustainable maintenance 
systems. 
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1. Introduction 
Industry 4.0 has changed the landscape of industry 
development because of the introduction of intelligent 
systems, sensor technologies, and real-time analytics 

as efficient asset management tools [1]. Predictive 
Maintenance is one of such innovations that have 
provided a ground-breaking solution in predicting 
equipment failures prior to their actual occurrence 
hence reducing downtimes, enhancing the level of 
productivity and lowering maintenance expenses [2]. 
The fast adoption of the Internet of Things (IoT) 
devices and industrial sensors has produced a huge 
amount of time-series data, which can help to obtain 
valuable information regarding the health of the 
machine [3], [4]. The effective analysis of this data is 
important in the prediction of faults on time and the 
planning of maintenance in industrial systems as 
energy-efficient [5]. Innovations in Predictive 
Maintenance in recent years have been based primarily 
on DL models: Convolutional Neural Networks 
(CNN), Recurrent Neural Networks (RNN), Gated 
Recurrent Units (GRU) and Transformer based 
models. Such approaches have been incredibly precise 
at finding patterns using sensor data [6], [7].  
Their computation complexity, large memory footprint 
and energy demands are however a limitation to their 
use in resource constrained edge computing 
environments [8]. In addition, such models tend to be 
sensitive to noisy or imbalanced data typically 
occurring in the industrial setting, which causes lower 
prediction accuracy and ineffective energy 
consumption [9]. Although it is expected to be 
excellent in cloud-based configurations, the latency 
and overhead of the communication restrict its 
practical use at the industrial level in real-time [10]. In 
order to address these issues, the current study 
proposes an Energy-Aware Predictive Maintenance 
framework based on the Pruned LSTM Networks on 
Sensor-Based Time-Series Data. The model proposed 
combines the systematic pruning that removes 
redundant network parameters in order to greatly 
reduce computational costs and power usage, without 
affecting the predictive performance. When it is 
deployed at the edge with the optimized model, it can 
be used to provide real-time fault detection, efficient 
energy management, and adaptive sensor data stream 
learning. This will provide a trade-off between 
predictive accuracy, energy-saving, and operational-
responsiveness, which are important to the modern 
industrial systems. 
1.1 Problem Statement 
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Conventional predictive maintenance models based on 
DL are computationally intensive and power-
intensive, accurate, but impractical to use on edge 
computing devices. The majority of the current 
models, including CNN, GRU, and hybrid models, are 
computationally and memory intensive and thus 
expensive to run and slow in detecting faults in real 
time. Also, these models do not fit well to different 
machine conditions and are overfitting when trained 
on unbalanced industrial data [15]. The deficiency of 
optimized architectures with a balance between 
predictive accuracy and energy efficiency provides a 
gap in the critical research in the design of lightweight 
and reliable edge-based predictive maintenance 
models [17]. This study will address this gap by 
suggesting a time-conscious pruned LSTM model that 
can learn temporal relationships on multi-sensor time-
series data with a low level of computational 
complexity. The strategy fills the performance verses 
efficiency gap, guaranteeing quicker inference and 
sustainable edge dispensation of industrial systems. 
1.2 Research Motivation 
The impetus behind this study is the increased desire 
to have smart, energy saving predictive systems that 
can operate in edge scenarios with minimal resources. 
In fact, the complex time-series information produced 
by industrial machines are in constant need of real-
time analysis without depending on cloud 
infrastructures with high power. To fulfil this 
requirement, the development of a pruned LSTM-
based predictive maintenance model, with its capacity 
to combine computational efficiency and a high level 
of accuracy, is encouraged to make a shift to 
autonomous, low-power, and adaptive maintenance 
models that can revolutionize industrial reliability and 
sustainability. 
1.3 Research Significance 
The proposed study has a great industrial importance 
because it can solve the twofold problem of precise 
fault forecasting and power-saving model execution 
on peripheral devices. The suggested pruned LSTM 
architecture is better at achieving higher predictive 
performance by consuming less power and inference 
latency, which facilitates real-time decision-making. 
The research will lead to sustainable intelligent 
manufacturing, enhancing equipment life, reducing 
unplanned downtime, and further practical 
implementation of industry 4.0-ready energy-efficient 
predictive maintenance systems by making it cost-
effective, scalable, and intelligent. 
1.4 Key Contributions 

 A new predictive maintenance framework is 
proposed that integrates pruned LSTM 
networks with energy-aware optimization for 
efficient fault detection and condition 
monitoring in industrial edge systems. 

 The study introduces a structured pruning 
mechanism to remove redundant neurons and 
connections in the LSTM network, 
significantly reducing computational 
overhead, energy usage, and inference time 
without compromising prediction accuracy. 

 The proposed model is specifically designed 
for industrial edge environments, enabling 
real-time fault detection and maintenance 
prediction on low-power devices while 
maintaining high model fidelity. 

 The framework is implemented using Python 
and TensorFlow, demonstrating practical 
applicability and scalability across different 
industrial domains with varying sensor 
configurations. 

 This study establishes a strong foundation for 
future advancements by enabling the 
integration of transfer learning, self-
supervised adaptation, and federated edge 
intelligence for scalable and sustainable 
predictive maintenance in Industry 4.0 
environments. 

The rest of the paper is organized as follows. Section 
2 review the related works, Section 3 detailed about 
the proposed methodology, Section 4 describes the 
results and discusses about the study, and finally 
Section 5 concludes the study and direction for future 
work. 
 

2. Related Work 
Chen et al. [11] suggested a Low-Power On-Device 
Predictive Maintenance (LOPdM) system to combine 
Self-Powered Sensors (SPS) and Tiny Machine 
Learning (TinyML) methods to make real-time fault 
detection possible and energy-efficient. The aim of the 
study was to address the high power and cost 
requirements of the conventional AI-based PdM 
systems. There were 6 ML models tested where it was 
found that both the Random Forest and Deep Neural 
Network models performed as well as 99% accuracy 
even in low conditions of data and sampling. The 
system saved on energy by a rate of 66.8 as opposed 
to IMU-based systems. Nevertheless, the method 
might be constrained in terms of addressing 
complicated industrial statistics as well as scalability 
in various settings. 
Rahman et al. [12] have performed a review article on 
how to combine Machine Learning (ML) and Digital 
Twin (DT) with Edge AI to improve intelligent 
industrial automation. The objective of the study was 
to enhance predictive maintenance, quality control, 
and optimization of processes with the help of real-
time data-driven insights. Through the analysis of 
different ML models, datasets and industrial 
platforms, the review reflected on the emerging role of 
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deep learning, especially convolutional and recurrent 
architecture, in the industrial systems. The study has 
successfully realized a definite mapping of the 
transformational role of ML in the automation. 
Nevertheless, the lack of model generalization, real-
time deployment, interpretability, scalability, and 
safety in autonomous decision-making are some of the 
weaknesses. 
Rosca and Stancu [13]  presented a bibliometric and 
thematic review of the literature on the topic to discuss 
the incorporation of Artificial Intelligence (AI) and 
specifically ML into self-powered IoT sensors. The 
goal of the study was to categorize the areas of IoT and 
evaluate the uptake of AI in such sectors as healthcare, 
industry, and smart cities. The authors conducted 
literature analysis in 2020 to 2025 and found the major 
sensors and the most efficient ML models such as 
CNN, LSTM, SVM and RF with accuracy as high as 
99.92. The study made a clear presentation of AI-IoT 
developments. It, however, pointed at shortcomings in 
its form of inadequate standardization, asymmetrical 
AI usage, energy usage and insufficient study in 
underrepresented sectors like agriculture. 
Ang et al. [14] have suggested a new way of detecting 
early anomaly in sensor-based Multivariate Time 
Series (MTS) through a technique known as 
Correlation Analysis based Detection (CAD). The aim 
of the study was to address the weaknesses of 
conventional and DL techniques, which need large 
data sets or generate volatile outcomes. MTS data are 
transformed into Time-Series Graphs (TSGs) by CAD 
as a means of measuring correlations between sensors 
as well as detecting anomalies by analysing how much 
correlations vary. The method attained more than 85% 
accuracy on big data sets and surpassed nine state-of-
the-art tasks. Nevertheless, it is more deterministic and 
might not be able to be flexible to nonlinear 
relationships and hidden dynamic industrial 
conditions. 
Rojas et al. [15] performed a systematic literature 
review on the topic of AI, the IoT, and DT application 
to predictive maintenance in the mining sector. The 
article examined 166 articles in Scopus and Web of 
Science that are concerned with fault detection, hybrid 
AI models, and real-time monitoring. The results 
obtained indicated that deep and reinforcement 
learning are very effective in predicting fault at the 
early stage and efficiency of operations. Nevertheless, 
there are still constraints in the standardization of data, 
scalability of models, interoperability and 
explainability, which do not allow the realization of 
large-scale application and real-time flexibility in 
complex mining conditions. 

Achouch et al. [16] represents the extensive review of 
intelligent predictive maintenance approaches in 
Industry 4.0 as the means of enhancing the uptime of 
machines, lifecycle management, and the quality of 
production. The methods identified in the study 
included condition-based maintenance (CBM), 
prognostics and health management (PHM), and 
remaining useful life (RUL), and suggested a new 
multimodal predictive maintenance system consistent 
of varying sensors and prescriptive prognostic models. 
A case study of an industry based on the centrifugal 
compressor revealed proper prediction of defects and 
breakdowns which matched the actual maintenance 
schedules. Nevertheless, the downsides consist of 
inability to standardize models across various 
equipment, reliance on high quality data, complicated 
instrumentation of the system, and demand of a 
thorough validation and cybersecurity measures. 
Bermeo-Ayerbe et al. [17] suggested an adaptive, data-
driven energy modelling methodology to the industrial 
machinery to improve energy efficiency and 
sustainability with the integration of digital twins. The 
study was aimed at developing dynamic models to 
detect behaviour changes in machines with a concept 
drift detector, which is able to adapt to the 
degeneration and uncharacteristic energy behaviours. 
The method, tested on an industrial testbed with 
simulated drifts, outperformed non-adaptive models 
by at least a factor of two in terms of prediction 
accuracy as the method gave an 82.81% fit rate. 
Nevertheless, the method has weaknesses including 
temporary delays when a drift is detected and false 
drift detection and poor robustness that needs 
additional input characterization and automation 
enhancement. 
Moleda et.al [18] conducted a review of maintenance 
strategies in the power industry with emphasis on the 
shift of classical corrective solutions to the predictive 
and prescriptive solutions based on Industry 4.0 
solutions. The study focused on the analysis of the 
available practices, AI-based analytics, Big Data, and 
IoT applications in equipment monitoring, fault 
detection, and maintenance planning. The authors 
have also compared the traditional and the latest 
methods by outlining the strengths, weaknesses, and 
the integration difficulties. The review managed to 
map the state-of-the-art predictive maintenance 
methods comprehensively and thus, researchers can be 
guided on how to improve it. Nevertheless, there are 
disadvantages like challenges in real-life applicability 
because of the safety laws, cyber-security needs, 
operator limitations, and the expensive nature of 
industrial applications. 

Table 1. Summary of Existing Studies 
Reference Method Advantages Limitations 
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Chen et al. 
[11] 

Low-Power On-Device 
Predictive Maintenance 
(LOPdM) integrating 

SPS and TinyML 

Achieved 99% accuracy using 
Random Forest and Deep Neural 

Network even under low 
data/sampling; 66.8% energy 

savings over IMU-based systems 

Limited scalability and ability to 
handle complex industrial data 

Rahman et 
al. [12] 

Review on combining 
ML, DT, and Edge AI for 

intelligent industrial 
automation 

Mapped the transformational role 
of ML in automation; improved 
predictive maintenance, quality 

control, and process optimization 

Lack of model generalization, 
real-time deployment, 

interpretability, scalability, and 
safety in autonomous decision-

making 

Rosca and 
Stancu [13] 

Bibliometric and 
thematic review of AI 
and ML integration in 

Self-Powered IoT 
Sensors 

Identified key AI-IoT applications 
(healthcare, industry, smart 

cities); high model accuracy (up 
to 99.92%) 

Lack of standardization, uneven 
AI adoption, energy 

inefficiency, and limited 
research in sectors like 

agriculture 

Ang et al. 
[14] 

CAD for anomaly 
detection in Multivariate 

Time Series (MTS) 

Achieved >85% accuracy, 
outperforming nine state-of-the-

art methods; efficient correlation-
based detection 

Deterministic approach; poor 
adaptability to nonlinear 

relationships and dynamic 
industrial environments 

Rojas et al. 
[15] 

Systematic review of AI, 
IoT, and DT applications 
in predictive maintenance 

for mining 

Demonstrated deep and 
reinforcement learning 

effectiveness in early fault 
detection and operational 

efficiency 

Data standardization, model 
scalability, interoperability, and 

explainability remain 
unresolved 

Achouch et 
al. [16] 

Review of intelligent 
predictive maintenance 
approaches in Industry 
4.0 using CBM, PHM, 

and RUL models 

Enhanced uptime, lifecycle 
management, and production 

quality; validated through a real 
industry case study 

Lack of model standardization, 
dependency on high-quality 

data, and cybersecurity 
challenges 

Bermeo-
Ayerbe et 

al. [17] 

Adaptive, data-driven 
energy modeling with DT 
and concept drift detector 

Improved energy efficiency and 
adaptation to machine behavior 

changes; achieved 82.81% fit rate 

Issues with false drift detection, 
temporary delays, and low 

robustness 

Moleda et 
al. [18] 

Review of AI-based 
predictive and 

prescriptive maintenance 
strategies in the power 

industry 

Comprehensive mapping of state-
of-the-art PdM practices; 

facilitates guidance for future 
industrial applications 

Implementation challenges due 
to safety, cybersecurity, 

operator skills, and high costs 

Table 1 contains a summary of the existing research 
works that were consolidated regarding the topic of 
AI-driven and energy-aware predictive maintenance 
systems in industrial environments in a more 
condensed form. The surveyed studies prove that there 
is a significant progress in uniting MLand DT 
technologies as well as IoT-based data collection to 
improve the efficiency of maintenance and operational 
stability. Such works have had astounding levels of 
accuracy, energy savings and enhanced automation 
performance in a range of industrial uses. Nonetheless, 
these developments are associated with several 
significant shortcomings in the literature including 
inadequate scalability, reliance on high-quality 
datasets, absence of real-time implementation, 
interoperability and inability to operate successfully in 
complex, nonlinear and dynamic industrial systems. 

The issues with many current methods are also 
optimization of energy, generalization of models, and 
explainability, which makes implementation of such 
methods in large-scale industries challenging. The 
current study will overcome these difficulties by 
presenting an energy-gauge predictive-maintenance 
framework, which combines adaptive feature learning, 
and an LSTM-based deep-learning device in order to 
effectively process time-series sensor data. The 
proposed system is more energy efficient, scalable, 
and predictive of faults and is robust to a wide range 
of industrial environments- in effect addressing the 
limitations that were found in earlier research works as 
summarized in the table. 
3. Proposed Pruned LSTM for Energy-Aware 
Predictive Maintenance in Industries 
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The proposed study introduces an energy-conscious 
predictive maintenance architecture of industrial edge 
systems based on Pruned LSTM networks on sensor-
based time-series. This method starts by obtaining 
multivariate sensor data like temperature, vibration, 
current and energy consumption data of industrial 
equipment. The data are preprocessed through such 
steps as noise filtering, normalization and sliding-
window segmentation to organize sequences in a 
manner that can be modeled in time. A Pruned LSTM 
model is then constructed to encompass temporal 
dependencies and one of these is to eradicate 
unnecessary neurons and connections, hence lowering 
the computation cost and enhancing the speed of 

inference to deploy edges. To improve performance, 
attention mechanisms are added to emphasize 
significant sensor signals that make the most 
contribution to failure prediction. The model 
quantization is also used to reduce the energy 
consumption further without compromising on the 
accuracy. The trained model forecasts possible failures 
or deterioration conditions in real-time, which allows 
to plan the maintenance proactively. In general, the 
presented approach offers a scalable, low-power, and 
intelligent predictive maintenance solution in real-
time in smart manufacturing and an industrial IoT 
setting. The workflow of the proposed framework is 
illustrated in Fig 1. 

 
Fig 1. Workflow of the Proposed Framework 

3.1 Data Collection 
The publicly available Kaggle dataset, a smart 
manufacturing process dataset used in this study that 
included real-time multivariate sensor measurements 
taken in industrial equipment [19]. Among the most 
important parameters like temperature, vibration, 
current, speed, and energy consumption are constantly 
measured at any time that the machine is running. 
These time-series observations both observes normal 

and faulty states allowing the model to acquire 
information on degradation patterns and forecast 
failures. Timing Data is collected at regular sampling 
rate and coordinated between all the sensors to achieve 
timing consistency. The dataset is realistic as it offers 
an industrial setting to assist in the development and 
testing of the proposed energy-aware pruned LSTM 
model in predictive maintenance of edge systems. 

Table 2. Dataset Description 

Timestamp 
Temperature 

(°C) 

Machine 
Speed 
(RPM) 

Production 
Quality 
Score 

Vibration 
Level 

(mm/s) 

Energy 
Consumption 

(kWh) 

Optimal 
Conditions 

2025-04-01 
08:00:00 

78.92 1461 8.49 0.07 1.97 0 

2025-04-01 
08:01:00 

71.83 1549 8.97 0.04 1.01 0 
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2025-04-01 
08:02:00 

74.88 1498 8.52 0.08 1.60 0 

2025-04-01 
08:03:00 

77.27 1478 8.28 0.09 1.87 0 

2025-04-01 
08:04:00 

76.50 1524 8.07 0.04 1.53 0 

Table 2 shows a sample representative to the 
manufacturing data utilized in the formation and 
confirmation of the suggested Energy-Aware 
Predictive Maintenance design. The data set is a time-
series of multivariate data about industrial machinery 
that is captured by the data and the data is a reflection 
of real-time operational and environmental 
parameters. The LSTM-based predictive model is used 
to extract features, detect anomalies and predict faults 
on these data. The organized data allows to evaluate 
the health of machines, detect the deviations in 
performance and estimate what maintenance should be 
performed in different operating conditions. 
3.2 Data Preprocessing 
Preprocessing of data phase involve the preparation of 
raw multivariate sensor data to do effective modelling 
and analysis. It is to guarantee the quality of data, 
uniformity, and preparedness to time-series learning of 
the proposed pruned LSTM model. The preprocessing 
of the signals measured by the industrial sensors 
converts the signals into structured temporal 
sequences that indicate the behaviour of the machine 
in normal and abnormal operating conditions. This 
clean data increases the sensitivity of the model to 
subtle signs of degradation and also manages to better 
predict. The result of this phase is a clean, well-
organised and balanced dataset that can be used to 
predictively maintain the industry in an energy-
efficient manner. 
3.2.1 Data Cleaning 
This will eliminate incomplete, clustered, and noisy 
sensor readings which may alter time-series patterns. 
In the industrial settings, the noise can be due to faulty 
sensors or transmission errors. Missing data are either 
interpolated or deleted. This will guarantee good 
quality and consistent data to model and this will assist 
the pruned LSTM to learn actual equipment behaviour 
patterns. 
3.2.2 Normalization 
The normalization of all sensor properties (e.g., 
temperature, vibration, energy) is performed in order 
to stabilize gradient updates and speed up the training 
of LSTM. It avoids the large features with large 
numeric ranges to prevail over the smaller features. 
Data is scaled using the min-max scale to the range [0, 
1]. 

𝑥௜
௡௢௥௠ =

𝑥௜ − 𝑥௠௜௡

𝑥௠௔௫ − 𝑥௠௜௡

 

Here 𝑥௜ is the original sensor reading, 𝑥௠௔௫ and 𝑥௠௜௡ 
are the maximum and minimum values of that sensor 
feature respectively. 
3.2.3 Segmentation 
Segmentation breaks continuous sensor streams into 
fixed length overlapping windows that represent the 
temporal dependencies that would be used in 
predictive maintenance. The individual segments are 
used as inputs of the LSTM model, which can learn 
time-related trends of degradation that results in faults. 
3.2.4 Label Encoding 
Each sequence that has been segmented is given a 
label that shows whether it is in a normal state or faulty 
state. Binary encoding is used in which 0 is normal 
operation and 1 failure or anomaly. This enables the 
LSTM to go through supervised prediction learning of 
maintenance. 
3.2.5 Data Balancing 
The industrial data have a small number of faulty 
samples, balancing provides equal contribution to 
model learning by normal and fault classes. Hybrid 
resampling is used to eliminate bias by oversampling 
rare segments of faults and under sampling normal 
segments. 
3.3 Pruned LSTM Feature Extraction 
The Pruned LSTM Feature Extraction step is 
important in realizing an energy efficient predictive 
maintenance in industrial edge system. The Long 
Short-Term Memory (LSTM) network is selected in 
particular since it is a good demonstration of temporal 
correlations in sensor-based time-series, including 
vibration, temperature, current, and energy 
consumption data, incurred by the industrial 
equipment. Nonetheless, traditional LSTM designs 
tend to have superfluous neurons and parameters 
which add to the computational cost, memory and 
energy cost of the system and thus cannot be deployed 
to resource-constrained edge devices. To overcome 
these difficulties, LSTM network is pruned in a 
systematic way to maximize the efficiency of the 
model and its prediction efficiency. Once the first 
LSTM model is trained with the preprocessed sensor 
data it starts the pruning process. Weight magnitude is 
used and together with activation-based sensitivity 
analysis, neurons, gates and connections are identified 
which contribute insignificantly to the output of the 
model. These unimportant elements are removed 
systematically in effect downsizing and simplifying 
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the LSTM model. The LSTM Cell Computation is 
represented in (2) – (6). 

𝑖௧ = σ(𝑊௜ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௜)                                                (2) 

𝑓௧ = σ൫𝑊௙ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௙൯                                                (3) 

𝑜௧ = σ(𝑊௢ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௢)                                                (4) 

𝐶௧
෩ = tanh(𝑊஼ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏஼)                                             (5) 

𝐶௧ = 𝑓௧ ⊙ 𝐶௧ିଵ + 𝑖௧ ⊙ 𝐶௧
෩                                                  (6) 

 
Where 𝑥௧ is the input sensor vector at time t (e.g., 
temperature, vibration, energy); ℎ௧ିଵ is the hidden 
state output at time t; 𝐶௧ is the cell state; 𝑖௧, 𝑓௧ and 𝑜௧ 
are the input, forget, and output gates respectively; 𝐶௧

෩  
is the candidate memory; 𝑊௜, 𝑊௙, 𝑊௢ and 𝑊஼ are the 
weight matrices for gates; 𝑏௜, 𝑏௙ and 𝑏௢ are the bias 
terms; 𝜎  denotes the Sigmoid activation, and ⊙ 
denotes the element-wise multiplication. Structured 
pruning is more similar to unstructured pruning, 
except that the weights are removed more densely and 
the entire neurons or even complete LSTM layers are 
eliminated, preserving the computational regularity of 
the model and allowing the model to be run on edge 
hardware accelerators. The weight pruning function is 
denoted in (7). 
 
𝑊௣௥௨௡௘ௗ = 𝑊 ⋅ 𝐼(|𝑊| > τ)         (7) 
 
Where 𝑊  is the original weight matrix of the LSTM 
layer, 𝜏  is the pruning threshold (set based on weight 
magnitude or sensitivity), 𝐼  (⋅) is the indicator function 
that retains weights greater than threshold 𝜏 , and 
𝑊௣௥௨௡௘ௗ  is the pruned weight matrix after eliminating 
low-importance connections. After pruning, a fine-
tuning stage is performed in order to regain the small 
loss in prediction ability. The Fine-Tuning Loss 
Function is given in (8). 
 

ℒ = −
ଵ

ே
∑ [𝑦௜ log(𝑦ො௜) + (1 − 𝑦௜) log(1 − 𝑦ො௜)]ே

௜ୀଵ                                  

(8) 
 

Where 𝑁  is the number of samples, 𝑦௜  is the true label 
(0 = normal, 1 = fault), 𝑦ො௜ is the predicted fault 
probability from pruned LSTM. This retraining helps 
to make sure that the rest of the network parameters 
are adjusted to the smaller architecture without 
damaging the model that can be used to predict  
 
 

possible faults of the equipment and the patterns of its 
degradation. Optimal trade-off is generated between  
the size of the model and the accuracy of fault 
prediction by successively pruning and fine-tuning the 
model. The pruning is guided not only by accuracy but 
also by energy efficiency. The objective minimizes 
loss while penalizing high energy consumption is 
represented as 𝐸௖௢௠௣ in (9). 
 
𝒥 = ℒ + λ𝐸௖௢௠௣                          (9) 
 
Where 𝐽  is the joint optimization objective, 𝐿  is the 
prediction loss, 𝐸௖௢௠௣ is the computational energy 
consumption of the model, 𝜆  is the regularization 
factor balancing accuracy and energy.  The final 
decision layer outputs the probability of fault 
occurrence is given in (10). 
 
𝑦ො௧ = σ൫𝑊௬ℎ௧ + 𝑏௬൯               (10) 
 
The pruned LSTM makes active neurons, parameters, 
much fewer, and thereby, inference latency and energy 
consumption are reduced by a significant margin, 
which is essential when continuous monitoring is 
needed in the industry. The lightweight design enables 
real time execution on edge computing devices to 
reduce the frequency of cloud communication hence 
minimising network overhead of energy consumption. 
Also, it is designed to reduce the thermal and power 
footprint of the hardware, which reduces the lifespan 
of the device itself and enhances the sustainability of 
the entire system. Finally, the Pruned LSTM Feature 
Extraction step will be used to convert the standard 
LSTM model into an energy and computationally 
friendly edge-based predictive maintenance LSTM 
model. This allows fault detection and prediction of 
anomaly in real-time with the minimum amount of 
power consumption, which fits within the objective of 
this study of designing an intelligent and low power 
and scalable solution to contemporary industrial 
systems. The architecture of the proposed system is 
illustrated in Fig 2. 
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Fig 2. Architecture of the Proposed System 

 
 
3.4 Temporal Attention Layer 
The Temporal Attention Layer is an important addition 
to the pruned LSTM network, which allows the model 
to selectively pay attention to the most informative 
time steps in the sensor-based time-series data. 
Although the LSTM is effective in the long-term 
capturing of sensor reading dependencies over time, it 
equally considers all the time steps equally when 
processing a sequence. But in the world, industrial 
system, some events, such as sudden spikes in 
vibration, sudden temperature surges or sudden shifts 
in energy consumption, have much stronger hints of 
possible faults than others. The temporal attention 
mechanism resolves this shortcoming by dynamically 
weighting the importance of each hidden state output 
of the LSTM, and as a result, which enables the model 
to focus on important temporal features that are most 
significant to predictive maintenance. The attention 
layer will receive the series of the hidden states 
produced by the pruned LSTM which is denoted as 
ℎଵ, ℎଶ, . . , ℎ் and calculates a set of attention scores, 
which are indicators of the contribution that each time 
step makes to the prediction of the fault. Attention 
weights are constructed using these scores with the 
help of a SoftMax function. Ensuring that the overall 
significance of all the time steps is one. The context is 
the sum of these hidden states weighted 𝛼௧ which is a 
useful summary of the sequence and highlights the 
most important patterns associated with machinery 
degradation or failure 𝑐. Mathematically, the attention 
mechanism is represented as in (11) – (13). 
𝑒௧ = 𝑣் tanh(𝑊௔ℎ௧ + 𝑏௔)                     (11) 

α௧ =
ୣ୶୮(௘೟)

∑ ୣ୶୮(௘ೖ)೅
ೖసభ

                                    (12) 

𝑐 = ∑ α௧ℎ௧
்
௧ୀଵ                                        (13) 

Where 𝑒௧ is the attention score for time step 𝑡 , 𝑣 is the 
context vector (trainable parameter), 𝑊௔ is the weight 
matrix for attention, ℎ௧ is the hidden state output from 
the pruned LSTM at time step 𝑡 , 𝑏௔ is the bias term, 
𝛼௧ is the normalized attention weight at time step 𝑡 , 𝑒௞ 
is the attention score for each time step 𝑘 , 𝑇 is the total 
number of time steps, c is the context vector 
representing the weighted sum of hidden states. This 
context vector can then be sent to the last prediction 
layer which will give a probability of an impending 
fault or an anomaly. The attention layer increases 
interpretability of the model by prioritizing key 
temporal areas, which enables engineers to know 
which periods of time or sensor patterns gave a fault 
prediction. Moreover, the attention computation is 
lightweight, unlike convolutional or dense layers, and 
thus, keeps the energy consumption needed to deploy 
edges. The Temporal Attention Layer is a natural 
extension of the pruned LSTM architecture that 
enhances the prediction accuracy, interpretability, and 
responsiveness without adding too much to the 
computational and energy expenses, which means that 
it fits the study objective, that is, energy-aware 
predictive maintenance in industrial edge systems, 
perfectly. 
 
3.5 Quantization for Edge Deployment 
The Edge Deployment, quantization, is critical 
towards an energy-efficient predictive maintenance 
system to be deployed in industrial settings. The 
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optimally pruned LSTM model is then quantized to 
reduce the computational complexity, memory 
footprint and energy consumption downstream even 
more. Quantization The high-precision 32-bit floating-
point weights and activations of a model are converted 
into lower-bit integer representations, usually 8-bit 
quantization without a markedly different impact on 
the predictive accuracy of the model. This will be the 
necessary step to make sure that the trained model can 
be successfully deployed to industrial edge devices 
with small computational and power capabilities 
including embedded controllers or IoT gateways. The 
quantization process can be expressed mathematically 
as in (14) and (15). 
 

𝑄(𝑤) = round ቀ
௪ି௪min

௦
ቁ                    (14) 

 
𝑠 =

௪maxି௪min

ଶ್ିଵ
                                      (15) 

 
Where 𝑄  (𝑤 ) represents the quantized weight, 𝑤min 
and 𝑤max are the minimum and maximum weight 
values, 𝑠  is the scaling factor, and 𝑏  is the bit 
precision (e.g., 8 bits). The formula reduces the 
continuous axis of the weight values into discrete 
levels of integer values hence making the computation 
simplified and easier to be handled using hardware. 
There are two general approaches to quantization, 
namely Post-Training Quantization (PTQ) and 
Quantization-Aware Training (QAT). To preserve high 
accuracy post-compression, Quantization-Aware 
Training is applied in the current research. QAT 
models the consequences of quantization when 
training a model and enables the pruned LSTM to train 
distributions of weights that is resistant to the loss of 
numeric precision. This method will make sure that the 
accuracy of the model at predicting fault and its 
sensitivity to minor patterns of machine degradation is 
not lost once deployed. The use of the quantized model 
deployed to edge devices has a number of benefits in 
operation. It minimizes model size resulting in a 
reduction in loading and inference time and reduces 
energy consumption which is vital in continuous 
monitoring in remote industrial settings. Also, 
quantized computation can be compatible with 
integer-based hardware accelerators such as Tensor 
Processing Units (TPUs) or low power 
microcontrollers, which can be real-time. Altogether, 
the quantization step is the step connecting DL studies 
with the practical industrial use. The quantized pruned 
LSTM model offers a scalable and efficient predictive 
maintenance solution in the industrial edge systems 
(with significantly lower computational costs) that 
would be a perfect fit to the objective of the study of 
sustainable and intelligent manufacturing processes. 
 

3.6 Energy-Aware Adaptive Inference 
The Energy-Aware Adaptive Inference mechanism is 
created to guarantee that the suggested pruned LSTM-
based predictive maintenance system can work 
effectively, even with the different energy and 
computational issues, which are inherent to industrial 
edge conditions. The edge devices of industries 
usually vary over time in the amount of energy and 
processing power with several simultaneous tasks or 
volatile power supply. Consequently, ensuring quality 
fault detection performance, but at the same time 
reducing the energy usage is important to ensure the 
continuous operation. This module presents a 
dynamically controlled energy monitoring controller 
that dynamically switches between the inference and 
prediction modes of the model depending on the 
dynamically available energy and workload on the 
system. There are two major operational modes in the 
inference framework which include high-energy mode 
and low-energy mode. Under energetically demanding 
conditions, on the event that sufficient power and 
computational resources are available to the edge 
device, the system switches to the full pruned + 
attention LSTM model, providing the optimal 
accuracy and fault detection limit. This version 
incorporates all the learned parameters and attention 
mechanism to concentrate on the important sensor 
time steps so that the early indications of machine 
degradation or malfunction are correctly identified. 
Conversely, when operating in low-energy states, the 
controller automatically scales to either an ultra-
pruned or lightweight version of LSTM, where 
additional unnecessary neurons and parameters are 
further eliminated, and attention layers can be 
bypassed at least partially, to reduce the complexity of 
the computation. The arrangement requires a much 
lower energy consumption without reducing 
prediction accuracy to be acceptable. The policy of 
switching these two modes is informed by an energy 
threshold policy.  
This dynamic adaptation guarantees stable and 
uninterrupted operation without human intervention 
providing a balance between accuracy of predictions 
and energy efficiency. The controller maintains real-
time control over system measurements (CPU load, 
power draw, temperature, etc.) by using them to make 
decisions in order to maximize inference performance. 
The system through this adaptive mechanism can 
provide sustainable and autonomous predictive 
maintenance and can effectively work even under the 
energy-restricted industrial environment. On the 
whole, the Energy-Aware Adaptive Inference 
approach is appropriate to the aim of the study because 
it seeks to develop intelligent, low-power, and resilient 
edge-based maintenance systems in future smart 
manufacturing settings. 
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Algorithm 1: Energy-Aware Predictive Maintenance using Pruned LSTM 
Input:  
    X = {x₁, x₂, ..., xₙ} // Multivariate sensor time-series data 
    Y = {y₁, y₂, ..., yₙ} // Corresponding fault/normal labels 
    θ = pruning threshold 
    λ = energy regularization coefficient 
Data Preprocessing 
      Normalize sensor readings in X 
      Segment X into time windows W₁, W₂, ..., Wₖ 
      Extract statistical and frequency-domain features F from each window 
Model Initialization 
      Initialize LSTM network parameters W = {𝑊௜, 𝑊௙, 𝑊௢, 𝑊஼ } 
      Initialize bias terms b = {𝑏௜, 𝑏௙, 𝑏௢, 𝑏஼  } 
Training Phase 
     For each epoch do 
         For each mini-batch (𝑋௕, 𝑌௕) in training data do 
             Compute hidden states ℎ௧  and cell states 𝐶௧using LSTM equations: 
                 𝑓௧ = σ൫𝑊௙ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௙൯ 
                 𝑖௧ = σ(𝑊௜ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௜) 
                 𝐶௧

෩ = tanh(𝑊஼ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏஼) 
                 𝐶௧ = 𝑓௧ ⊙ 𝐶௧ିଵ + 𝑖௧ ⊙ 𝐶௧

෩  
                 𝑜௧ = σ(𝑊௢ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௢) 
             Compute fault prediction: 𝑃௙௔௨௟௧  = σ (𝑊௢ * ℎ௧+ 𝑏௢) 
             Compute total loss: 𝐿௧௢௧௔௟ = 𝐿௣௥௘ௗ௜௖௧+ λ * 𝐿௘௡௘௥௚௬  
             Update weights W using gradient descent 
Energy-Aware Pruning 
         For each weight w in W do 
             If |w| < θ then 
                 w ← 0 // Prune low-importance connections 
             End If 
         End For 
     End For 
Model Deployment on Edge Device 
     Compress pruned model for lightweight deployment 
     Upload optimized model to edge node 
Real-Time Fault Prediction 
     For each new sensor input sequence 𝑋௧ do 
         Compute 𝑃௙௔௨௟௧= model (𝑋௧) 
         If 𝑃௙௔௨௟௧≥ 0.5 then 
             Trigger maintenance alert A = 1 
         Else 
             A = 0 // Normal operation 
         End If 
     End For 
Output: 
    Predicted fault probability 𝑃௙௔௨௟௧ and maintenance alert signal A 

Algorithm 1 presents a step by step outline of the 
proposed Energy-Aware Predictive Maintenance 
System. It initially preprocesses sensor time scientific 
data and eliminates pertinent characteristics. 
Afterwards, an energy-regularized loss function is 
used to train a Pruned LSTM to trade-off accuracy and 

computation efficiency. The training process is then 
performed with low-importance weights that are 
removed sequentially to minimize the energy usage. 
Lastly, the lightweight model is implemented in 
industrial edge devices where the lightweight version 
predicts faults in real-time and sends maintenance 
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notifications whenever the probability of anomalies 
surpasses a pre-determined threshold. 

 
Fig 3. Flowchart 

 
Fig 3 summarizes all the computational steps starting 
with the sensor input to the fault alert. It also highlights 
interaction of the multi-stage between data processing, 
LSTM learning, pruning and energy optimization. 
Multiple levels provide decision points that make sure 
of dynamic adaptability data integrity, pruning 
thresholds and model stability are all under iterative 
control. The closed self-improving predictive 
maintenance ecosystem is linked to the real-time 
deployment loop through the pruned model and the 
industrial edge hardware. 
The proposed approach presents a new type of energy-
aware predictive maintenance framework that 
describes a unique combination of model pruning, 
temporal attention, quantization, and adaptive 
inference into a single LSTM-based model that is 
optimized to be deployed to industrial edges. This 
research touches on both performance and 
sustainability unlike the traditional predictive 
maintenance models which focus on the accuracy at 
the expense of the computational and energy 
efficiency. Pruned LSTM allows the removal of 
unnecessary neurons without losing the ability to learn 
temporal features, which leads to light-weight 
computation and does not deteriorate the accuracy. 
The model has a temporal attention mechanism 

integrated into it, which allows it to dynamically focus 
on important sensor time points, increasing 
interpretability and fault detection accuracy. 
Moreover, quantization reduces the power and 
memory cost of high-bit model versions by converting 
high-precision models into low-bit integer versions 
that are friendly to edges. The most exciting feature is 
the Energy-Aware Adaptive Inference module which 
enables the switching between full and lightweight 
inference modes in real-time depending on the 
available energy so that it can be used even when it is 
constrained by power. This self-optimizing 
mechanism is a major improvement against the use of 
the static models in the previous research. In general, 
the proposed solution is a balanced trade-off between 
accuracy, latency, and energy consumption, and it is 
very appropriate in the case of real-world industrial 
edge scenarios. 
 

4. Result and Discussion 
The findings of this study indicate that the proposed 
energy-conscious pruned LSTM model with temporal 
attention and adaptive inference has a better 
performance in predictive maintenance under 
industrial edge conditions. It is successful in acquiring 
temporal patterns and degradation trends based on 
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complex sensor data to enhance effective prediction of 
faults. By organized pruning and quantization, the 
system dramatically lowers the amount of 
computational overhead and energy usage making the 
system usable in real-time operation on low-power 
industrial edge devices. The model also introduces the 
temporal attention mechanism that enables the model 
to focus on the most informative sensor intervals 
resulting in more credible fault recognition despite 
Imbalanced or noisy datasets. The adaptive inference 
mechanism is also successful in controlling variations 
in power by dynamically changing the model 
complexity based on the energy availability to provide 
continuous functioning in the limited environments. 

The comparative analysis of this hybrid approach with 
traditional DL models confirm that this hybrid 
approach has high reliability in predictions and also 
attains high efficiency improvements. On the whole, 
the findings support the feasibility and strength of the 
suggested framework, and prove that it is a perfect 
choice as it considers predictive accuracy, cost of 
computation and energy efficiency, which makes it the 
optimal answer to sustainable and intelligent and 
continuous predictive maintenance in the 
contemporary industrial systems. 

 
 

 
Table 3. Simulation Parameter 

Parameter Value  
Dataset Multivariate Time-Series Data 

Sampling Frequency 1 Hz 
Window Size 50-time steps 
Overlap Ratio 25% 

Training–Testing Split 80% – 20% 
Batch Size 64 

Learning Rate 0.001 
Optimizer Adam 

Loss Function Binary Cross-Entropy 
LSTM Layers 2 
Hidden Units 128 
Dropout Rate 0.3 
Pruning Ratio 30% 

Quantization Precision 8-bit integer 
Attention Mechanism Enabled 

Epochs 100 
Deployment Platform ARM Cortex-A57, 4 GB RAM 

Energy Monitoring Interval Every 10 seconds 

Table 3 summarises the simulation parameters of the 
experiment to be used in the assessment of the 
proposed energy-conscious predictive maintenance 
framework. The structure is to be balanced in terms of 
computational capability and model precision and to 
allow real time fault detection on low power 
embedded systems. The parameters make the system 
to capture the temporal dependencies of the 
multivariate time-series data in an optimized sequence 
processing as well as controlled training dynamics. 
The model training system focuses on a robust 
learning but with sufficient regularization and 
optimization policies, so that the learning process 
would be stable as it approaches convergence. 
Moreover, model compression methods including 
pruning and quantization can be used to run on 
hardware with resource limits with minimal 
performance loss. Attention mechanism promotes 
prioritization of features to be more precise in fault 

recognition whereas monitoring of energy at a 
predefined period aids in evaluation of efficiency and 
sustainability of the system in the real-time running. 
4.1 Predictive Performance Analysis 
The predictive performance assessment determines the 
success of the suggested pruned LSTM model in 
predicting possible faults and patterns of degradation 
in industrial equipment using sensor-based time-series 
data. The temporal dependency and the ability to 
identify important patterns in the model by use of the 
attention mechanism makes the model very reliable 
when it comes to fault detection. Its performance is 
evaluated by comparing its predictions to actual fault 
occurrences to determine its performance in terms of 
detecting faults and consistency. The proposed method 
has a higher convergence rate, lower false alarms, and 
better fault detection during different operational 
conditions than the classic models, which proves its 
rigor and applicability in real-time predictive 
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maintenance in the industrial setup with limited energy 
resources. 

 
Fig 4. Sensor Signal Trend Over Time 

 
Fig 4 shows the time dynamics of three important 
industrial sensors, such as vibration (blue), 
temperature (red), and pressure (green), which were 
recorded during consecutive processes and operations. 
The blue curve would signify the amplitude of 
vibrations that would represent oscillation of the 
machine, the red curve would denote the stability of 
temperature when the load is altered and the green 

curve would denote how the pressure varies over 
changes in working periods. These values are boxed 
values indicating sampled sensor values at particular 
timestamps to validate the trends. A combination of 
such time-series trends points to possible deteriorating 
pattern, and thus the proposed energy-conscious 
predictive maintenance framework will be capable of 
learning the temporal pattern of fault evolution. 

 
Fig 5. Correlation Heatmap of Sensor Variables 

 
Fig 5 shows the relationship of the various sensor 
indicators: vibration (red squares), temperature 
(orange tones), pressure (blue gradients), and humidity 
(pale tones). Areas in red are strong positive 
correlations and deep blue colour depicts inversive 
relationships. The diagonal line is an indication of 

ideal correlation of each sensor to itself. The numerical 
values in boxes provide the actual strength of 
correlation between sensor pairs. The visualization is 
useful in revealing redundant features and inter senor 
dependence critical in pruning and training of models 
with low-energy consumption. 
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Fig 6. Fault Tolerance Versus Time 

 
Fig 6 depicts the fault prediction verses time line 
graph. The solid line of blue colour shows the real 
condition of the machine based on sensor data, and the 
red line with a dotted form is the forecasted probability 
of a fault made by the pruned LSTM model. The high 

correlation between the two lines implies that the 
model is able to follow the trends of temporal 
degradation of the equipment and this proves that it is 
reliable in undertaking any predictive maintenance 
exercise. 

 
Fig 7. Confusion Matrix of Pruned LSTM Model 

 
Fig 7 represents the results of the classification 
between the Normal and Faulty machine conditions 
based on sensor-based time-series data. The rows 
reflect real equipment states whereas columns reflect 
the forecasted states. The dark red diagonal boxes 
represent the correct predictions in both normal and 
faulty states and the light parts outside the diagonal 
denote the misclassifications. The number of samples 
in each category is represented in the data, thus giving 

a clear indication on how the model works in terms of 
categories. The large scores on the diagonal indicate 
that the proposed Pruned LSTM is very effective in 
degradation trends in the time lag and reducing false 
alarms. This validates the fact that it can be used in 
energy-efficient predictive maintenance in the 
industrial frontline to ensure that both computational 
economy and strong fault recognition are achieved. 
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Fig 8. Feature Importance of Predictive Maintenance 

 
Fig 8 shows the importance of statistical features that 
are extracted to predict equipment faults. Every colour 
represents specific characteristic, namely blue-RMS, 
orange-Kurtosis, green-Entropy and red-Mean values. 
The values in the box are the calculated values of the 
importance scores of the model analysis. The more the 

importance (e.g., RMS and Kurtosis) the more 
correlated with fault progression patterns. The colour 
diversity helps to visual differentiation, with the 
feature selection making the interpretability better and 
the energy-aware pruning to retain only the influential 
variables. 

 
Fig 9. Distribution of Predicted Fault Probabilities 

 
Fig 9 indicates the predicted fault distribution of the 
pruned LSTM model. The blue bars are the sample 
size within various probability ranges. The samples 
around 0.8 are strong indications of a lot of confidence 
of the model in its ability to detect faults whereas the 
samples around 0.2 are good signatures of healthy 
operation states. The visualization contributes to 
identifying the threshold at which predictive 
maintenance alerts will be activated and will allow 
following the necessary calibration of the model. 
4.2 Energy Consumption Analysis 
The energy consumption analysis aims at assessing the 
effectiveness with which the proposed pruned and 
quantized LSTM model is power-conserving in edge-
based predictive maintenance. The model is much 

more energy efficient with less redundant 
computations as it uses low-bit quantization to achieve 
high prediction reliability. The adaptive inference 
process allows dynamically changing the complexity 
of the models depending on the real-time power 
availability, which guarantees its continuous operation 
even when operating with low energy conditions. 
Relative comparison with non-optimized models 
shows that this method can result in significant energy 
savings without compromising the fault detection 
accuracy, which proves the appropriateness of the 
method in sustainable, real-time predictive 
maintenance of industrial edge systems where power 
efficiency is paramount. 
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Fig 10. Power Usage Over Time During Inference 

 
Fig 10 shows the variation in power consumption with 
inference in various model configurations. The blue 
solid line depicts the baseline LSTM model which is 
always consuming more power because of the dense 
computation and large number of parameters. The 
orange dashed line is associated with the Pruned 
LSTM model which attains a significant decrease in 
energy expenditure by pruning the parameters and 
structure optimization. Green dash-dot line represents 

the Adaptive Energy-Aware Model, which 
dynamically scales its complexity with regards to the 
inference to the sensor activity, leading to the 
smoother and lower power consumption trends over 
the duration. Generally, the diminishing trend of 
power between blue to green indicates the benefit of 
the suggested pruned and adaptive solution in 
providing energy efficient predictive maintenance that 
can be used in industrial edge systems

. 

 
Fig 11. Edge Device Power Profile During Operation 

 
Fig 11 indicates the behaviour of the power 
consumption of the edge device over time when it is 
performing predictive maintenance tasks. The green 
line is where the idle power is, whereas the red line is 
power consumption during model inference cycles. 
The readings that are boxed show real-time energy 

consumption in watts. The red curve peeks indicate 
computationally expensive periods of time when 
LSTM model is handling incoming sensor data. The 
stable green floor gives energy stability, which proves 
that the pruning and quantization strategies can greatly 
lower the operational energy requirement at the edge. 
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Fig 12. Memory Utilization Vs Processing Time 

 
Fig 12 represents the trade-off between memory usage 
and inference processing time introduced by different 
model configurations that were run on the edge 
system. Every point corresponds to a specific 
configuration, and the intensity of the colors (yellow 
to dark purple) would be related to the batch size - 
lighter colors would be associated with smaller batch 
sizes, and dark purple colors with larger batches. 
Boxed labels have reference batch sizes. The rising 
pattern shows that as memory allocation is increasing, 
the processing time tends to increase which means 
there is a resource-performance tradeoff. This 
observation is in line with the presented energy-aware 
pruning method that reduces memory footprint 
without affecting responsiveness - guaranteeing 
efficient predictive maintenance under limited edge 
conditions. 
4.3 Edge Deployment Validation 

The edge deployment validation is an analysis done to 
determine the viability and fitness of the suggested 
pruned and quantized LSTM model as it is 
implemented on actual industrial edge devices. The 
model uses low-power hardware and is able to achieve 
very steady performance in real-time conditions. 
Resource consumption tests verify low CPU, GPU and 
memory consumption by pruning and quantization and 
allow operation to run smoothly with continuous 
operation without overheating and latency problems. 
The mechanism of adaptive inference guarantees the 
smooth transition between modes depending on the 
energy levels, which proves the resilience and 
scalability of the model. As a whole, the deployment 
validation states that the system is completely geared 
towards real-world, is energy efficient industrial edge 
applications. 

 
Fig 13. Inference Latency Versus Input Length 



ISSN 2347–3657 

Volume 13, Issue 4, 2025 

 
 
 

63 
 

Fig 13 shows the latency of inference as a function of 
length of input sequence over the various model 
architectures. The blue circular curve is the blue line 
that denotes the bottom of LSTM model since it has 
the highest latency increase because of its dense 
computation and huge memory access constraints. The 
square marker of an orange dashed line shows the 
Pruned LSTM which significantly cuts down the 
latency by eliminating the unnecessary neurons, and 
by cutting down on the path of computation. The green 
dash-dot curve with the triangular markers 

corresponds to the Adaptive Energy-Aware Model 
which shows the lowest latency of any input length 
due to the ability to dynamically increase 
computational resources as the complexity of real-
time data changes. The blue to green colour flow 
clearly shows how every optimization step, pruning 
and adaptive scheduling, cuts down on the 
computational delay to enhance real-time 
responsiveness which is an important feature of 
industrial edge predictive maintenance systems. 

 
Fig 14. Frequency Spectrum of Vibration Signal 

 
Fig 14 demonstrates the frequency-domain 
representation of the sensor of vibrations data with 
Fast Fourier Transform (FFT). The purple curve shows 
the distribution of amplitudes of various frequencies. 
The frequency markers are boxed as frequency values 
of 50 Hz and 120 Hz which are the dominant peaks 
and represent machine rotation and harmonic 
vibrations. Peak values at certain frequencies signify 
potential mechanical imbalance or wear of bearings 
and this would enable the predictive maintenance 
system to identify early fault trends in the piece of 
equipment. 
4.4 Performance Comparison 
The performance comparison in this study shows that 
the presented Pruned LSTM-based predictive 

maintenance model is much more effective than the 
conventional DL procedures, including standard 
LSTM, GRU, and CNN models. The pruning method 
is useful in minimizing computational cost and 
memory usage with predictive accuracy not being 
affected. The proposed system in comparison with the 
baseline models has a shorter inference time, 
consumes less energy, and is more stable in real-time. 
Accuracy, efficiency, and responsiveness are all what 
make this balance suit the model to the industrial edge 
environments. The findings indicate that energy 
mindful pruning and optimization yield a sparse but 
very robust predictive maintenance framework of 
sensor-based systems. 

 
Table 4. Performance Comparison Across Various Models 

Model 
Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 

F1-
Score 
(%) 

Energy 
Consumption 

(W) 
CNN-Based Fault Detection [20]  98.3 98.7 98 98.3 4.8 

GRU-Based Predictive Model [21] 92.2 92.2 92.2 92.06 4.3 
CNN-RNN [22] 97.7 98.7 97.3 96.5 4.1 
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LightGBM  [23] 93 94 93 93 3.9 
XGBoost [24]  95.9 96.1 95.9 95.9 3.7 

Proposed Pruned LSTM  98.8 98.9 98.8 98.9 2.5 

Table 4 offers a comparative study of different 
predictive maintenance models that were tested under 
the same experimental conditions. Although basic DL 
networks like CNN, GRU, and hybrid CNN-RNN 
networks have proven to be quite effective in fault 
detection, they are slightly more energy-consumptive 
and, therefore, are not optimal when it comes to edges 
deployment. LightGBM and XGBoost are gradient-
boosted approaches which demonstrate moderate 
accuracy, but are computationally light. On the 
contrary, Pruned LSTM model proposed has a better 
predictive performance with highest accuracy, 
precision, recall, and F1-score and consumes only a 
small power. This advancement underscores the 
effectiveness of the model in terms of efficiency and 
energy-consciousness in predictive accuracy, and 
makes it an appropriate choice when using real-time 
industrial settings on edge devices that are resource-
constrained. 
 
4.5 Discussion 
The experimental analysis shows that the proposed 
Energy-Aware Predictive Maintenance framework 
based on Pruned LSTM Networks is a successful 
method of improving the prediction quality and energy 
consumption in industrial edge systems. The model is 
able to learn the complicated time-dependent 
relationships using multi-sensor time-series data, and 
at low computational cost due to pruning. The 
proposed architecture outperforms such traditional 
architectures as CNN, GRU, and XGBoost in terms of 
detecting early fault patterns, reducing false alarms, 
and being able to maintain stable operation at varying 
sensor conditions. The lower power usage highlights 
the fact that the method is suitable to be implemented 
on low power industrial edge devices and thus best 
suited to the implementation of real time monitoring 
and scheduling of maintenance. Besides, the trade-off 
between the performance and the computational 
efficiency is balanced to confirm the flexibility of the 
proposed model to different setups in industries. 
Nevertheless, one of the main shortcomings of this 
research is the fact that the model is based on labelled 
data and is limited to generalizing to various types of 
machines. Further research will be directed to include 
the element of self-supervised learning and adaptive 
transfer mechanisms in order to improve the 
scalability and performance of the model in unseen 
industrial settings. 
 
 
 

5. Conclusion and Future Work 
The proposed study introduced an Energy-Aware 
Predictive Maintenance model based on Pruned 
LSTM Networks that would suit sensor-based 
industrial edge systems. The strategy is a successful 
combination of intensive time modelling and pruning 
optimization to provide high prediction accuracy and 
reduction of computing and energy costs. 
Experimental evidence shows that the suggested 
approach largely excels over the standard ML and DL 
models in detecting early equipment failures, 
minimizing the inference latency, and boosting its 
energy consumption. By integrating pruning methods, 
the deployment can be done real-time on edge devices, 
enabling the operation to be cost-effective, intelligent, 
and sustainable to the maintenance operations, in the 
smart manufacturing environment. In spite of these 
promising results, imbalance in data, noises, and 
machine specific variations can affect the performance 
of the model. Therefore, the future studies will be 
aimed at the creation of adaptive transfer learning 
mechanisms, federated edge intelligence mechanisms, 
and hybrid Transformer-LSTM models to enhance 
cross-domain generalization and resilience. More so, 
using self-managed learning and power conscious 
scheduling systems will also increase the efficiency of 
fault prediction and allow deployment in large 
industrial settings with minimum human intervention. 
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