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Abstract

In  modern industrial environments, predictive
maintenance has become a vital strategy for ensuring
operational reliability, reducing downtime, and
optimizing energy utilization. However, existing deep
learning (DL) approaches such as CNN, GRU, and
hybrid architectures, while accurate, often suffer from
high  computational  complexity —and  energy
consumption, making them unsuitable for real-time
edge deployment. To address these limitations, this
study proposes an  Energy-Aware  Predictive
Maintenance framework using Pruned LSTM
Networks for sensor-based time-series data, designed
specifically for industrial edge systems. The model
employs structured pruning techniques to reduce
redundant parameters and computational overhead
while preserving the temporal learning capability of
LSTM. The proposed approach was implemented
using Python and TensorFlow on the Kaggle
Industrial Equipment Monitoring Dataset, which
contains multi-sensor readings representing normal
and faulty machine states. Experimental results show
that the Pruned LSTM model achieves a 98.8%
accuracy, marking an increase of approximately 6—7%
over conventional models like GRU and CNN, while
reducing energy consumption by nearly 40%
compared to baseline methods. This improvement
demonstrates the model’s ability to maintain high
precision and reliability under resource constraints.
The proposed framework establishes a strong
foundation for real-time edge-based predictive
analytics, offering both energy efficiency and
predictive robustness. In the future, the model will be
extended with adaptive transfer learning and
federated edge optimization to enable scalable and
cross-domain industrial applications, driving the next
generation of intelligent and sustainable maintenance
systems.

Keywords: Predictive Maintenance, Energy-Aware
Computing, Pruned LSTM Networks, Industrial Edge
Systems, Sensor-Based Time-Series Data

1. Introduction
Industry 4.0 has changed the landscape of industry
development because of the introduction of intelligent
systems, sensor technologies, and real-time analytics

as efficient asset management tools [1]. Predictive
Maintenance is one of such innovations that have
provided a ground-breaking solution in predicting
equipment failures prior to their actual occurrence
hence reducing downtimes, enhancing the level of
productivity and lowering maintenance expenses [2].
The fast adoption of the Internet of Things (IoT)
devices and industrial sensors has produced a huge
amount of time-series data, which can help to obtain
valuable information regarding the health of the
machine [3], [4]. The effective analysis of this data is
important in the prediction of faults on time and the
planning of maintenance in industrial systems as
energy-efficient [5]. Innovations in Predictive
Maintenance in recent years have been based primarily
on DL models: Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Gated
Recurrent Units (GRU) and Transformer based
models. Such approaches have been incredibly precise
at finding patterns using sensor data [6], [7].

Their computation complexity, large memory footprint
and energy demands are however a limitation to their
use in resource constrained edge computing
environments [8]. In addition, such models tend to be
sensitive to noisy or imbalanced data typically
occurring in the industrial setting, which causes lower
prediction accuracy and ineffective  energy
consumption [9]. Although it is expected to be
excellent in cloud-based configurations, the latency
and overhead of the communication restrict its
practical use at the industrial level in real-time [10]. In
order to address these issues, the current study
proposes an Energy-Aware Predictive Maintenance
framework based on the Pruned LSTM Networks on
Sensor-Based Time-Series Data. The model proposed
combines the systematic pruning that removes
redundant network parameters in order to greatly
reduce computational costs and power usage, without
affecting the predictive performance. When it is
deployed at the edge with the optimized model, it can
be used to provide real-time fault detection, efficient
energy management, and adaptive sensor data stream
learning. This will provide a trade-off between
predictive accuracy, energy-saving, and operational-
responsiveness, which are important to the modern
industrial systems.

1.1 Problem Statement
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Conventional predictive maintenance models based on
DL are computationally intensive and power-
intensive, accurate, but impractical to use on edge
computing devices. The majority of the current
models, including CNN, GRU, and hybrid models, are
computationally and memory intensive and thus
expensive to run and slow in detecting faults in real
time. Also, these models do not fit well to different
machine conditions and are overfitting when trained
on unbalanced industrial data [15]. The deficiency of
optimized architectures with a balance between
predictive accuracy and energy efficiency provides a
gap in the critical research in the design of lightweight
and reliable edge-based predictive maintenance
models [17]. This study will address this gap by
suggesting a time-conscious pruned LSTM model that
can learn temporal relationships on multi-sensor time-
series data with a low level of computational
complexity. The strategy fills the performance verses
efficiency gap, guaranteeing quicker inference and
sustainable edge dispensation of industrial systems.
1.2 Research Motivation
The impetus behind this study is the increased desire
to have smart, energy saving predictive systems that
can operate in edge scenarios with minimal resources.
In fact, the complex time-series information produced
by industrial machines are in constant need of real-
time analysis without depending on cloud
infrastructures with high power. To fulfil this
requirement, the development of a pruned LSTM-
based predictive maintenance model, with its capacity
to combine computational efficiency and a high level
of accuracy, is encouraged to make a shift to
autonomous, low-power, and adaptive maintenance
models that can revolutionize industrial reliability and
sustainability.
1.3 Research Significance
The proposed study has a great industrial importance
because it can solve the twofold problem of precise
fault forecasting and power-saving model execution
on peripheral devices. The suggested pruned LSTM
architecture is better at achieving higher predictive
performance by consuming less power and inference
latency, which facilitates real-time decision-making.
The research will lead to sustainable intelligent
manufacturing, enhancing equipment life, reducing
unplanned  downtime, and further practical
implementation of industry 4.0-ready energy-efficient
predictive maintenance systems by making it cost-
effective, scalable, and intelligent.
1.4 Key Contributions
e A new predictive maintenance framework is
proposed that integrates pruned LSTM
networks with energy-aware optimization for
efficient fault detection and condition
monitoring in industrial edge systems.
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e The study introduces a structured pruning
mechanism to remove redundant neurons and
connections in the LSTM network,
significantly reducing computational
overhead, energy usage, and inference time
without compromising prediction accuracy.

e The proposed model is specifically designed
for industrial edge environments, enabling
real-time fault detection and maintenance
prediction on low-power devices while
maintaining high model fidelity.

e The framework is implemented using Python
and TensorFlow, demonstrating practical
applicability and scalability across different
industrial domains with varying sensor
configurations.

e  This study establishes a strong foundation for
future advancements by enabling the
integration of transfer learning, self-
supervised adaptation, and federated edge
intelligence for scalable and sustainable
predictive maintenance in Industry 4.0
environments.

The rest of the paper is organized as follows. Section
2 review the related works, Section 3 detailed about
the proposed methodology, Section 4 describes the
results and discusses about the study, and finally
Section 5 concludes the study and direction for future
work.

2. Related Work

Chen et al. [11] suggested a Low-Power On-Device
Predictive Maintenance (LOPdM) system to combine
Self-Powered Sensors (SPS) and Tiny Machine
Learning (TinyML) methods to make real-time fault
detection possible and energy-efficient. The aim of the
study was to address the high power and cost
requirements of the conventional Al-based PdM
systems. There were 6 ML models tested where it was
found that both the Random Forest and Deep Neural
Network models performed as well as 99% accuracy
even in low conditions of data and sampling. The
system saved on energy by a rate of 66.8 as opposed
to IMU-based systems. Nevertheless, the method
might be constrained in terms of addressing
complicated industrial statistics as well as scalability
in various settings.

Rahman et al. [12] have performed a review article on
how to combine Machine Learning (ML) and Digital
Twin (DT) with Edge AI to improve intelligent
industrial automation. The objective of the study was
to enhance predictive maintenance, quality control,
and optimization of processes with the help of real-
time data-driven insights. Through the analysis of
different ML models, datasets and industrial
platforms, the review reflected on the emerging role of
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deep learning, especially convolutional and recurrent
architecture, in the industrial systems. The study has
successfully realized a definite mapping of the
transformational role of ML in the automation.
Nevertheless, the lack of model generalization, real-
time deployment, interpretability, scalability, and
safety in autonomous decision-making are some of the
weaknesses.

Rosca and Stancu [13] presented a bibliometric and
thematic review of the literature on the topic to discuss
the incorporation of Artificial Intelligence (AI) and
specifically ML into self-powered IoT sensors. The
goal of the study was to categorize the areas of [oT and
evaluate the uptake of Al in such sectors as healthcare,
industry, and smart cities. The authors conducted
literature analysis in 2020 to 2025 and found the major
sensors and the most efficient ML models such as
CNN, LSTM, SVM and RF with accuracy as high as
99.92. The study made a clear presentation of Al-loT
developments. It, however, pointed at shortcomings in
its form of inadequate standardization, asymmetrical
Al usage, energy usage and insufficient study in
underrepresented sectors like agriculture.

Ang et al. [14] have suggested a new way of detecting
early anomaly in sensor-based Multivariate Time
Series (MTS) through a technique known as
Correlation Analysis based Detection (CAD). The aim
of the study was to address the weaknesses of
conventional and DL techniques, which need large
data sets or generate volatile outcomes. MTS data are
transformed into Time-Series Graphs (TSGs) by CAD
as a means of measuring correlations between sensors
as well as detecting anomalies by analysing how much
correlations vary. The method attained more than 85%
accuracy on big data sets and surpassed nine state-of-
the-art tasks. Nevertheless, it is more deterministic and
might not be able to be flexible to nonlinear
relationships and hidden dynamic industrial
conditions.

Rojas et al. [15] performed a systematic literature
review on the topic of Al the IoT, and DT application
to predictive maintenance in the mining sector. The
article examined 166 articles in Scopus and Web of
Science that are concerned with fault detection, hybrid
Al models, and real-time monitoring. The results
obtained indicated that deep and reinforcement
learning are very effective in predicting fault at the
early stage and efficiency of operations. Nevertheless,
there are still constraints in the standardization of data,
scalability of models, interoperability and
explainability, which do not allow the realization of
large-scale application and real-time flexibility in
complex mining conditions.
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Achouch et al. [16] represents the extensive review of
intelligent predictive maintenance approaches in
Industry 4.0 as the means of enhancing the uptime of
machines, lifecycle management, and the quality of
production. The methods identified in the study
included condition-based maintenance (CBM),
prognostics and health management (PHM), and
remaining useful life (RUL), and suggested a new
multimodal predictive maintenance system consistent
of varying sensors and prescriptive prognostic models.
A case study of an industry based on the centrifugal
compressor revealed proper prediction of defects and
breakdowns which matched the actual maintenance
schedules. Nevertheless, the downsides consist of
inability to standardize models across various
equipment, reliance on high quality data, complicated
instrumentation of the system, and demand of a
thorough validation and cybersecurity measures.
Bermeo-Ayerbe et al. [17] suggested an adaptive, data-
driven energy modelling methodology to the industrial
machinery to improve energy efficiency and
sustainability with the integration of digital twins. The
study was aimed at developing dynamic models to
detect behaviour changes in machines with a concept
drift detector, which is able to adapt to the
degeneration and uncharacteristic energy behaviours.
The method, tested on an industrial testbed with
simulated drifts, outperformed non-adaptive models
by at least a factor of two in terms of prediction
accuracy as the method gave an 82.81% fit rate.
Nevertheless, the method has weaknesses including
temporary delays when a drift is detected and false
drift detection and poor robustness that needs
additional input characterization and automation
enhancement.

Moleda et.al [18] conducted a review of maintenance
strategies in the power industry with emphasis on the
shift of classical corrective solutions to the predictive
and prescriptive solutions based on Industry 4.0
solutions. The study focused on the analysis of the
available practices, Al-based analytics, Big Data, and
IoT applications in equipment monitoring, fault
detection, and maintenance planning. The authors
have also compared the traditional and the latest
methods by outlining the strengths, weaknesses, and
the integration difficulties. The review managed to
map the state-of-the-art predictive maintenance
methods comprehensively and thus, researchers can be
guided on how to improve it. Nevertheless, there are
disadvantages like challenges in real-life applicability
because of the safety laws, cyber-security needs,
operator limitations, and the expensive nature of
industrial applications.

Table 1. Summary of Existing Studies

| Reference | Method |

Advantages

| Limitations |
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Table 1 contains a summary of the existing research
works that were consolidated regarding the topic of
Al-driven and energy-aware predictive maintenance
systems in industrial environments in a more
condensed form. The surveyed studies prove that there
is a significant progress in uniting MLand DT
technologies as well as IoT-based data collection to
improve the efficiency of maintenance and operational
stability. Such works have had astounding levels of
accuracy, energy savings and enhanced automation
performance in a range of industrial uses. Nonetheless,
these developments are associated with several
significant shortcomings in the literature including
inadequate scalability, reliance on high-quality
datasets, absence of real-time implementation,
interoperability and inability to operate successfully in
complex, nonlinear and dynamic industrial systems.

The issues with many current methods are also
optimization of energy, generalization of models, and
explainability, which makes implementation of such
methods in large-scale industries challenging. The
current study will overcome these difficulties by
presenting an energy-gauge predictive-maintenance
framework, which combines adaptive feature learning,
and an LSTM-based deep-learning device in order to
effectively process time-series sensor data. The
proposed system is more energy efficient, scalable,
and predictive of faults and is robust to a wide range
of industrial environments- in effect addressing the
limitations that were found in earlier research works as
summarized in the table.

3. Proposed Pruned LSTM for Energy-Aware
Predictive Maintenance in Industries
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The proposed study introduces an energy-conscious
predictive maintenance architecture of industrial edge
systems based on Pruned LSTM networks on sensor-
based time-series. This method starts by obtaining
multivariate sensor data like temperature, vibration,
current and energy consumption data of industrial
equipment. The data are preprocessed through such
steps as noise filtering, normalization and sliding-
window segmentation to organize sequences in a
manner that can be modeled in time. A Pruned LSTM
model is then constructed to encompass temporal
dependencies and one of these is to eradicate
unnecessary neurons and connections, hence lowering
the computation cost and enhancing the speed of

" Data Acquisition B
o =1

Data Preprocessing
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inference to deploy edges. To improve performance,
attention mechanisms are added to emphasize
significant sensor signals that make the most
contribution to failure prediction. The model
quantization is also used to reduce the energy
consumption further without compromising on the
accuracy. The trained model forecasts possible failures
or deterioration conditions in real-time, which allows
to plan the maintenance proactively. In general, the
presented approach offers a scalable, low-power, and
intelligent predictive maintenance solution in real-
time in smart manufacturing and an industrial IoT
setting. The workflow of the proposed framework is
illustrated in Fig 1.
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Fig 1. Workflow of the Proposed Framework

3.1 Data Collection

The publicly available Kaggle dataset, a smart
manufacturing process dataset used in this study that
included real-time multivariate sensor measurements
taken in industrial equipment [19]. Among the most
important parameters like temperature, vibration,
current, speed, and energy consumption are constantly
measured at any time that the machine is running.
These time-series observations both observes normal

and faulty states allowing the model to acquire
information on degradation patterns and forecast
failures. Timing Data is collected at regular sampling
rate and coordinated between all the sensors to achieve
timing consistency. The dataset is realistic as it offers
an industrial setting to assist in the development and
testing of the proposed energy-aware pruned LSTM
model in predictive maintenance of edge systems.

Table 2. Dataset Description

Temperature Machine Production Vibration Energy Optimal
Timestamp ?o o) Speed Quality Level Consumption Corl: ditions
(RPM) Score (mm/s) (KWh)
2025-04-01
08:00:00 78.92 1461 8.49 0.07 1.97 0
2025-04-01
08:01:00 71.83 1549 8.97 0.04 1.01 0
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2025-04-01
08:02:00 74.88 1498 8.52 0.08 1.60 0
2025-04-01
08:03:00 77.27 1478 8.28 0.09 1.87 0
2025-04-01
08:04:00 76.50 1524 8.07 0.04 1.53 0

Table 2 shows a sample representative to the
manufacturing data utilized in the formation and
confirmation of the suggested Energy-Aware
Predictive Maintenance design. The data set is a time-
series of multivariate data about industrial machinery
that is captured by the data and the data is a reflection
of real-time operational and environmental
parameters. The LSTM-based predictive model is used
to extract features, detect anomalies and predict faults
on these data. The organized data allows to evaluate
the health of machines, detect the deviations in
performance and estimate what maintenance should be
performed in different operating conditions.

3.2 Data Preprocessing

Preprocessing of data phase involve the preparation of
raw multivariate sensor data to do effective modelling
and analysis. It is to guarantee the quality of data,
uniformity, and preparedness to time-series learning of
the proposed pruned LSTM model. The preprocessing
of the signals measured by the industrial sensors
converts the signals into structured temporal
sequences that indicate the behaviour of the machine
in normal and abnormal operating conditions. This
clean data increases the sensitivity of the model to
subtle signs of degradation and also manages to better
predict. The result of this phase is a clean, well-
organised and balanced dataset that can be used to
predictively maintain the industry in an energy-
efficient manner.

3.2.1 Data Cleaning

This will eliminate incomplete, clustered, and noisy
sensor readings which may alter time-series patterns.
In the industrial settings, the noise can be due to faulty
sensors or transmission errors. Missing data are either
interpolated or deleted. This will guarantee good
quality and consistent data to model and this will assist
the pruned LSTM to learn actual equipment behaviour
patterns.

3.2.2 Normalization

The normalization of all sensor properties (e.g.,
temperature, vibration, energy) is performed in order
to stabilize gradient updates and speed up the training
of LSTM. It avoids the large features with large
numeric ranges to prevail over the smaller features.
Data is scaled using the min-max scale to the range [0,
1].

Xi = Xmin

norm _

Xi

Xmax — Xmin

Here x; is the original sensor reading, X,,,, and X,
are the maximum and minimum values of that sensor
feature respectively.

3.2.3 Segmentation

Segmentation breaks continuous sensor streams into
fixed length overlapping windows that represent the
temporal dependencies that would be wused in
predictive maintenance. The individual segments are
used as inputs of the LSTM model, which can learn
time-related trends of degradation that results in faults.
3.2.4 Label Encoding

Each sequence that has been segmented is given a
label that shows whether it is in a normal state or faulty
state. Binary encoding is used in which 0 is normal
operation and 1 failure or anomaly. This enables the
LSTM to go through supervised prediction learning of
maintenance.

3.2.5 Data Balancing

The industrial data have a small number of faulty
samples, balancing provides equal contribution to
model learning by normal and fault classes. Hybrid
resampling is used to eliminate bias by oversampling
rare segments of faults and under sampling normal
segments.

3.3 Pruned LSTM Feature Extraction

The Pruned LSTM Feature Extraction step is
important in realizing an energy efficient predictive
maintenance in industrial edge system. The Long
Short-Term Memory (LSTM) network is selected in
particular since it is a good demonstration of temporal
correlations in sensor-based time-series, including
vibration, temperature, current, and energy
consumption data, incurred by the industrial
equipment. Nonetheless, traditional LSTM designs
tend to have superfluous neurons and parameters
which add to the computational cost, memory and
energy cost of the system and thus cannot be deployed
to resource-constrained edge devices. To overcome
these difficulties, LSTM network is pruned in a
systematic way to maximize the efficiency of the
model and its prediction efficiency. Once the first
LSTM model is trained with the preprocessed sensor
data it starts the pruning process. Weight magnitude is
used and together with activation-based sensitivity
analysis, neurons, gates and connections are identified
which contribute insignificantly to the output of the
model. These unimportant elements are removed
systematically in effect downsizing and simplifying
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the LSTM model. The LSTM Cell Computation is
represented in (2) — (6).
iy = o(W; - [he_q,x] + b;)
fe = U(Wf [he—1x ] + bf)
0; = o(W, - [he—1, %] + bo)

C, = tanh(W - [he_q, x¢] + b)

Cc=f0OC,1+i;OC

Where x; is the input sensor vector at time t (e.g.,
temperature, vibration, energy); h,_, is the hidden
state output at time t; C, is the cell state; i;, f; and o,
are the input, forget, and output gates respectively; C;
is the candidate memory; W;, Wy, W, and W, are the
weight matrices for gates; b;, by and b, are the bias
terms; o denotes the Sigmoid activation, and ©
denotes the element-wise multiplication. Structured
pruning is more similar to unstructured pruning,
except that the weights are removed more densely and
the entire neurons or even complete LSTM layers are
eliminated, preserving the computational regularity of
the model and allowing the model to be run on edge
hardware accelerators. The weight pruning function is
denoted in (7).

Wpruned =w- I(|W| > T) (7)

Where W is the original weight matrix of the LSTM
layer, T is the pruning threshold (set based on weight
magnitude or sensitivity), I (-) is the indicator function
that retains weights greater than threshold 7, and
W runea 18 the pruned weight matrix after eliminating
low-importance connections. After pruning, a fine-
tuning stage is performed in order to regain the small
loss in prediction ability. The Fine-Tuning Loss
Function is given in (8).

1

L=— ;Z?’zl[yi log(¥) + (1 — y;) log(1 — 9;)]
(8

Where N is the number of samples, y; is the true label
(0 = normal, 1 = fault), ¥; is the predicted fault
probability from pruned LSTM. This retraining helps
to make sure that the rest of the network parameters
are adjusted to the smaller architecture without
damaging the model that can be used to predict
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()
A3)
4
(%)
(6)
possible faults of the equipment and the patterns of its
degradation. Optimal trade-off is generated between
the size of the model and the accuracy of fault
prediction by successively pruning and fine-tuning the
model. The pruning is guided not only by accuracy but
also by energy efficiency. The objective minimizes
loss while penalizing high energy consumption is
represented as E¢omyp in (9).

Jd=L+ )‘Ecomp )

Where J is the joint optimization objective, L is the
prediction loss, Ecomp is the computational energy
consumption of the model, A is the regularization
factor balancing accuracy and energy. The final
decision layer outputs the probability of fault
occurrence is given in (10).

9: = o(W,h, + b,) (10)

The pruned LSTM makes active neurons, parameters,
much fewer, and thereby, inference latency and energy
consumption are reduced by a significant margin,
which is essential when continuous monitoring is
needed in the industry. The lightweight design enables
real time execution on edge computing devices to
reduce the frequency of cloud communication hence
minimising network overhead of energy consumption.
Also, it is designed to reduce the thermal and power
footprint of the hardware, which reduces the lifespan
of the device itself and enhances the sustainability of
the entire system. Finally, the Pruned LSTM Feature
Extraction step will be used to convert the standard
LSTM model into an energy and computationally
friendly edge-based predictive maintenance LSTM
model. This allows fault detection and prediction of
anomaly in real-time with the minimum amount of
power consumption, which fits within the objective of
this study of designing an intelligent and low power
and scalable solution to contemporary industrial
systems. The architecture of the proposed system is
illustrated in Fig 2.
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Fig 2. Architecture of the Proposed System
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3.4 Temporal Attention Layer k=1 exp(ex

The Temporal Attention Layer is an important addition €= Yi=1 Achy (13)

to the pruned LSTM network, which allows the model
to selectively pay attention to the most informative
time steps in the sensor-based time-series data.
Although the LSTM is effective in the long-term
capturing of sensor reading dependencies over time, it
equally considers all the time steps equally when
processing a sequence. But in the world, industrial
system, some events, such as sudden spikes in
vibration, sudden temperature surges or sudden shifts
in energy consumption, have much stronger hints of
possible faults than others. The temporal attention
mechanism resolves this shortcoming by dynamically
weighting the importance of each hidden state output
of the LSTM, and as a result, which enables the model
to focus on important temporal features that are most
significant to predictive maintenance. The attention
layer will receive the series of the hidden states
produced by the pruned LSTM which is denoted as
hy, h,,.., hy and calculates a set of attention scores,
which are indicators of the contribution that each time
step makes to the prediction of the fault. Attention
weights are constructed using these scores with the
help of a SoftMax function. Ensuring that the overall
significance of all the time steps is one. The context is
the sum of these hidden states weighted a, which is a
useful summary of the sequence and highlights the
most important patterns associated with machinery
degradation or failure c. Mathematically, the attention
mechanism is represented as in (11) — (13).

e, = vT tanh(W,h, + b,) (11)

Where e, is the attention score for time step t , v is the
context vector (trainable parameter), W, is the weight
matrix for attention, h; is the hidden state output from
the pruned LSTM at time step t, b, is the bias term,
a; is the normalized attention weight at time step t , ey,
is the attention score for each time step k , T is the total
number of time steps, ¢ is the context vector
representing the weighted sum of hidden states. This
context vector can then be sent to the last prediction
layer which will give a probability of an impending
fault or an anomaly. The attention layer increases
interpretability of the model by prioritizing key
temporal areas, which enables engineers to know
which periods of time or sensor patterns gave a fault
prediction. Moreover, the attention computation is
lightweight, unlike convolutional or dense layers, and
thus, keeps the energy consumption needed to deploy
edges. The Temporal Attention Layer is a natural
extension of the pruned LSTM architecture that
enhances the prediction accuracy, interpretability, and
responsiveness without adding too much to the
computational and energy expenses, which means that
it fits the study objective, that is, energy-aware
predictive maintenance in industrial edge systems,
perfectly.

3.5 Quantization for Edge Deployment

The Edge Deployment, quantization, is critical
towards an energy-efficient predictive maintenance
system to be deployed in industrial settings. The
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optimally pruned LSTM model is then quantized to
reduce the computational complexity, memory
footprint and energy consumption downstream even
more. Quantization The high-precision 32-bit floating-
point weights and activations of a model are converted
into lower-bit integer representations, usually 8-bit
quantization without a markedly different impact on
the predictive accuracy of the model. This will be the
necessary step to make sure that the trained model can
be successfully deployed to industrial edge devices
with small computational and power capabilities
including embedded controllers or IoT gateways. The
quantization process can be expressed mathematically
as in (14) and (15).

W=Wmnin
Q(w) = round (T) (14)
s = —szxb‘_”;miﬂ (15)

Where Q (w) represents the quantized weight, w;,
and wp,, are the minimum and maximum weight
values, s is the scaling factor, and b is the bit
precision (e.g., 8 bits). The formula reduces the
continuous axis of the weight values into discrete
levels of integer values hence making the computation
simplified and easier to be handled using hardware.
There are two general approaches to quantization,
namely Post-Training Quantization (PTQ) and
Quantization-Aware Training (QAT). To preserve high
accuracy  post-compression, Quantization-Aware
Training is applied in the current research. QAT
models the consequences of quantization when
training a model and enables the pruned LSTM to train
distributions of weights that is resistant to the loss of
numeric precision. This method will make sure that the
accuracy of the model at predicting fault and its
sensitivity to minor patterns of machine degradation is
not lost once deployed. The use of the quantized model
deployed to edge devices has a number of benefits in
operation. It minimizes model size resulting in a
reduction in loading and inference time and reduces
energy consumption which is vital in continuous
monitoring in remote industrial settings. Also,
quantized computation can be compatible with
integer-based hardware accelerators such as Tensor
Processing  Units (TPUs) or low power
microcontrollers, which can be real-time. Altogether,
the quantization step is the step connecting DL studies
with the practical industrial use. The quantized pruned
LSTM model offers a scalable and efficient predictive
maintenance solution in the industrial edge systems
(with significantly lower computational costs) that
would be a perfect fit to the objective of the study of
sustainable and intelligent manufacturing processes.
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3.6 Energy-Aware Adaptive Inference

The Energy-Aware Adaptive Inference mechanism is
created to guarantee that the suggested pruned LSTM-
based predictive maintenance system can work
effectively, even with the different energy and
computational issues, which are inherent to industrial
edge conditions. The edge devices of industries
usually vary over time in the amount of energy and
processing power with several simultaneous tasks or
volatile power supply. Consequently, ensuring quality
fault detection performance, but at the same time
reducing the energy usage is important to ensure the
continuous operation. This module presents a
dynamically controlled energy monitoring controller
that dynamically switches between the inference and
prediction modes of the model depending on the
dynamically available energy and workload on the
system. There are two major operational modes in the
inference framework which include high-energy mode
and low-energy mode. Under energetically demanding
conditions, on the event that sufficient power and
computational resources are available to the edge
device, the system switches to the full pruned +
attention LSTM model, providing the optimal
accuracy and fault detection limit. This version
incorporates all the learned parameters and attention
mechanism to concentrate on the important sensor
time steps so that the early indications of machine
degradation or malfunction are correctly identified.
Conversely, when operating in low-energy states, the
controller automatically scales to either an ultra-
pruned or lightweight version of LSTM, where
additional unnecessary neurons and parameters are
further eliminated, and attention layers can be
bypassed at least partially, to reduce the complexity of
the computation. The arrangement requires a much
lower energy consumption without reducing
prediction accuracy to be acceptable. The policy of
switching these two modes is informed by an energy
threshold policy.

This dynamic adaptation guarantees stable and
uninterrupted operation without human intervention
providing a balance between accuracy of predictions
and energy efficiency. The controller maintains real-
time control over system measurements (CPU load,
power draw, temperature, etc.) by using them to make
decisions in order to maximize inference performance.
The system through this adaptive mechanism can
provide sustainable and autonomous predictive
maintenance and can effectively work even under the
energy-restricted industrial environment. On the
whole, the Energy-Aware Adaptive Inference
approach is appropriate to the aim of the study because
it seeks to develop intelligent, low-power, and resilient
edge-based maintenance systems in future smart
manufacturing settings.
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Algorithm 1: Energy-Aware Predictive Maintenance using Pruned LSTM

Input:
X = {X1, X2, ..., Xa} // Multivariate sensor time-series data
Y = {y1, ¥, ..., ya} // Corresponding fault/normal labels
0 = pruning threshold
A = energy regularization coefficient
Data Preprocessing
Normalize sensor readings in X
Segment X into time windows Wi, Wa, ..., Wi
Extract statistical and frequency-domain features F from each window
Model Initialization
Initialize LSTM network parameters W = {W;, W, W,, W }
Initialize bias terms b = {b;, bs, b,, b }
Training Phase
For each epoch do
For each mini-batch (X}, Y;) in training data do

Compute hidden states h; and cell states C;using LSTM equations:

fe= G(Wf [heogx ] + bf)
ip = o(W; - [he—y, x] + b))
Cy = tanh(W,, - [he_1, ] + b)
CG=f0OCG,1+i:OC
o, = o(W, - [he—1, %] + b,)
Compute fault prediction: Prqyr =6 (W, * het by)
Compute total 10ss: Leotar = Lpreaict™ A * Lenergy
Update weights W using gradient descent
Energy-Aware Pruning
For each weight w in W do
If [w| <0 then
w «— 0 // Prune low-importance connections
End If
End For
End For
Model Deployment on Edge Device
Compress pruned model for lightweight deployment
Upload optimized model to edge node
Real-Time Fault Prediction
For each new sensor input sequence X; do
Compute Pygy = model (X;)
If Praye> 0.5 then
Trigger maintenance alert A =1
Else
A =0// Normal operation
End If
End For
Output:
Predicted fault probability Prq,,;; and maintenance alert signal A

Algorithm 1 presents a step by step outline of the
proposed Energy-Aware Predictive Maintenance
System. It initially preprocesses sensor time scientific
data and eliminates pertinent characteristics.
Afterwards, an energy-regularized loss function is
used to train a Pruned LSTM to trade-off accuracy and

computation efficiency. The training process is then
performed with low-importance weights that are
removed sequentially to minimize the energy usage.
Lastly, the lightweight model is implemented in
industrial edge devices where the lightweight version
predicts faults in real-time and sends maintenance
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notifications whenever the probability of anomalies
surpasses a pre-determined threshold.
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Fig 3. Flowchart

Fig 3 summarizes all the computational steps starting
with the sensor input to the fault alert. It also highlights
interaction of the multi-stage between data processing,
LSTM learning, pruning and energy optimization.
Multiple levels provide decision points that make sure
of dynamic adaptability data integrity, pruning
thresholds and model stability are all under iterative
control. The closed self-improving predictive
maintenance ecosystem is linked to the real-time
deployment loop through the pruned model and the
industrial edge hardware.

The proposed approach presents a new type of energy-
aware predictive maintenance framework that
describes a unique combination of model pruning,
temporal attention, quantization, and adaptive
inference into a single LSTM-based model that is
optimized to be deployed to industrial edges. This
research touches on both performance and
sustainability unlike the traditional predictive
maintenance models which focus on the accuracy at
the expense of the computational and energy
efficiency. Pruned LSTM allows the removal of
unnecessary neurons without losing the ability to learn
temporal features, which leads to light-weight
computation and does not deteriorate the accuracy.
The model has a temporal attention mechanism

integrated into it, which allows it to dynamically focus
on important sensor time points, increasing
interpretability and fault detection accuracy.
Moreover, quantization reduces the power and
memory cost of high-bit model versions by converting
high-precision models into low-bit integer versions
that are friendly to edges. The most exciting feature is
the Energy-Aware Adaptive Inference module which
enables the switching between full and lightweight
inference modes in real-time depending on the
available energy so that it can be used even when it is
constrained by power. This self-optimizing
mechanism is a major improvement against the use of
the static models in the previous research. In general,
the proposed solution is a balanced trade-off between
accuracy, latency, and energy consumption, and it is
very appropriate in the case of real-world industrial
edge scenarios.

4. Result and Discussion
The findings of this study indicate that the proposed
energy-conscious pruned LSTM model with temporal
attention and adaptive inference has a better
performance in predictive maintenance under
industrial edge conditions. It is successful in acquiring
temporal patterns and degradation trends based on
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complex sensor data to enhance effective prediction of
faults. By organized pruning and quantization, the
system dramatically lowers the amount of
computational overhead and energy usage making the
system usable in real-time operation on low-power
industrial edge devices. The model also introduces the
temporal attention mechanism that enables the model
to focus on the most informative sensor intervals
resulting in more credible fault recognition despite
Imbalanced or noisy datasets. The adaptive inference
mechanism is also successful in controlling variations
in power by dynamically changing the model
complexity based on the energy availability to provide
continuous functioning in the limited environments.
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The comparative analysis of this hybrid approach with
traditional DL models confirm that this hybrid
approach has high reliability in predictions and also
attains high efficiency improvements. On the whole,
the findings support the feasibility and strength of the
suggested framework, and prove that it is a perfect
choice as it considers predictive accuracy, cost of
computation and energy efficiency, which makes it the
optimal answer to sustainable and intelligent and
continuous  predictive  maintenance in  the
contemporary industrial systems.

Table 3. Simulation Parameter

Parameter Value
Dataset Multivariate Time-Series Data
Sampling Frequency 1 Hz
Window Size 50-time steps
Overlap Ratio 25%
Training—Testing Split 80% —20%
Batch Size 64
Learning Rate 0.001
Optimizer Adam
Loss Function Binary Cross-Entropy
LSTM Layers 2
Hidden Units 128
Dropout Rate 0.3
Pruning Ratio 30%
Quantization Precision 8-bit integer
Attention Mechanism Enabled
Epochs 100
Deployment Platform ARM Cortex-A57, 4 GB RAM
Energy Monitoring Interval Every 10 seconds

Table 3 summarises the simulation parameters of the
experiment to be used in the assessment of the
proposed energy-conscious predictive maintenance
framework. The structure is to be balanced in terms of
computational capability and model precision and to
allow real time fault detection on low power
embedded systems. The parameters make the system
to capture the temporal dependencies of the
multivariate time-series data in an optimized sequence
processing as well as controlled training dynamics.
The model training system focuses on a robust
learning but with sufficient regularization and
optimization policies, so that the learning process
would be stable as it approaches convergence.
Moreover, model compression methods including
pruning and quantization can be used to run on
hardware with resource limits with minimal
performance loss. Attention mechanism promotes
prioritization of features to be more precise in fault

recognition whereas monitoring of energy at a
predefined period aids in evaluation of efficiency and
sustainability of the system in the real-time running.
4.1 Predictive Performance Analysis

The predictive performance assessment determines the
success of the suggested pruned LSTM model in
predicting possible faults and patterns of degradation
in industrial equipment using sensor-based time-series
data. The temporal dependency and the ability to
identify important patterns in the model by use of the
attention mechanism makes the model very reliable
when it comes to fault detection. Its performance is
evaluated by comparing its predictions to actual fault
occurrences to determine its performance in terms of
detecting faults and consistency. The proposed method
has a higher convergence rate, lower false alarms, and
better fault detection during different operational
conditions than the classic models, which proves its
rigor and applicability in real-time predictive
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maintenance in the industrial setup with limited energy
resources.
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Fig 4. Sensor Signal Trend Over Time

Fig 4 shows the time dynamics of three important
industrial sensors, such as vibration (blue),
temperature (red), and pressure (green), which were
recorded during consecutive processes and operations.
The blue curve would signify the amplitude of
vibrations that would represent oscillation of the
machine, the red curve would denote the stability of
temperature when the load is altered and the green

curve would denote how the pressure varies over
changes in working periods. These values are boxed
values indicating sampled sensor values at particular
timestamps to validate the trends. A combination of
such time-series trends points to possible deteriorating
pattern, and thus the proposed energy-conscious
predictive maintenance framework will be capable of
learning the temporal pattern of fault evolution.
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Fig 5. Correlation Heatmap of Sensor Variables

Fig 5 shows the relationship of the various sensor
indicators: vibration (red squares), temperature
(orange tones), pressure (blue gradients), and humidity
(pale tones). Areas in red are strong positive
correlations and deep blue colour depicts inversive
relationships. The diagonal line is an indication of

ideal correlation of each sensor to itself. The numerical
values in boxes provide the actual strength of
correlation between sensor pairs. The visualization is
useful in revealing redundant features and inter senor
dependence critical in pruning and training of models
with low-energy consumption.
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Fig 6. Fault Tolerance Versus Time

Fig 6 depicts the fault prediction verses time line
graph. The solid line of blue colour shows the real
condition of the machine based on sensor data, and the
red line with a dotted form is the forecasted probability
of a fault made by the pruned LSTM model. The high

correlation between the two lines implies that the
model is able to follow the trends of temporal
degradation of the equipment and this proves that it is
reliable in undertaking any predictive maintenance
exercise.
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Fig 7. Confusion Matrix of Pruned LSTM Model

Fig 7 represents the results of the classification
between the Normal and Faulty machine conditions
based on sensor-based time-series data. The rows
reflect real equipment states whereas columns reflect
the forecasted states. The dark red diagonal boxes
represent the correct predictions in both normal and
faulty states and the light parts outside the diagonal
denote the misclassifications. The number of samples
in each category is represented in the data, thus giving

a clear indication on how the model works in terms of
categories. The large scores on the diagonal indicate
that the proposed Pruned LSTM is very effective in
degradation trends in the time lag and reducing false
alarms. This validates the fact that it can be used in
energy-efficient predictive maintenance in the
industrial frontline to ensure that both computational
economy and strong fault recognition are achieved.
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Feature Importance for Predictive Maintenance
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Fig 8. Feature Importance of Predictive Maintenance

Fig 8 shows the importance of statistical features that
are extracted to predict equipment faults. Every colour
represents specific characteristic, namely blue-RMS,
orange-Kurtosis, green-Entropy and red-Mean values.
The values in the box are the calculated values of the
importance scores of the model analysis. The more the

importance (e.g., RMS and Kurtosis) the more
correlated with fault progression patterns. The colour
diversity helps to visual differentiation, with the
feature selection making the interpretability better and
the energy-aware pruning to retain only the influential
variables.
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Fig 9 indicates the predicted fault distribution of the
pruned LSTM model. The blue bars are the sample
size within various probability ranges. The samples
around 0.8 are strong indications of a lot of confidence
of the model in its ability to detect faults whereas the
samples around 0.2 are good signatures of healthy
operation states. The visualization contributes to
identifying the threshold at which predictive
maintenance alerts will be activated and will allow
following the necessary calibration of the model.

4.2 Energy Consumption Analysis

The energy consumption analysis aims at assessing the
effectiveness with which the proposed pruned and
quantized LSTM model is power-conserving in edge-
based predictive maintenance. The model is much

more energy efficient with less redundant
computations as it uses low-bit quantization to achieve
high prediction reliability. The adaptive inference
process allows dynamically changing the complexity
of the models depending on the real-time power
availability, which guarantees its continuous operation
even when operating with low energy conditions.
Relative comparison with non-optimized models
shows that this method can result in significant energy
savings without compromising the fault detection
accuracy, which proves the appropriateness of the
method in  sustainable, real-time predictive
maintenance of industrial edge systems where power
efficiency is paramount.
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Fig 10. Power Usage Over Time During Inference

Fig 10 shows the variation in power consumption with
inference in various model configurations. The blue
solid line depicts the baseline LSTM model which is
always consuming more power because of the dense
computation and large number of parameters. The
orange dashed line is associated with the Pruned
LSTM model which attains a significant decrease in
energy expenditure by pruning the parameters and
structure optimization. Green dash-dot line represents

the Adaptive Energy-Aware Model, which
dynamically scales its complexity with regards to the
inference to the sensor activity, leading to the
smoother and lower power consumption trends over
the duration. Generally, the diminishing trend of
power between blue to green indicates the benefit of
the suggested pruned and adaptive solution in
providing energy efficient predictive maintenance that
can be used in industrial edge systems
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Fig 11. Edge Device Power Profile During Operation

Fig 11 indicates the behaviour of the power
consumption of the edge device over time when it is
performing predictive maintenance tasks. The green
line is where the idle power is, whereas the red line is
power consumption during model inference cycles.
The readings that are boxed show real-time energy

consumption in watts. The red curve peeks indicate
computationally expensive periods of time when
LSTM model is handling incoming sensor data. The
stable green floor gives energy stability, which proves
that the pruning and quantization strategies can greatly
lower the operational energy requirement at the edge.
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Fig 12. Memory Utilization Vs Processing Time

Fig 12 represents the trade-off between memory usage
and inference processing time introduced by different
model configurations that were run on the edge
system. Every point corresponds to a specific
configuration, and the intensity of the colors (yellow
to dark purple) would be related to the batch size -
lighter colors would be associated with smaller batch
sizes, and dark purple colors with larger batches.
Boxed labels have reference batch sizes. The rising
pattern shows that as memory allocation is increasing,
the processing time tends to increase which means
there is a resource-performance tradeoff. This
observation is in line with the presented energy-aware
pruning method that reduces memory footprint
without affecting responsiveness - guaranteeing
efficient predictive maintenance under limited edge
conditions.

4.3 Edge Deployment Validation

The edge deployment validation is an analysis done to
determine the viability and fitness of the suggested
pruned and quantized LSTM model as it is
implemented on actual industrial edge devices. The
model uses low-power hardware and is able to achieve
very steady performance in real-time conditions.
Resource consumption tests verify low CPU, GPU and
memory consumption by pruning and quantization and
allow operation to run smoothly with continuous
operation without overheating and latency problems.
The mechanism of adaptive inference guarantees the
smooth transition between modes depending on the
energy levels, which proves the resilience and
scalability of the model. As a whole, the deployment
validation states that the system is completely geared
towards real-world, is energy efficient industrial edge
applications.
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Fig 13 shows the latency of inference as a function of
length of input sequence over the various model
architectures. The blue circular curve is the blue line
that denotes the bottom of LSTM model since it has
the highest latency increase because of its dense
computation and huge memory access constraints. The
square marker of an orange dashed line shows the
Pruned LSTM which significantly cuts down the
latency by eliminating the unnecessary neurons, and
by cutting down on the path of computation. The green
dash-dot curve with the triangular markers
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corresponds to the Adaptive Energy-Aware Model
which shows the lowest latency of any input length
due to the ability to dynamically increase
computational resources as the complexity of real-
time data changes. The blue to green colour flow
clearly shows how every optimization step, pruning
and adaptive scheduling, cuts down on the
computational delay to enhance real-time
responsiveness which is an important feature of
industrial edge predictive maintenance systems.
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Fig 14. Frequency Spectrum of Vibration Signal

Fig 14 demonstrates the frequency-domain
representation of the sensor of vibrations data with
Fast Fourier Transform (FFT). The purple curve shows
the distribution of amplitudes of various frequencies.
The frequency markers are boxed as frequency values
of 50 Hz and 120 Hz which are the dominant peaks
and represent machine rotation and harmonic
vibrations. Peak values at certain frequencies signify
potential mechanical imbalance or wear of bearings
and this would enable the predictive maintenance
system to identify early fault trends in the piece of
equipment.

4.4 Performance Comparison

The performance comparison in this study shows that
the presented Pruned LSTM-based predictive

maintenance model is much more effective than the
conventional DL procedures, including standard
LSTM, GRU, and CNN models. The pruning method
is useful in minimizing computational cost and
memory usage with predictive accuracy not being
affected. The proposed system in comparison with the
baseline models has a shorter inference time,
consumes less energy, and is more stable in real-time.
Accuracy, efficiency, and responsiveness are all what
make this balance suit the model to the industrial edge
environments. The findings indicate that energy
mindful pruning and optimization yield a sparse but
very robust predictive maintenance framework of
sensor-based systems.

Table 4. Performance Comparison Across Various Models

.. F1- Energy
Model Acc;n racy Preglsmn Ricall Score Consumption
( /0) ( /0) ( /0) ("A)) (W)
CNN-Based Fault Detection [20] 98.3 98.7 98 98.3 4.8
GRU-Based Predictive Model [21] 92.2 92.2 92.2 92.06 4.3
CNN-RNN [22] 97.7 98.7 97.3 96.5 4.1
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LightGBM [23] 93 94 93 93 39
XGBoost [24] 95.9 96.1 95.9 95.9 3.7
Proposed Pruned LSTM 98.8 98.9 98.8 98.9 2.5

Table 4 offers a comparative study of different
predictive maintenance models that were tested under
the same experimental conditions. Although basic DL
networks like CNN, GRU, and hybrid CNN-RNN
networks have proven to be quite effective in fault
detection, they are slightly more energy-consumptive
and, therefore, are not optimal when it comes to edges
deployment. LightGBM and XGBoost are gradient-
boosted approaches which demonstrate moderate
accuracy, but are computationally light. On the
contrary, Pruned LSTM model proposed has a better
predictive performance with highest accuracy,
precision, recall, and Fl-score and consumes only a
small power. This advancement underscores the
effectiveness of the model in terms of efficiency and
energy-consciousness in predictive accuracy, and
makes it an appropriate choice when using real-time
industrial settings on edge devices that are resource-
constrained.

4.5 Discussion

The experimental analysis shows that the proposed
Energy-Aware Predictive Maintenance framework
based on Pruned LSTM Networks is a successful
method of improving the prediction quality and energy
consumption in industrial edge systems. The model is
able to learn the complicated time-dependent
relationships using multi-sensor time-series data, and
at low computational cost due to pruning. The
proposed architecture outperforms such traditional
architectures as CNN, GRU, and XGBoost in terms of
detecting early fault patterns, reducing false alarms,
and being able to maintain stable operation at varying
sensor conditions. The lower power usage highlights
the fact that the method is suitable to be implemented
on low power industrial edge devices and thus best
suited to the implementation of real time monitoring
and scheduling of maintenance. Besides, the trade-off
between the performance and the computational
efficiency is balanced to confirm the flexibility of the
proposed model to different setups in industries.
Nevertheless, one of the main shortcomings of this
research is the fact that the model is based on labelled
data and is limited to generalizing to various types of
machines. Further research will be directed to include
the element of self-supervised learning and adaptive
transfer mechanisms in order to improve the
scalability and performance of the model in unseen
industrial settings.

5. Conclusion and Future Work

The proposed study introduced an Energy-Aware

Predictive Maintenance model based on Pruned

LSTM Networks that would suit sensor-based

industrial edge systems. The strategy is a successful

combination of intensive time modelling and pruning
optimization to provide high prediction accuracy and
reduction of computing and energy costs.

Experimental evidence shows that the suggested

approach largely excels over the standard ML and DL

models in detecting early equipment failures,

minimizing the inference latency, and boosting its
energy consumption. By integrating pruning methods,
the deployment can be done real-time on edge devices,
enabling the operation to be cost-effective, intelligent,
and sustainable to the maintenance operations, in the
smart manufacturing environment. In spite of these
promising results, imbalance in data, noises, and
machine specific variations can affect the performance
of the model. Therefore, the future studies will be
aimed at the creation of adaptive transfer learning
mechanisms, federated edge intelligence mechanisms,
and hybrid Transformer-LSTM models to enhance
cross-domain generalization and resilience. More so,
using self-managed learning and power conscious
scheduling systems will also increase the efficiency of
fault prediction and allow deployment in large
industrial settings with minimum human intervention.
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