v, .
{ International Journal of

Information Technology & Computer Engineering

ISSN 2347-3657

Volume 13, Issue 4,2025

Enhanced Software Defect Prediction Using a Stacking
Ensemble of Decision Tree, Random Forest, and LightGBM

Sane Divya !, Department of AIML, MJR College of Engineering and Technology, Piler, India

N. Surendra?, Associate professor, Department of CSE, MJR College of Engineering and Technology,
Piler,India

Abstract: To facilitate the discovery of software
defects, the latest study used a Stacking Classifier in
conjunction with Decision Tree, Random Forest, and
LightGBM models. Improved prediction accuracy
and stability across a variety of software datasets are
achieved by utilizing the complementing properties of
many methods. Additionally, the system makes use of
a Flask-based front end for safe user authentication
and a straightforward user interface for real-time
testing and prediction. Software quality assurance
becomes much simpler with integration, allowing for
faster, safer access, usage, and analysis of faults.

Index Terms— Software Defect Prediction,
Ensemble Learning, Stacking Classifier, Random
Forest, LightGBM, Decision Tree, Machine
Learning, Flask Framework, Software Quality
Assurance, NASA MDP Datasets..

1. INTRODUCTION

Today's globally linked digital world relies on
software to innovate, automate, and streamline
everything from company operations to daily life.
The software industry drives global growth by
providing the infrastructure and communication tools
that make it possible. Companies and people have
depended on software more for work,
communication, and commerce since the COVID-19
outbreak.

The Software Development Life Cycle (SDLC) has
key steps that both the development and QA teams
need to do. QA teams test the code that developers
produce to detect and repair errors. This feedback
loop between development and QA goes on until the
product is dependable and of high quality.

Because of limits on time, money, and trained
workers, it is still hard to build software that is free of
bugs. These problems show that there is a growing
need for smart and automated defect prediction
systems that can find bugs in software early in the
development process. Early defect prediction makes

the best use of resources, lowers testing costs, and
makes ensuring that software is delivered on time and
to a high standard.

This study presents a sophisticated ensemble-based
methodology for software fault prediction to tackle
these challenges. The model makes predictions more
accurate by using a voting ensemble mechanism to
combine machine learning algorithms including
Random Forest, SVM, Naive Bayes, and MLP. An
enhanced stacking-based methodology utilizing
Decision Trees, Random Forest, and LightGBM
enhances performance and reliability across diverse
software datasets.

2. LITERATURE SURVEY
2.1 Semantic Feature Learning for Software
Defect Prediction
v Proposes PM2-CNN, a Transformer-based
software fault prediction model using multi-channel
CNN and pretrained language models
v Integrates source code + external data (commit
messages, comments) to enhance defect detection
accuracy
v/ Captures both sequence correlation and contextual
semantics from code repositories
v/ Outperforms baseline ML models on large public
datasets, proving the benefit of non-code information
2.2 Deep Learning in Software Defect Prediction:
Systematic Review & Meta-Analysis
v Conducts a comprehensive review of 63 studies
comparing Deep Learning (DL) and Machine
Learning (ML) models in SDP
v/ Identifies top DL models — CNN, DNN, LSTM,
DBN, SDAE — trained on PROMISE & NASA
datasets
v Meta-analysis shows DL outperforms ML in
accuracy, recall, precision, F-measure, and AUC
v Sets a benchmark for future DL-based SDP
research by outlining challenges and best practices
2.3 Cloud-Based Software Defect Prediction via
Data & Decision-Level Fusion

116

v, .
{ International Journal of

Information Technology & Computer Engineering

v Introduces a two-step ML fusion system
combining data-level learning and fuzzy logic
decision fusion in the cloud
v Uses Naive Bayes, ANN, and Decision Tree
classifiers enhanced with eight fuzzy if-then rules for
final prediction
v Achieves 91.05% accuracy using five NASA
datasets (CM1, MWI1, PCl, PC3, PC4)
v/ Outperforms standalone classifiers and ensemble
models, improving defect identification reliability

2.4 Ensemble Learning for SDP using Adaptive
Variable Sparrow Search Algorithm (AVSSA)

v/ Develops an ensemble Bagging-based SDP model
using Extreme Learning Machine (ELM) optimized
by AVSSA
v AVSSA enhances global optimization through
adaptive hyperparameters and variable logarithmic
spiral

v Addresses data imbalance and local optima
problems common in conventional SDP approaches
v/ Outperforms four state-of-the-art algorithms on 15
public datasets, validated through Friedman & Holm
tests

2.5 3PcGE: 3-Parent Child Genetic Evolution for
Feature Selection in SDP

v’ Proposes 3PcGE, an evolutionary feature selection
strategy using a three-parent child genetic model
v’ Enhances prediction by selecting optimal feature
subsets through multi-objective optimization
v’ Produces more stable and accurate SDP models
than NSGA-II, improving software quality and
reducing testing cost
v/ Demonstrates that 3-parent genetic evolution
yields stronger, more diverse candidate solutions

3. METHODOLOGY
The suggested solution uses an ensemble-based
approach and a structured, multi-step procedure to
improve the accuracy of predicting software defects.
First, datasets from the NASA MDP repository are
loaded and preprocessed. This means getting rid of
duplicates, cleaning up records that aren't useful, and
using label encoding to turn categorical data into
numbers. To fix the problem of class imbalance,
SMOTE (Synthetic =~ Minority = Over-sampling
Technique) is used. After that, Particle Swarm
Optimization (PSO) is used to choose the most
important characteristics that make the model work
better. After that, the cleaned-up data is separated

ISSN 2347-3657

Volume 13, Issue 4, 2025

into training and testing sets so that it may be fairly
tested. An Adaptive Voting Classifier combines the
predictions of many machine learning models, such
as Random Forest, SVM, Naive Bayes, and MLP, to
make them more reliable. A Stacking Classifier that
combines Decision Tree, Random Forest, and
LightGBM generates a meta-model that makes
predictions more accurate. Finally, a Flask-based
interface lets users safely sign up, log in, enter data,
and see real-time forecasts of defects. This makes
sure that the system is easy to use and accessible.

A. Proposed Work:

An enhanced Stacking Classifier combining Decision
Tree, Random Forest, and LightGBM models is
implemented to improve the accuracy of software
fault prediction in the suggested extended study. For
consistent, high-quality predictions, this hybrid
ensemble combines the strengths of three distinct
learning algorithms: Decision Tree for
interpretability, Random Forest for robustness, and
LightGBM for gradient boosting efficiency. Users
may safely register, log in, and conduct real-time
defect predictions using an interactive and user-
friendly platform made possible by the system's
Flask-based web interface. For real-world use in
SDLCs, this add-on increases model performance
with multi-level learning while simultaneously
making it more accessible, secure, and user-friendly.
B. System Architecture:

The system architecture shows how the proposed
intelligent ensemble-based software fault prediction
methodology will function. The first step is to import
and preprocess the dataset, which includes cleaning
the data, removing duplicates, and encoding the
labels to make sure the input is of high quality. K-
means clustering is used to group comparable
instances of the cleaned data. Then, PSO (Particle
Swarm Optimization) is used to improve the
relevance of features by applying it to specific
models like MLP, SVM, Naive Bayes, and Random
Forest. Then, an ensemble learning method is used to
integrate these improved models to make predictions
more accurate and stable. During the extension
phase, a Stacking Classifier combines Decision Tree,
Random Forest, and LightGBM to allow for multi-
level learning that leads to better results. The last
step is evaluation, when the model's ability to
anticipate software bugs is tested by calculating
accuracy and other performance indicators.

117

¢

International Journal of

Information Technology & Computer Engineering

l')atas.etTg‘..9 i:
Pre-processing -@I} ?i_.
.
NB+PSO

Fig proposed architecture

C. MODULES:
a) Data Loading:
* Imports the software defect datasets from
the NASA MDP repository.

b)

¢)

d)

* Initializes data for further preprocessing
and analysis.

Data Preprocessing:

* Removes duplicates, irrelevant, and
incomplete records to ensure clean data.

* Converts categorical data into numerical
form using label encoding for model
compatibility.

K-Means Clustering:

* Groups the preprocessed data into clusters
based on feature similarity.

* Helps the models learn distinct defect
patterns more effectively.

Feature Optimization using PSO:

* Applies Particle Swarm Optimization to
identify and retain the most relevant
features.

* Reduces dimensionality, improving the
model’s accuracy and efficiency.

Base Model Training (MLP, SVM, NB,
RF):

* Trains four supervised models
independently using optimized features.

» Each model learns unique data patterns to
improve prediction strength.

Ensemble Learning:

* Combines predictions from MLP, SVM,

ISSN 2347-3657

Volume 13, Issue 4, 2025

— Evaluation

——+ Evaluation

NB, and RF using an Adaptive Voting
Classifier.

* Enhances overall model performance by
merging individual model strengths.

g) [Extension — Stacking Classifier:
* Integrates Decision Tree, Random Forest,
and LightGBM into a meta-model for deeper
learning.
* Further refines prediction accuracy through
advanced ensemble stacking.

h) Evaluation:
* Measures performance using accuracy,
precision, recall, and F1-score.
» Compares ensemble and stacking models
to identify the most effective approach.

i) User Authentication (Signup & Login):
* Provides secure access through user
registration and login.
* Ensures only authorized users can test and
use the prediction system.

j) User Input & Prediction:
* Allows users to input new data for real-
time defect prediction.
* Displays prediction results interactively
through a Flask-based interface.

D. Algorithms:
a) Support Vector Machine (SVM):

Methods for supervised learning SVM finds the
hyperplane in feature space that best separates the
groups. The project uses it to sort out bad modules by
making the gap between distinct classes as big as

118

F International Journal of

Information Technology & Computer Engineering

possible. This makes the model more accurate and
able to generalize.

b) Random Forest:
Random Forest uses ensemble learning to train
several decision trees and calculate their mode class
(classification) or mean prediction (regression). In the
project, its resilience and accuracy in predicting
faulty modules through aggregated decision-making
increase model performance and decrease overfitting
for various datasets.

¢) Naive Bayes:
Naive Bayes is a probabilistic classifier that uses
Bayes' theorem and assumes that features are
independent. In the project, it is used to figure out
how likely it is that faults will happen based on the
feature values. This is a simple and effective way to
work with massive datasets that have categorical
properties.

d) MLP (Multi-Layer Perceptron):
MLP is an artificial neural network made up of many
layers of neurons that can do complicated input-to-
output mappings. The research uses it to find
complex patterns and interactions in the data, which
helps forecast which modules will be faulty since it
can learn from both linear and non-linear
correlations.

a) Adaptive Voting Classifier (RF + SVM +

NB + MLP):

By using a voting system, the Adaptive Voting
Classifier improves the accuracy of predictions made
by Random Forest, SVM, Naive Bayes, and MLP. a
study uses an ensemble approach to improve
prediction accuracy for broken modules by
combining the strengths of all the models.

b) Stacking Classifier (DT + RF with

LightGBM):

To improve the accuracy of its predictions, the
Stacking Classifier builds a meta-model that
incorporates two gradient boosting frameworks,
Decision Trees (DT), and Random Forest (RF). As
part of the project, this classifier combines different
models to improve the accuracy and resilience of
fault prediction by taking use of their individual
strengths.

4. EXPERIMENTAL RESULTS
To determine how well the intelligent ensemble-
based model could forecast software defects, it was
tested on seven benchmark datasets taken from the
NASA MDP repository: CM1, IMI1, MC2, MW1,
PC1, PC3, and PC4. The initial step involved
training and optimizing four supervised learning
algorithms using iterative parameter tuning: Random

ISSN 2347-3657

Volume 13, Issue 4, 2025

Forest, Support Vector Machine (SVM), Naive
Bayes, and Multi-Layer Perceptron (MLP). In order
to increase consistency and decrease individual
model bias, their forecasts were aggregated using a
voting ensemble.

Accuracy rates of 86.5% for CM1, 66% for JM1,
73.5% for MC2, 80.1% for MW1, 87% for PCI,
87.5% for PC3, and 90.4% for PC4 were some of the
noteworthy findings attained by the ensemble model
across the datasets. We used an extension model that
included Decision Tree, Random Forest, and
LightGBM, a Stacking Classifier, to increase
accuracy even more. With accuracies of 92.4% for
CM1, 83.6% for M1, 73.5% for MC2, 89.7% for
MW1, 92.2% for PC1, 92.4% for PC3, and 93.5% for
PC4, this hybrid technique obtained excellent results.
When compared to typical single-model approaches,
the experimental findings show that integrating
diverse classifiers using ensemble and stacking
techniques greatly improves prediction accuracy,
dependability, and resilience across different software
fault datasets.

Accuracy: The accuracy of a test is its ability to
differentiate the patient and healthy cases correctly.
To estimate the accuracy of a test, we should
calculate the proportion of true positive and true
negative in all evaluated cases. Mathematically, this
can be stated as:

Accuracy = TP + TN TP + TN + FP + FN.
(TN +TP)

T

Classification Performance

Accuracy =

Stacking Classifier

Adaptive Voting Classifier

MLP Classifier

NaiveBayes

Support Vector Machine

Random Forest

00 02 04 06 08
Accuracy Score
F1-Score: F1 score is a machine learning evaluation
metric that measures a model's accuracy. It combines
the precision and recall scores of a model. The
accuracy metric computes how many times a model
made a correct prediction across the entire dataset.
(Recall - Pre cision)

F1=2-
(Recall + Pre cision)

119

}" International Journal of

Information Technology & Computer Engineering

Classification Performance

Stacking Classifier

Adaptive Voting Classifier

MLP Classifier

NaiveBayes

Suppert Vector Machine

Random Forest

oo 02 04 06 o8
F1 Scare

Precision: Precision evaluates the fraction of
correctly classified instances or samples among the
ones classified as positives. Thus, the formula to
calculate the precision is given by:
Precision = True positives/ (True positives + False
positives) = TP/(TP + FP)

TP

(TP + FP)

Classification Performance

Pre cision =

Stacking Classifier 4
Adaptive Voting Classifier
MLP Ciassifier 4
NaiveBayes .

Suppert Vector Machine

Random Forest

oo 02 04 06 o8
Precision Score

Recall: Recall is a metric in machine learning that
measures the ability of a model to identify all
relevant instances of a particular class. It is the ratio
of correctly predicted positive observations to the
total actual positives, providing insights into a
model's completeness in capturing instances of a
given class.

TP
(FN + TP)

Classification Performance

Recall =

Stacking Classifier

Adaptive Voting Classifier

MLP Classifier

NaiveBayes

Support Vector Machine

Random Forest

00 02 04 06 08
Recall Score

ISSN 2347-3657

Volume 13, Issue 4, 2025

RESULT

Software is Not Defective!

Fig 2. Results

AU
ML Accur|[Precis||Rec Fl- C ||Specifi||Sensiti
Mode . Sco . .
acy || ion | all Sco|| city vity
1 re
re
Rando
m 0.918 (|0.921 0.91110.9 1.0 0.918 (|0.918
8 18 {/00
Forest
Suppo
rt
Vecto 0.71|0.7 {|0.8
. 0.713 {|0.719 3 12 133 0.714 (|0.713
Machi
ne
Naive 0.71}|0.7 {|0.7
Bayes 0.719 {|0.765 9 26 |33 0.721 {|0.719
MLP
Classi [|0.860 {|0.867 0.86/10.8 0.9 0.859 1/0.860
0 60 |61
fier
Adapt
ive
Votin 0.86/(0.8 {|0.9
o 0.865 (|0.865 p 66 171 0.865 |(|0.865
Classi
fier
Stacki
ng 0.92/(0.9 ||1.0
Classi 0.924 (|0.924 4 24 oo 0.924 (|0.924
fier
5. CONCLUSION

The suggested intelligent ensemble-based software
defect prediction model significantly improves
software quality assurance by correctly finding
modules that are likely to have defects before testing.
The system makes strong and trustworthy predictions
by combining many classifiers, such as Random
Forest, SVM, Naive Bayes, and MLP, into an
Adaptive Voting Classifier. Adding a Stacking

120

v, .
{ International Journal of

Information Technology & Computer Engineering

7

Classifier that combines Decision Tree, Random
Forest, and LightGBM makes accuracy and
generalization much better over a wider range of
datasets. The model's better performance compared
to previous techniques is shown by experimental
data. The addition of a Flask-based web interface
also makes deployment easy, safe, and useful, which
makes the system perfect for real-world software
development settings.

6. FUTURE SCOPE

Adding deep learning architectures like CNNs or
LSTMs to the suggested system might make it even
better by helping it find complicated nonlinear
patterns in software metrics. Future endeavors may
concentrate on real-time defect prediction via
continuous integration pipelines to facilitate agile
development environments. Adding explainable Al
(XAI) approaches and making the model work with
massive industrial datasets helps make forecasts more
trustworthy and clear. Also, making the system a
cloud-based platform with API access would make it
easier for more people to use, make it easier to scale,
and make it easier to integrate into current software
development workflows.

REFERENCES

[1] J. Liu, J. Ai, M. Lu, J. Wang, and H. Shi,
““‘Semantic feature learning for software defect
prediction from source code and external
knowledge,’’ J. Syst. Softw., vol. 204, Oct. 2023, Art.
no. 111753, doi: 10.1016/j.jss.2023.111753.

[2] Z. M. Zain, S. Sakri, and N. H. A. Ismail,
““‘Application of deep learning in software defect
prediction: ~ Systematic literature review and
metaanalysis,”” Inf. Softw. Technol., vol. 158, Jun.
2023, Art. no. 107175, doi:
10.1016/j.infs0f.2023.107175.

[3] S. Aftab, S. Abbas, T. M. Ghazal, M. Ahmad, H.
A. Hamadi, C. Y. Yeun, and M. A. Khan, ‘‘A cloud-
based software defect prediction system using data
and decision-level machine learning fusion,’’
Mathematics, vol. 11, no. 3, p. 632, Jan. 2023, doi:
10.3390/math11030632.

[4] Y. Tang, Q. Dai, M. Yang, T. Du, and L. Chen,
““‘Software defect prediction ensemble learning
algorithm based on adaptive variable sparrow search
algorithm,”” Int. J. Mach. Learn. Cybern., vol. 14, no.
6, pp. 1967-1987, Jan. 2023, doi: 10.1007/s13042-
022-01740-2.

[5] S. Goyal, ““3PcGE: 3-parent child-based genetic
evolution for software defect prediction,”” Innov.

ISSN 2347-3657

Volume 13, Issue 4, 2025

Syst. Softw. Eng., vol. 19, no. 2, pp. 197-216, Jun.
2023, doi: 10.1007/s11334-021-00427-1.

[6] S. Mehta and K. S. Patnaik, ‘‘Stacking based
ensemble learning for improved software defect
prediction,”” in Proc. 5th Int. Conf. Microelectron.,
Comput. Commun. Syst., vol. 748, 2021, pp. 167—
178.

[7] M. Shafiq, F. H. Alghamedy, N. Jamal, T. Kamal,
Y. 1. Daradkeh, and M. Shabaz, ‘‘Retracted:
Scientific programming using optimized machine
learning techniques for software fault prediction to
improve software quality,”” IET Softw., vol. 17, no.
4, pp. 694-704, Jan. 2023, doi: 10.1049/sfw2.12091.
[8] Z. M. Zain, S. Sakri, and N. H. A. Ismalil,
““Application of deep learning in software defect
prediction: Systematic literature review and meta-
analysis,”” Inf. Softw. Technol., vol. 158, Jun. 2023,
Art. no. 107175, doi: 10.1016/.infsof.2023.107175.
[9] M. Unterkalmsteiner et al., ‘‘Software startups—
A research agenda,”” 2023, arXiv:2308.12816.

[10] A. K. Gangwar and S. Kumar, ‘‘Concept drift in
software defect prediction: A method for detecting
and handling the drift,”” ACM Trans. Internet
Technol., vol. 23, no. 2, pp. 1-28, May 2023, doi:
10.1145/3589342.

[11] M. S. Alkhasawneh, ‘‘Software defect prediction
through neural network and feature selections,”
Appl. Comput. Intell. Soft Comput., vol. 2022, pp. 1-
16, Sep. 2022, doi: 10.1155/2022/2581832.

[12] T. F. Husin and M. R. Pribadi, ‘‘Implementation
of LSSVM in classification of software defect
prediction data with feature selection,’” in Proc. 9th
Int. Conf. Electr. Eng., Comput. Sci. Informat.
(EECSI), Jakarta, Indonesia, Oct. 2022, pp. 126131,
doi: 10.23919/EECSI56542.2022. 9946611.

[13] J. A. Richards, ‘‘Supervised classification
techniques,”” in Remote Sensing Digital Image
Analysis. Cham, Switzerland: Springer, 2022, pp.
263-367.

[14] B. J. Odejide, A. O. Bajeh, A. O. Balogun, Z. O.
Alanamu, K. S. Adewole, A. G. Akintola, and S. A.
Salihu, ““An empirical study on data sampling
methods in addressing class imbalance problem in
software defect prediction,”” in Proc. Comput. Sci.
Online Conf. Cham, Switzerland: Springer, Apr.
2022, pp. 594-610.

[15] X. Wu and J. Wang, ‘‘Application of bagging,
boosting and stacking ensemble and EasyEnsemble
methods for landslide susceptibility mapping in the
three Gorges reservoir area of China,”” Int. J.
Environ. Res. Public Health, vol. 20, no. 6, p. 4977,
Mar. 2023, doi: 10.3390/ijerph20064977.

121

v, .
{ International Journal of

Information Technology & Computer Engineering

7

[16] F. Jiang, X. Yu, D. Gong, and J. Du, ‘A random
approximate reduct based ensemble learning
approach and its application in software defect
prediction,”” Inf. Sci., vol. 609, pp. 1147-1168, Sep.
2022, doi: 10.1016/.ins.2022.07.130.

[17] H. Chen, X.-Y. Jing, Y. Zhou, B. Li, and B. Xu,
““Aligned metric representation based balanced
multiset ensemble learning for heterogeneous defect
prediction,”” Inf. Softw. Technol., vol. 147, Jul. 2022,
Art. no. 106892, doi: 10.1016/j.infsof.2022.106892.
[18] A. O. Balogun, A. O. Bajeh, V. A. Orie, and A.
W. Yusuf-Asaju, ‘‘Software defect prediction using
ensemble learning: An ANP based evaluation
method,”” FUOYE J. Eng. Technol., vol. 3, no. 2, pp.
50-55, Sep. 2018, doi: 10.46792/fuoyejet.v3i2.200.
[19] A. O. Balogun, F. B. Lafenwa-Balogun, H. A.
Mojeed, V. E. Adeyemo, O. N. Akande, A. G.
Akintola, A. O. Bajeh, and F. E. Usman-Hamza,
““SMOTE-based homogeneous ensemble methods for
software defect prediction,”” in Computational
Science and Its Applications—ICCSA 2020, vol.
12254, O. Gervasi, B. Murgante, S. Misra, C. Garau,
I. B. D. Taniar, B. O. Apduhan, A. M. A. C. Rocha,
E. Tarantino, C. M. Torre, and Y. Karaca, Eds.
Cham, Switzerland: Springer, 2020, pp. 615-631.
[20] R. J. Jacob, R. J. Kamat, N. M. Sahithya, S. S.
John, and S. P. Shankar, ‘‘Voting based ensemble
classification for software defect prediction,”” in
Proc. IEEE Mysore Sub Sect. Int. Conf.
(MysuruCon), Hassan, India, Oct. 2021, pp. 358-365,
doi: 10.1109/MysuruCon52639.2021. 9641713.

[21] A. Alsaeedi and M. Z. Khan, ‘‘Software defect
prediction using supervised machine learning and
ensemble techniques: A comparative study,”” J.
Softw. Eng. Appl., vol. 12, no. 5, pp. 85-100, 2019,
doi: 10.4236/jsea.2019.125007.

[22] A. Igbal and S. Aftab, ““A classification
framework for software defect prediction using multi-
filter feature selection technique and MLP,”’ Int. J.
Mod. Educ. Comput. Sci., vol. 12, no. 1, pp. 18-25,
Feb. 2020, doi: 10.5815/ijmecs.2020.01.03.

[23] M. Cetiner and O. K. Sahingoz, ‘‘A comparative
analysis for machine learning based software defect
prediction systems,”” in Proc. 11th Int. Conf.
Comput., Commun. Netw. Technol. (ICCCNT),
Kharagpur, India, Jul. 2020, pp. 1-7, doi:
10.1109/ICCCNT49239.2020.9225352.

[24] K. Wang, L. Liu, C. Yuan, and Z. Wang,
“Software defect prediction model based on
LASSO-SVM,,”’ Neural Comput. Appl., vol. 33, no.
14, pp. 8249-8259, Jul. 2021, doi: 10.1007/s00521-
020-04960-1.

ISSN 2347-3657

Volume 13, Issue 4, 2025

[25] M. S. Daoud, S. Aftab, M. Ahmad, M. A. Khan,
A. Igbal, S. Abbas, M. Igbal, and B. Ihnaini,
““Machine learning empowered software defect
prediction system,’’ Intell. Autom. Soft Comput., vol.
31, mno. 2, pp. 1287-1300, 2022, doi:
10.32604/iasc.2022.020362.

[26] Y. N. Soe, P. 1. Santosa, and R. Hartanto,
““Software defect prediction using random forest
algorithm,”” in Proc. 12th South East Asian Technical
Univ. Consortium, Yogyakarta, Indonesia, Mar.
2018, pp. 1-5, doi: 10.1109/SEATUC.2018.8788881.
[27] F. H. Alshammari, ‘‘Software defect prediction
and analysis using enhanced random forest (extRF)
technique: A business process management and
improvement concept in IoT-based application
processing environment,”” Mobile Inf. Syst., vol.
2022, pp- 1-11, Sep. 2022, doi:
10.1155/2022/2522202.

[28] A. Igbal, S. Aftab, U. Ali, Z. Nawaz, L. Sana, M.
Ahmad, and A. Husen, ‘‘Performance analysis of
machine learning techniques on software defect
prediction using NASA datasets,”” Int. J. Adv.
Comput. Sci. Appl.,, vol. 10, no. 5, 2019, doi:
10.14569/1JACSA.2019.0100538.

[29] H. Alsghaier and M. Akour, ‘‘Software fault
prediction using particle swarm algorithm with
genetic algorithm and support vector machine
classifier,”” Softw., Pract. Exper., vol. 50, no. 4, pp.
407-427, Apr. 2020, doi: 10.1002/spe.2784.

[30] S. K. Rath, M. Sahu, S. P. Das, S. K. Bisoy, and
M. Sain, ‘‘A comparative analysis of SVM and ELM
classification on software reliability prediction
model,”” Electronics, vol. 11, no. 17, p. 2707, Aug.
2022, doi: 10.3390/electronics11172707.

122

