W, .
{ International Journal of

Information Technology & Computer Engineering
" L 4 ”

ISSN 2347-3657

Volume 13, Issue 4, 2025

MEDIQUICK - Optimized Emergency Bed allocation using Al
and IoT

K Madhuravani'!, Eesha Karpuradu?, Revadi Hema Satya Varshini®
! Assistant Professor, Department Of , Information Technology, Bhoj Reddy Engineering College For Women,

23B. Tech Students, Department Of , Information Technology, Bhoj Reddy Engineering College For Women,

eeshakarpuradu@gmail.com

ABSTRACT

MediQuick is an Al and loT-powered system that
simplifies emergency hospital bed booking. It enables
patients to input symptoms through a web interface,
which are analyzed using a Logistic Regression model to
determine if the condition is an emergency. If confirmed,
a Random Forest classifier firther identifies the
emergency category. The system then uses the patient’s
location to search for nearby hospitals with both
available beds and doctors specialized in the
detected condition. Once a suitable match is found, a
temporary bed reservation is made to hold the spot. If the
patient fails to arrive within the given time frame, the bed
is automatically released for others in need. An IoT
module, powered by a Force Sensing Resistor (FSR)
connected to a NodeMCU, detects real-world patient
presence on the bed to confirm physical admission. This
allows seamless, automatic check-in without manual
hospital intervention. Flask is used to build the backend
server, while MySQL handles all hospital, bed, and
patient data. Python’s machine learning ecosystem
powers the emergency prediction models. MediQuick
enhances the responsiveness of emergency healthcare
systems through intelligent automation and real-time
decision-making. The system supports efficient triaging
and optimizes resource usage in critical situations. It
bridges the gap between patients and hospitals using
smart technology. MediQuick ultimately delivers a
scalable and life-saving solution for modern healthcare
challenges. Traditional sentiment analysis tools often
fall short by offering only basic polarity
classification and failing to provide detailed
understanding of specific customer concerns.
Keywords : Emergency Healthcare, Bed booking
system, Al in healthcare, IoT in hospitals, Logistic
Regression, Random Forest Classifier, Symptom
Classification, geolocation, Real-time admission,
FSR Sensor, NodeMCU, Smart Triaging

1. INTRODUCTION
In modern healthcare, especially during
emergencies, timely access to hospital beds and
specialist doctors is critical for saving lives.
However, in many cases, patients or their families
are forced to search manually for hospitals with
available beds and the required medical facilities.
This leads to delays, inefficiencies, and in worst

cases, loss of life. Additionally, hospitals often lack
real-time bed monitoring systems, which can result
in inaccurate availability information being
conveyed to incoming patients.

The proposed project, “lIoT-Based Smart Hospital
Bed Assignment System”, is developed to
automate and optimize hospital resource allocation
using an integrated web and loT-based approach. It
uses real-time sensor data to detect bed occupancy,
a smart classification system to identify emergency
cases, and intelligent routing of patients to the
nearest suitable hospitals based on doctor
availability and bed status. This system is divided
into two key modules: the User Module and the
Hospital Module, working together through a
centralized database and API communication.
Existing System:

Resource management in hospitals is mostly
manual or relies on basic software, causing delays
during emergencies.

Families often waste critical time contacting
multiple hospitals to find available beds or
specialists.

Existing hospital management systems are internal,
lack public access, and have outdated or error-prone
bed updates.

There’s no automated system to classify
emergencies based on symptoms, leading to poor
triaging and treatment delays.

Proposed System:

The system uses Al and IoT to analyse
symptoms, classify emergencies, and match
patients with nearby hospitals that have available
beds and doctors.

It features real — time hospital dashboards and an
IoT-enabled bed that updates occupancy
automatically, creating a smart and seamless
emergency response flow.

2. RELATED WORK
Title: Mediquick — Optimized Emergency Bed
Allocation using AI and IoT
Reference: G. Sushma, B. Arundathi, and N.
Lakshmi, —Real-Time Hospital Bed Information
System During Pandemic Situation,] 2023 7th

66

W, .
{ International Journal of

Information Technology & Computer Engineering
" L 4 ”

International Conference on Advanced Computing
and Communication Systems (ICACCS), IEEE,
2023.

Authors: G. Sushma, B. Arundathi, N. Lakshmi

SUMMARY: MediQuick builds upon the real-time
hospital bed monitoring system proposed in [1],
which uses sensors and microcontrollers to track
bed occupancy. While

[1] focuses on internal hospital use, MediQuick
extends this by integrating patient-side emergency
detection using Al [3] and enabling intelligent bed
and doctor assignment [5]. The system updates bed
status in real time using an FSR sensor, similar to
[1], but also empowers users to initiate the booking
process through a web interface—bridging the gap
between hospital automation and patient
accessibility.

Literature on IoT-Based Bed Monitoring:

Title: loT-Based Smart Hospital Bed Monitoring
System

Reference: R. Sharma, A. Mehta, and N.Joshi,
—IoT-Based Smart Hospital Bed Monitoring
System,| International Journal of Engineering
Research & Technology (IJERT)

Authors: R. Sharma, A. Mehta, N. Joshi

SUMMARY: MediQuick incorporates IoT
concepts similar to those in [2] and [4], which use
sensors and microcontrollers like ESP8266 for smart
bed monitoring. These systems focus on automating
bed occupancy detection and transmitting data to
hospital systems. In MediQuick, we adopt a similar
approach using an FSR sensor and NodeMCU to
detect real-time occupancy. However, unlike [2] and
[4], which are primarily confined to internal
monitoring, MediQuick connects this data to a web
platform for patient interaction and booking. This
fusion of IoT with user-facing functionality sets
MediQuick apart as a more holistic emergency
response system.

Literature on Emergency Detection Using Al:
Title: AI-Based Health Emergency Detection Using
Symptom Classifiers

Reference: Desai, S. Patel, —Al-Based Health
Emergency Detection Using Symptom Classifiers,|
IEEE International Conference on Healthcare
Informatics, 2023.

Authors: M. Desai, S. Patel

SUMMARY: The emergency detection system in
MediQuick takes inspiration from AI- based
approaches like those in [3], which classify health
emergencies based on user symptoms. While [3]
focuses on building accurate classifiers for critical
conditions, MediQuick adapts this idea into a
practical web application. Using machine learning

ISSN 2347-3657

Volume 13, Issue 4, 2025

models like Logistic Regression and Random
Forest, we identify both the presence and type of
emergency in real time. Unlike [3], which operates
in isolated environments, our system links Al
predictions to immediate hospital resource
allocation [5], making it actionable and life-saving.

3. REQUIREMENT ANALYSIS

Functional Requirements:

User Registration and Login
The system must allow users (patients) to create
accounts, log in securely, and manage their profiles.

Symptom Input and Emergency Classification

Users can enter their symptoms via text input. The
system must classify whether the entered symptoms
represent an emergency using rule-based logic or Al
symptom mapping.

Hospital and Doctor availability search

The system must compare the classified emergency
condition with the database of available hospitals
and identify those with both available beds and
required specialists.

Non-Functional Requirements:

Non-functional requirements define the system's
quality attributes and operational constraints that
ensure it performs efficiently, securely, and reliably.
The proposed system must meet the following non-
functional requirements:

Performance

The system should respond to user actions such as
symptom input, hospital search, and status updates
within 2-3 seconds. The IoT sensor should send
updated bed status to the backend within 5 seconds
of detecting a change.

Scalability

The system should be designed to handle multiple
hospitals, doctors, and patient requests without
performance degradation. While the prototype uses
only one [oT- enabled bed, the backend and database
structure support future scaling to multiple IoT-
connected beds and hospitals.

Availability

The system should be available on a local Wi-Fi
network for continuous monitoring and interaction.
In future deployments, it should support 24x7
availability via a secure web-hosted server.

Software Requirements:

Backend: Flask (Python), Flask-CORS, pymysql
Database: MySQL

Frontend: HTML, CSS, JavaScript

IoT Integration: Data collection from force sensing
resistors

insights.

67

V; .
{ International Journal of

Information Technology & Computer Engineering

Hardware Requirements:
Processor: Intel i3 or higher
RAM: 8GB or more

Storage: 500GB HDD or SSD

IoT Sensors: Force sensing resistors for bed
occupancy tracking

4. DESIGN

System Architecture:

The system architecture of MediQuick is designed
to integrate Al, web technologies, databases, and
10T into a cohesive emergency response platform.
The frontend, built with HTML, CSS, and
JavaScript, allows users to enter personal details and
symptoms, while also providing hospital
administrators with a dashboard to monitor bed and

ISSN 2347-3657

Volume 13, Issue 4, 2025

doctor availability. The backend, developed using
Flask, processes user input, runs emergency
classification using a Logistic Regression model,
and identifies the emergency category using a
Random Forest classifier. It then matches the patient
with the nearest hospital that has both an available
bed and the required specialist. Data is managed
through a MySQL database that stores patient,
hospital, bed, and doctor information. An IoT
component, consisting of a Force Sensing Resistor
(FSR) connected to a NodeMCU ESP8266, detects
real-time bed occupancy and updates the backend
via WiFi. This modular and scalable architecture
enables smart, real-time hospital-patient
coordination, enhancing both efficiency and
response time during emergencies.

Fig. 1 System Architecture

Technical Architecture:

Technical Architecture refers to the structural
process of designing and building the technological
backbone of the Mediquick application with a strong
focus on usability, flexibility, and integration.
MediQuick’s technical architecture is a multi-
layered system that combines machine learning,
10T, and web technologies for intelligent emergency
healthcare management. The frontend is developed
using HTML, CSS, and JavaScript to enable user
interaction and hospital dashboard access. The
backend is powered by Flask, which acts as the
central controller for handling user requests, running

ML inference, and managing database operations.
Two pre-trained models—Logistic Regression for
emergency detection and Random Forest for
emergency type classification—are integrated using
joblib. The system relies on a MySQL database for
storing real-time information on hospitals, doctors,
beds, and patient bookings. For physical bed
monitoring, a NodeMCU ESP8266 microcontroller
with an FSR sensor is used to detect bed occupancy
and send updates over WiFi to the Flask backend.
This real-time data flow ensures accurate bed
tracking and efficient resource allocation, creating a
seamless and responsive healthcare experience.

MediQuick

HTTP Request

Client

HITP Respanae

.0

ARDUINO

(e

MySQL Internet
Database

IOT Devices

Fig. 2 Technical Architecture

68

W, :
{ International Journal of

Information Technology & Computer Engineering
s o s

Methodology:

The development of MediQuick followed a modular
and iterative methodology, starting with problem
identification and requirement analysis focused on
delays in emergency healthcare access. A rule-based
machine learning approach was implemented, where
user symptoms are classified using a Logistic
Regression model to detect emergencies and a
Random Forest classifier to determine the specific
emergency category. Based on this, the system
dynamically searches a MySQL database for nearby
hospitals with available beds and matching
specialists using geolocation logic called Harversine
Formula. The web interface was developed using
HTML, CSS, and JavaScript for intuitive
interaction, while Flask was used as the backend
framework to manage routing, API endpoints, and
communication between modules. IoT integration
was achieved using a NodeMCU ESP8266 and
Force Sensing Resistor (FSR) to simulate bed
occupancy and automatically update the backend.

5. IMPLEMENTATION
Libraries

Flask - It is a lightweight web framework used to build the
backend of MediQuick. It handles API routes, connects
the frontend to machine learning models, and manages
communication with the database. Its simplicity and
flexibility make it ideal for rapid prototyping and
RESTful API development.

Numpy - It is a general-purpose array-processing
package. It provides a high- performance

ISSN 2347-3657

Volume 13, Issue 4, 2025

multidimensional array object, and tools for working
with these arrays. It is the fundamental package for
scientific computing with Python. It contains
various features including these important ones: A
powerful N-dimensional array object, Sophisticated
(broadcasting) functions, Tools for integrating
C/C++ and Fortran code.

Pandas - It is an open-source Python Library
providing high-performance data manipulation and
analysis tool using its powerful data structures.
Python was majorly used for data munging and
preparation. It had very little contribution towards
data analysis. Pandas solved this problem. Using
Pandas, we can accomplish five typical steps in the
processing and analysis of data, regardless of the
origin of data load, prepare, manipulate, model, and
analyze.

Scikit-learn - It is used to implement and train the
machine learning models in MediQuick. Logistic
Regression and Random Forest Classifier from this
library are used for emergency detection and
category classification. It provides easy-to-use tools
for model training, prediction, and evaluation.

Threading - The threading module allows parts of
the code to run in the background without blocking
the main Flask app. In MediQuick, Thread is used to
handle timeout logic in parallel — for example,
when a bed is reserved, a separate thread can wait
for a few minutes and then auto-release the bed if the
patient hasn’t arrived, all while the main app keeps
running

6. SCREENSHOTS

1.

Mediquick

Emegpency Care, Instantly there

Home Page

69

¢

ISSN 2347-3657

International Journal of

Information Technology & Computer Engineering Volume 13, Issue 4,2025

Mdliquick

Describe your symptoms:

2. Text Input Area

Answer these Quastions:

1. Whet's your mein (sxme?

® Caragae

2 How severs ls 2

3. Questionnaire
2. How savere js it?

3. What are your symptoms?
AChEsT Tiphimess oF Essi

‘Trivinkz fmearring i

_ DiazmessarSaimting

Lisss ot comscmisness

Sirvre bleeting shat won's step

Sl g fore

Rirns with blisterive sk
) ¥inmiticgt Wour cx blach sl
~ Comfsi o sk speech
" Paratysis o nability i o
T Beviere puin arpwhiene
. Beurerr jesky munaseit;

s, muce of Liese

70

{ ¥ International Journal of

Information Technology & Computer Engineering

4.

ISSN 2347-3657

Volume 13, Issue 4,2025

Questionnaire

1 This s an emergency!

5. Emergency

Please enter your:

6. Enter patient details

7. CONCLUSION
The proposed system, Mediquick, successfully
integrates Internet of Things (IoT) and intelligent
rule-based logic to provide an optimized solution for
emergency hospital bed assignment. By enabling
users to input symptoms and automatically classify
whether the situation is an emergency, the system
facilitates faster medical intervention. The backend
logic identifies the nearest hospital with both
available beds and appropriate specialists, thus
improving the efficiency and accuracy of patient-to-
hospital mapping. Furthermore, the integration of a
Force Sensing Resistor (FSR) sensor with a
NodeMCU microcontroller ensures real-time
tracking of bed occupancy status. The sensor system
automatically updates the hospital’s database
without manual intervention. A manual discharge
mechanism is included in the hospital dashboard to
reset bed availability securely. This combination of

automated and manual control provides a reliable
and responsive solution within a student-level
budget, demonstrating the potential for scalable
smart healthcare systems. Overall, the system
reduces delay in critical situations, supports
hospitals in managing resources effectively, and
enhances patient experience during emergency
medical needs.

REFERENCES

[1] G. Sushma, B. Arundathi, and N. Lakshmi,
“Real-Time Hospital Bed Information System
During Pandemic Situation,” 2021 7th
International Conference on Advanced Computing
and Communication Systems (ICACCS), IEEE,
2021.

[2] R. Sharma, A. Mehta, and N. Joshi, “IoT-
Based Smart Hospital Bed Monitoring System,”

71

}.' International Journal of

Information Technology & Computer Engineering
&,

International Journal of Engineering Research &
Technology (IJERT).

[3] M. Desai, S. Patel, “Al-Based Health
Emergency Detection Using Symptom
Classifiers,” IEEE International Conference on
Healthcare Informatics, 2023.

[4] S. Bhatnagar et al., “Smart Healthcare
Monitoring Using ESP8266 and Sensors,”
International Journal of Advanced Research in
Computer Science, vol. 14, no. 2, 2023.

[5] N. Kulkarni and T. Lakshmi, “Hospital
Resource Allocation Portal for Emergency Beds
and Doctor Assignment,” ACM Digital Library,
2023.

[6] Chaitra H , Sanjay , Jayaprakash G T, Magadi
Achyutha, Arunagoud Gokul “Advanced IOT
Technology And Machine Learning Techniques
For Monitoring Waterlogging In
Underpass”, IJMEC, vol. 10, no. 4, pp. 1—6, Apr.
2025, Accessed: Oct. 30, 2025. [Online].
Available: https://ijmec.com/index.php/multi

disciplinary/article/view/582

ISSN 2347-3657

Volume 13, Issue 4, 2025

72

