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Abstract: To facilitate the discovery of software 
defects, the latest study used a Stacking Classifier in 
conjunction with Decision Tree, Random Forest, and 
LightGBM models. Improved prediction accuracy 
and stability across a variety of software datasets are 
achieved by utilizing the complementing properties of 
many methods. Additionally, the system makes use of 
a Flask-based front end for safe user authentication 
and a straightforward user interface for real-time 
testing and prediction. Software quality assurance 
becomes much simpler with integration, allowing for 
faster, safer access, usage, and analysis of faults. 
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Ensemble Learning, Stacking Classifier, Random 
Forest, LightGBM, Decision Tree, Machine 
Learning, Flask Framework, Software Quality 
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1. INTRODUCTION 
Today's globally linked digital world relies on 
software to innovate, automate, and streamline 
everything from company operations to daily life. 
The software industry drives global growth by 
providing the infrastructure and communication tools 
that make it possible. Companies and people have 
depended on software more for work, 
communication, and commerce since the COVID-19 
outbreak.  
 
The Software Development Life Cycle (SDLC) has 
key steps that both the development and QA teams 
need to do. QA teams test the code that developers 
produce to detect and repair errors. This feedback 
loop between development and QA goes on until the 
product is dependable and of high quality.  
Because of limits on time, money, and trained 
workers, it is still hard to build software that is free of 
bugs. These problems show that there is a growing 
need for smart and automated defect prediction 
systems that can find bugs in software early in the 
development process. Early defect prediction makes 

the best use of resources, lowers testing costs, and 
makes ensuring that software is delivered on time and 
to a high standard.  
This study presents a sophisticated ensemble-based 
methodology for software fault prediction to tackle 
these challenges. The model makes predictions more 
accurate by using a voting ensemble mechanism to 
combine machine learning algorithms including 
Random Forest, SVM, Naïve Bayes, and MLP. An 
enhanced stacking-based methodology utilizing 
Decision Trees, Random Forest, and LightGBM 
enhances performance and reliability across diverse 
software datasets. 
 

2. LITERATURE SURVEY 
2.1 Semantic Feature Learning for Software 
Defect Prediction 
✔  Proposes PM2-CNN, a Transformer-based 
software fault prediction model using multi-channel 
CNN and pretrained language models 
✔  Integrates source code + external data (commit 
messages, comments) to enhance defect detection 
accuracy 
✔ Captures both sequence correlation and contextual 
semantics from code repositories 
✔ Outperforms baseline ML models on large public 
datasets, proving the benefit of non-code information 
2.2 Deep Learning in Software Defect Prediction: 
Systematic Review & Meta-Analysis 
✔ Conducts a comprehensive review of 63 studies 
comparing Deep Learning (DL) and Machine 
Learning (ML) models in SDP 
✔ Identifies top DL models — CNN, DNN, LSTM, 
DBN, SDAE — trained on PROMISE & NASA 
datasets 
✔  Meta-analysis shows DL outperforms ML in 
accuracy, recall, precision, F-measure, and AUC 
✔  Sets a benchmark for future DL-based SDP 
research by outlining challenges and best practices 
2.3 Cloud-Based Software Defect Prediction via 
Data & Decision-Level Fusion 
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✔  Introduces a two-step ML fusion system 
combining data-level learning and fuzzy logic 
decision fusion in the cloud 
✔  Uses Naïve Bayes, ANN, and Decision Tree 
classifiers enhanced with eight fuzzy if-then rules for 
final prediction 
✔  Achieves 91.05% accuracy using five NASA 
datasets (CM1, MW1, PC1, PC3, PC4) 
✔ Outperforms standalone classifiers and ensemble 
models, improving defect identification reliability 
2.4 Ensemble Learning for SDP using Adaptive 
Variable Sparrow Search Algorithm (AVSSA) 
✔ Develops an ensemble Bagging-based SDP model 
using Extreme Learning Machine (ELM) optimized 
by AVSSA 
✔  AVSSA enhances global optimization through 
adaptive hyperparameters and variable logarithmic 
spiral 
✔  Addresses data imbalance and local optima 
problems common in conventional SDP approaches 
✔ Outperforms four state-of-the-art algorithms on 15 
public datasets, validated through Friedman & Holm 
tests 
2.5 3PcGE: 3-Parent Child Genetic Evolution for 
Feature Selection in SDP 
✔ Proposes 3PcGE, an evolutionary feature selection 
strategy using a three-parent child genetic model 
✔ Enhances prediction by selecting optimal feature 
subsets through multi-objective optimization 
✔ Produces more stable and accurate SDP models 
than NSGA-II, improving software quality and 
reducing testing cost 
✔  Demonstrates that 3-parent genetic evolution 
yields stronger, more diverse candidate solutions 
 

3. METHODOLOGY 
The suggested solution uses an ensemble-based 
approach and a structured, multi-step procedure to 
improve the accuracy of predicting software defects.  
First, datasets from the NASA MDP repository are 
loaded and preprocessed. This means getting rid of 
duplicates, cleaning up records that aren't useful, and 
using label encoding to turn categorical data into 
numbers.  To fix the problem of class imbalance, 
SMOTE (Synthetic Minority Over-sampling 
Technique) is used. After that, Particle Swarm 
Optimization (PSO) is used to choose the most 
important characteristics that make the model work 
better.  After that, the cleaned-up data is separated 

into training and testing sets so that it may be fairly 
tested.  An Adaptive Voting Classifier combines the 
predictions of many machine learning models, such 
as Random Forest, SVM, Naïve Bayes, and MLP, to 
make them more reliable.  A Stacking Classifier that 
combines Decision Tree, Random Forest, and 
LightGBM generates a meta-model that makes 
predictions more accurate.  Finally, a Flask-based 
interface lets users safely sign up, log in, enter data, 
and see real-time forecasts of defects. This makes 
sure that the system is easy to use and accessible. 
A. Proposed Work: 
An enhanced Stacking Classifier combining Decision 
Tree, Random Forest, and LightGBM models is 
implemented to improve the accuracy of software 
fault prediction in the suggested extended study. For 
consistent, high-quality predictions, this hybrid 
ensemble combines the strengths of three distinct 
learning algorithms: Decision Tree for 
interpretability, Random Forest for robustness, and 
LightGBM for gradient boosting efficiency. Users 
may safely register, log in, and conduct real-time 
defect predictions using an interactive and user-
friendly platform made possible by the system's 
Flask-based web interface. For real-world use in 
SDLCs, this add-on increases model performance 
with multi-level learning while simultaneously 
making it more accessible, secure, and user-friendly. 
B. System Architecture: 
The system architecture shows how the proposed 
intelligent ensemble-based software fault prediction 
methodology will function.  The first step is to import 
and preprocess the dataset, which includes cleaning 
the data, removing duplicates, and encoding the 
labels to make sure the input is of high quality.  K-
means clustering is used to group comparable 
instances of the cleaned data. Then, PSO (Particle 
Swarm Optimization) is used to improve the 
relevance of features by applying it to specific 
models like MLP, SVM, Naïve Bayes, and Random 
Forest.  Then, an ensemble learning method is used to 
integrate these improved models to make predictions 
more accurate and stable.  During the extension 
phase, a Stacking Classifier combines Decision Tree, 
Random Forest, and LightGBM to allow for multi-
level learning that leads to better results.  The last 
step is evaluation, when the model's ability to 
anticipate software bugs is tested by calculating 
accuracy and other performance indicators. 
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Fig proposed architecture 

C. MODULES: 
a) Data Loading: 

• Imports the software defect datasets from 
the NASA MDP repository. 
• Initializes data for further preprocessing 
and analysis. 

b) Data Preprocessing: 
• Removes duplicates, irrelevant, and 
incomplete records to ensure clean data. 
• Converts categorical data into numerical 
form using label encoding for model 
compatibility. 

c) K-Means Clustering: 
• Groups the preprocessed data into clusters 
based on feature similarity. 
• Helps the models learn distinct defect 
patterns more effectively. 

d) Feature Optimization using PSO: 
• Applies Particle Swarm Optimization to 
identify and retain the most relevant 
features. 
• Reduces dimensionality, improving the 
model’s accuracy and efficiency. 

e) Base Model Training (MLP, SVM, NB, 
RF): 
• Trains four supervised models 
independently using optimized features. 
• Each model learns unique data patterns to 
improve prediction strength. 

f) Ensemble Learning: 
• Combines predictions from MLP, SVM, 

NB, and RF using an Adaptive Voting 
Classifier. 
• Enhances overall model performance by 
merging individual model strengths. 

g) Extension – Stacking Classifier: 
• Integrates Decision Tree, Random Forest, 
and LightGBM into a meta-model for deeper 
learning. 
• Further refines prediction accuracy through 
advanced ensemble stacking. 

h) Evaluation: 
• Measures performance using accuracy, 
precision, recall, and F1-score. 
• Compares ensemble and stacking models 
to identify the most effective approach. 

i) User Authentication (Signup & Login): 
• Provides secure access through user 
registration and login. 
• Ensures only authorized users can test and 
use the prediction system. 

j) User Input & Prediction: 
• Allows users to input new data for real-
time defect prediction. 
• Displays prediction results interactively 
through a Flask-based interface. 

D. Algorithms: 
a) Support Vector Machine (SVM):  

Methods for supervised learning SVM finds the 
hyperplane in feature space that best separates the 
groups. The project uses it to sort out bad modules by 
making the gap between distinct classes as big as 
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possible. This makes the model more accurate and 
able to generalize. 

b) Random Forest:  
Random Forest uses ensemble learning to train 
several decision trees and calculate their mode class 
(classification) or mean prediction (regression). In the 
project, its resilience and accuracy in predicting 
faulty modules through aggregated decision-making 
increase model performance and decrease overfitting 
for various datasets. 

c) Naive Bayes:  
Naive Bayes is a probabilistic classifier that uses 
Bayes' theorem and assumes that features are 
independent. In the project, it is used to figure out 
how likely it is that faults will happen based on the 
feature values. This is a simple and effective way to 
work with massive datasets that have categorical 
properties. 

d) MLP (Multi-Layer Perceptron):  
MLP is an artificial neural network made up of many 
layers of neurons that can do complicated input-to-
output mappings.  The research uses it to find 
complex patterns and interactions in the data, which 
helps forecast which modules will be faulty since it 
can learn from both linear and non-linear 
correlations. 

a) Adaptive Voting Classifier (RF + SVM + 
NB + MLP): 

By using a voting system, the Adaptive Voting 
Classifier improves the accuracy of predictions made 
by Random Forest, SVM, Naive Bayes, and MLP.    a 
study uses an ensemble approach to improve 
prediction accuracy for broken modules by 
combining the strengths of all the models. 

b) Stacking Classifier (DT + RF with 
LightGBM): 

To improve the accuracy of its predictions, the 
Stacking Classifier builds a meta-model that 
incorporates two gradient boosting frameworks, 
Decision Trees (DT), and Random Forest (RF).  As 
part of the project, this classifier combines different 
models to improve the accuracy and resilience of 
fault prediction by taking use of their individual 
strengths. 
 

4. EXPERIMENTAL RESULTS 
To determine how well the intelligent ensemble-
based model could forecast software defects, it was 
tested on seven benchmark datasets taken from the 
NASA MDP repository: CM1, JM1, MC2, MW1, 
PC1, PC3, and PC4.  The initial step involved 
training and optimizing four supervised learning 
algorithms using iterative parameter tuning: Random 

Forest, Support Vector Machine (SVM), Naïve 
Bayes, and Multi-Layer Perceptron (MLP).  In order 
to increase consistency and decrease individual 
model bias, their forecasts were aggregated using a 
voting ensemble. 
 Accuracy rates of 86.5% for CM1, 66% for JM1, 
73.5% for MC2, 80.1% for MW1, 87% for PC1, 
87.5% for PC3, and 90.4% for PC4 were some of the 
noteworthy findings attained by the ensemble model 
across the datasets.  We used an extension model that 
included Decision Tree, Random Forest, and 
LightGBM, a Stacking Classifier, to increase 
accuracy even more.  With accuracies of 92.4% for 
CM1, 83.6% for JM1, 73.5% for MC2, 89.7% for 
MW1, 92.2% for PC1, 92.4% for PC3, and 93.5% for 
PC4, this hybrid technique obtained excellent results. 
 When compared to typical single-model approaches, 
the experimental findings show that integrating 
diverse classifiers using ensemble and stacking 
techniques greatly improves prediction accuracy, 
dependability, and resilience across different software 
fault datasets. 
 Accuracy: The accuracy of a test is its ability to 
differentiate the patient and healthy cases correctly. 
To estimate the accuracy of a test, we should 
calculate the proportion of true positive and true 
negative in all evaluated cases. Mathematically, this 
can be stated as: 
 Accuracy = TP + TN TP + TN + FP + FN. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑁 + 𝑇𝑃)

𝑇
 

 
F1-Score: F1 score is a machine learning evaluation 
metric that measures a model's accuracy. It combines 
the precision and recall scores of a model. The 
accuracy metric computes how many times a model 
made a correct prediction across the entire dataset. 

𝐹1 = 2 ⋅
(𝑅𝑒𝑐𝑎𝑙𝑙 ⋅ Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛)
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Precision: Precision evaluates the fraction of 
correctly classified instances or samples among the 
ones classified as positives. Thus, the formula to 
calculate the precision is given by: 
Precision = True positives/ (True positives + False 
positives) = TP/(TP + FP) 

Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

 
Recall: Recall is a metric in machine learning that 
measures the ability of a model to identify all 
relevant instances of a particular class. It is the ratio 
of correctly predicted positive observations to the 
total actual positives, providing insights into a 
model's completeness in capturing instances of a 
given class. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝐹𝑁 + 𝑇𝑃)
 

 

 
Fig 2. Results 
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5. CONCLUSION 

The suggested intelligent ensemble-based software 
defect prediction model significantly improves 
software quality assurance by correctly finding 
modules that are likely to have defects before testing.  
The system makes strong and trustworthy predictions 
by combining many classifiers, such as Random 
Forest, SVM, Naïve Bayes, and MLP, into an 
Adaptive Voting Classifier.  Adding a Stacking 
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Classifier that combines Decision Tree, Random 
Forest, and LightGBM makes accuracy and 
generalization much better over a wider range of 
datasets.  The model's better performance compared 
to previous techniques is shown by experimental 
data.  The addition of a Flask-based web interface 
also makes deployment easy, safe, and useful, which 
makes the system perfect for real-world software 
development settings. 
 

6. FUTURE SCOPE 
Adding deep learning architectures like CNNs or 
LSTMs to the suggested system might make it even 
better by helping it find complicated nonlinear 
patterns in software metrics. Future endeavors may 
concentrate on real-time defect prediction via 
continuous integration pipelines to facilitate agile 
development environments. Adding explainable AI 
(XAI) approaches and making the model work with 
massive industrial datasets helps make forecasts more 
trustworthy and clear. Also, making the system a 
cloud-based platform with API access would make it 
easier for more people to use, make it easier to scale, 
and make it easier to integrate into current software 
development workflows. 
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