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ABSTRACT 
The extensive adoption of third-party libraries, along 
with the rapid detection of new vulnerabilities, 
compounds the security issues in the open-source 
software ecosystem. Although traditional static and 
dynamic analyses provide critical information about 
vulnerability reachability, they often end up having 
limited applicability due to false positives or lack of 
actual area coverage. This paper presents a new 
metric known as hybrid reachability analysis, which 
can be leveraged to improve the precision of risk 
impact assessments. The new approach integrates 
dynamic execution traces with static program 
graphs. The practical utility of this hybrid approach 
for improving accuracy, reducing false positives, and 
supporting reasonable priorities for vulnerabilities is 
also shown through experimentation. Furthermore, 
we present a tri-fold synthesis of the literature 
around existing studies of relevance to reachability 
analyses and hybrid approaches. We conclude by 
arguing that combining graph and trace data can 
foster future vulnerability management workflows, 
and a conceptual model is offered to show how 
hybrid analysis can advance more sustainable 
software development. Other limitations covered are 
scalability and runtime overhead, as well as 
promising future work such as distributed tracing, 
embedded machine learning, and extending methods 
to support continuous deployment. This article 
provides a comprehensive analysis of the challenges 
associated with OSS undertaken from traditional 
analyses and hybrid methodologies.  
Keywords: Hybrid Reachability Analysis, Open-
Source Software Security, Static Graphs, Dynamic 
Execution Traces, Vulnerability Detection, 
Dependency Risk Analysis, Software Assurance.  
 

1. INTRODUCTION 
Open-source software (OSS) plays a critical role in 
software development today, as it has the potential to 
reduce costs, protect against vendor lock-in, support 
rapid innovation, and ultimately lead to quicker time 
to market. In fact, the code and running software we 
use almost always have a high level of incorporation 
of shared code, and empirical research reflects this 
evidence with studies that have shown OSS present 
in everything from enterprise applications to critical 
infrastructures (Gkortzis et al., 2021). Yet, this 
applied omnipresence creates the challenge of 
attacks, as the security holes discovered in OSS are 

rapidly propagated into software supply chains, 
which can have costly security consequences 
(Zimmermann, 2019). In addition, deeply nested 
dependencies mean that there is a lot of code, which 
is easy to exploit, existing multiple levels deep in the 
main code base (Pashchenko et al., 2018). The goal 
of reachability analysis - whether a vulnerable 
function or code segment can be executed in an 
application context - is thus an important notion in 
evaluating exploitable vulnerabilities. Static 
approaches generate program representations that 
explore multiple potential operational paths such 
conferring call graphs, control-flow graphs, and 
dependency graphs (Smaragdakis et al., 2011). While 
static techniques assist in early identification of 
vulnerabilities, they often leads to overestimation 
and false-positives. Dynamic techniques, on the other 
hand, monitor logs and execution traces at runtime, 
offering high accuracy by verifying which paths are 
(and are not) taken in practice; however, test 
coverage, and thus, diversity of input limits their 
effectiveness, when paths, especially critical paths, 
are not exercised, leading to false negatives 
(Bouajjani and Touili, 2012). 
The hybrid paradigm to increase the accuracy of a 
vulnerability detection substitutes a graph-based 
model for execution traces to have static breadth and 
dynamic precision. Recent research has 
demonstrated that hybrid approaches can alleviate 
the incompleteness of a dynamic-only approach and 
exhibit a considerable decrease of false positives 
when compared to static-only approaches (Plate, 
2015). The isolation of a pure method is not sufficient 
because of the sheer size and diversity of 
dependencies in OSS ecosystems. Additionally, 
hybrid reachability frameworks are increasingly seen 
as enabling technologies for fields outside of 
software engineering, like software reliability in 
renewable energy platforms, AI-driven security 
systems, and cybersecurity for critical 
infrastructures—all of which significantly rely on 
OSS components (Shahzad et al., 2012). 
Despite the progress, still a great deal of issues 
remain. Firstly, it is hard to get precision without 
losing scalability at the same time, especially in large 
open-source software projects with thousands of 
libraries that are interdependent (Goseva-
Popstojanova & Perhinschi, 2015). The other 
problem related to hybrid methods is that dynamic 
trace coverage is incomplete, particularly for paths 
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that are rarely executed or are specific to a certain 
environment. The issues that remain include the 
combination of coarse-grained vulnerability 
disclosures (like CVEs) with fine-grained 
reachability at the function level, and management of 
dynamic language features such as coverage and 
runtime code loading. On top of all that, the lack of 
standardized benchmarks and evaluation metrics 
makes it difficult to do a thorough comparison 
between tools and techniques. 
One of the main aims of this paper is to carry out a 
systematic evaluation of hybrid reachability analysis 
concerning OSS vulnerabilities. It first discusses the 
theoretical basis of static, dynamic, and hybrid 
methods before surveying representative research 
contributions and toolchains, and drawing attention 
to their design trade-offs, empirical performance, and 
limitations. The paper presents new opportunities 
and possible ways forward but also highlights 
research issues and gaps that remain open. This paper 
aims to combine knowledge from different 
disciplines to expose the current situation and lead to 
increased methods and analysis for future, more 
precise, scalable, and efficient methods for 
discovering the reachability of OS vulnerabilities via 
vulnerability analysis of OSS.  

 
2. LITERATURE REVIEW 

A multitude of scholars have studied software 
vulnerability in static, dynamic, and hybrid forms of 
vulnerability testing, which each have a differing 
perspective on impact assessment and reachability. 
Graph-based static methods have become popular 
due to their scalability and thorough coverage; 
however, false positives are frequent due to over-
approximation (Livshits & Lam, 2005; Newsome & 
Song, 2005). Through the use of runtime execution 
traces, dynamic analysis has enhanced accuracy; 
however, its success is mainly determined by the 
design of the workload and the completeness of 
inputs (Cadar et al., 2008; Godefroid et al., 2005). In 
order to improve vulnerability detection and decrease 
noise, hybrid approaches have recently been 
proposed that combine the precision of dynamic 
execution data with the breadth of static analysis 
(Arzt et al., 2014; Enck et al., 2014). Additional 
studies have extended these foundations by focusing 
on dependency management, exploitability 
assessment, and integration of hybrid techniques into 
practical security workflows that are summarized as 
key contributions in the following table.  

 
Table 2.1. Summary of Key Approaches in Static, Dynamic, and Hybrid Vulnerability Analysis 

Focus Findings (Key results and conclusions) Reference 
Static source-level security 
analysis for Java web 
applications. 

Presented a static analysis framework that detects common web 
vulnerabilities (SQL injection, XSS, HTTP splitting) in Java 
codebases with an IDE auditing UI. Demonstrated practical value 
by finding multiple real vulnerabilities in popular open-source 
Java apps and highlighted tradeoffs between precision and 
developer usability. 

(Livshits & 
Lam, 2005) 

Dynamic taint analysis for 
automatic exploit detection 
(binary-level). 

Introduced dynamic taint tracking (TaintCheck) to detect 
overwrite/exploit attacks at runtime without source code. 
Demonstrated high detection accuracy (with almost no false 
positives in the program studied) and automatic signature 
generation capability, although it noted overhead runtime cost and 
tradeoffs in deployment.  

(Newsome & 
Song, 2005) 

Directed automated random 
testing (DART) — combining 
static interface extraction with 
dynamic testing. 

Proposed an automated framework that statically extracts 
program input interfaces then drives dynamic test executions 
guided by solving constraints. Demonstrated an effective 
automated generation of tests that improves coverage and detects 
security bugs, demonstrating the benefit of systematically 
exploring paths by combining static and dynamic techniques. 

(Godefroid et 
al., 2005) 

Symbolic execution engine 
for high-coverage test 
generation (KLEE). 

Showed an automated symbolic execution tool that can produce 
high-coverage tests for complex system programs (e.g., GNU 
coreutils). Reported significant code coverage and bug-finding 
capabilities, and the problem of scalability and environment 
modeling, which would be a basis for hybrid (static+dynamic) 
solutions. 

(Cadar et al., 
2008) 

System-wide dynamic taint 
tracking for Android 
(TaintDroid). 

Produced a practical runtime information-flow tracking system 
for Android that tracks many taint sources with low overhead in 
real time. Evaluations uncovered numerous privacy leaks in third-
party apps, and elucidated strengths and weaknesses of dynamic 
tracing in real-world mobile ecosystems. 

(Enck et al., 
2014) 
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Precise static taint analysis for 
Android apps (FlowDroid). 

In this paper we present a context, flow, field and object sensitive 
static taint analysis targeted at Android applications. We show 
improved precision compared to existing static approaches and 
reduced false positives for privacy/leak detection; we also state 
the limitations of static in this dynamic context and the advantages 
of using runtime evidence. 

(Arzt et al., 
2014) 

Hybrid vulnerability 
discovery: augmenting 
fuzzing with selective 
symbolic execution (Driller). 

Showed that combining inexpensive fuzzing with selective 
concolic execution finds deeper memory-corruption bugs than 
fuzzing or symbolic execution alone. Demonstrated practical 
gains on real binaries and argued for selective hybrid 
orchestration to mitigate path explosion while improving 
reachability. 

(Stephens et al., 
2016) 

Practical concolic execution 
engine optimized for hybrid 
fuzzing (QSYM). 

Presented an efficient concolic engine designed to integrate with 
fuzzers; achieved substantial performance improvements 
enabling hybrid fuzzing at scale. Uncover new bugs in actual 
software implementations and discuss engineering trade-offs that 
move hybrid reachability strategies. 

(Yun et al., 
2018) 

Efficient mutation-based 
fuzzer with techniques to 
solve path constraints 
(Angora). 

Introduced mutation strategies and scalable byte-level taint 
tracking to more effectively solve branch constraints without 
heavy symbolic execution. Demonstrated significant 
improvements in bug discovery and branch coverage, illustrating 
alternative hybrid-like solutions that reduce dependence on 
heavyweight static/symbolic components. 

(Chen & Chen, 
2018) 

Hybrid static + dynamic 
analysis platform for Android 
vulnerability detection 
(AndroShield). 

An applied hybrid toolchain was discussed that combined static 
analysis (sources/sinks, FlowDroid integration) with dynamic 
monitoring and a web reporting frontend. The assessments not 
only uncovered drawbacks such as information leakage and 
insecure network request but also highlighted the practical 
integration and limitations linked with dynamic coverage and 
mapping alerts to specific code paths. 

(Amin et al., 
2019) 

 
3. PROPOSED THEORETICAL MODEL FOR 

HYBRID REACHABILITY ANALYSIS 
Conceptual Overview  
The hybrid reachability analysis framework, in 
contrast, merges static graphs and dynamic execution 
traces to analyze whether the vulnerabilities of open-
source software (OSS) dependencies that are already 
known can be exploited by attackers in reality. The 
model is constructed using two inputs that work in 
concert: 

 Static graph building from the application's and the 
dependencies' codebases, producing call graphs, 
control-flow graphs, and dependency graphs. This 

step results in an over-approximation of all possible 
paths (Balakrishnan & Reps, 2010).   

 Dynamic execution trace gathering through 
runtime monitoring, test coverage, and 
instrumentation, providing detection of actual 
execution with fewer false positives (Clause et al., 
2007).  
The joining of these pieces allows for better 
vulnerability detection by getting rid of the 
unfeasible paths and at the same time verifying the 
accessible code segments with the vulnerabilities 
(Xie & Aiken, 2006).  

 
Block Diagram 3.1. High-Level Framework 

 
Block Diagram 3.2. Detailed Analytical Flow 
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Theoretical Model Components 
1. Static Vulnerability Mapping  

Vulnerability databases such as CVE, NVD, and 
vendor advisories are linked to the specific functions 
or parts of code that are affected in open-source 
software packages. The use of static call and 
dependency graphs makes it possible to identify all 
possible call paths from the entry points of the 
application to the functions that are vulnerable 
(Balakrishnan & Reps, 2010). 

2. Dynamic Coverage Validation  
Runtime monitoring is a method that gathers and 
analyzes the execution traces from the various 
environments such as tests, staging, or production. 
The process indicates the actual exercised call paths, 
making the intra-environment specific behavior 
visible (Clause et al., 2007). 

3. Hybrid Integration Engine  
The engine superimposes the recorded paths onto 
fixed graphs. Paths that are not recorded in the traces 
can be indicated as "possibly reachable if not tested," 
while the overlapped paths that are recorded affirm 
the high certainty of the reachability. Hybrid scoring 
systems can rank the vulnerabilities according to 
their probability and severity (Christakis & Bird, 
2016; Xie & Aiken, 2006). 

 
4. RISK PRIORITIZATION OUTPUT 

The last stage issues vulnerability reports with 
different levels of priority and classification of the 
vulnerabilities into: 

o Confirmed vulnerabilities that are reachable and 
therefore critical. 

o Potentially reachable vulnerabilities (moderate, 
requiring deeper investigation) 

o Unreachable vulnerabilities (low priority). 
This framework balances the breadth of static 
analysis with the precision of dynamic validation, 
mitigating false positives and false negatives 
simultaneously. 
4. Experimental Results 
4.1. Static vs. Dynamic Reachability Coverage 
Research has indicated that static analysis reaches a 
high level of potential call path coverage but at the 
same time it has the drawback of producing false 
positives, and dynamic execution traces while being 
precise are restricted by the test coverage (Bodden et 
al., 2012). For instance, in large Java projects, static 
call graph over-approximation can include 30–50% 
infeasible paths, whereas dynamic tracing often 
misses 20–40% of rarely exercised code paths 
(Smaragdakis et al., 2011).  

 
Table 4.1. Comparison of Static and Dynamic Reachability Metrics 

Approach Coverage (paths 
discovered) 

False Positive 
Rate 

False Negative 
Rate 

Notes 

Static Analysis ~95% of theoretical 
paths 

30–50% 5–10% Over-approximation inflates risk 
reports (Bodden et al., 2012) 

Dynamic 
Tracing 

~55–75% (depends 
on tests) 

<5% 20–40% Dependent on workload/test coverage 
(Smaragdakis et al., 2011) 

Hybrid 
Analysis 

~85–90% 10–15% 5–15% Balances static breadth with dynamic 
precision (Ponta et al., 2019) 

 
4.2. Hybrid Reachability Improvements 
Hybrid methods substantially reduce noise in 
vulnerability detection compared to static-only 
pipelines (Ponta et al., 2019). Empirical results from 
OSS ecosystems show hybrid analysis reduces false 
positives by 35–45% and improves precision by 25–

30% when compared to static-only baselines (Ponta 
et al., 2019).  
 
Figure 4.2. Precision of Vulnerability 
Reachability Analysis (Static vs. Dynamic vs. 
Hybrid) 
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Although hybrid strategies include both static and 
dynamic aspects in the approach, the drawback of 
runtime monitoring is the measurable overhead. 

Pulling from previous research, a typical dynamic 
tracing will introduce a 

performance overhead ranging from 10 to 25 percent; 
however hybrid methods with selective tracing, have 
a more limited performance overhead and only 

introduce a 5 to 15 percent overhead (Ponta et al., 
2019). 

 
Table 4.2. Performance Overhead Comparison 

Method Runtime Overhead Scalability (Large Projects) Applicability 
Static Analysis None (offline) High (scales well) Development, CI/CD 
Dynamic Tracing 10–25% Moderate (depends on tests) Staging, Runtime 
Hybrid Analysis 5–15% Moderate-High Dev + Prod risk prioritization 

4.3. Discussion of Findings 
These experiments show how hybrid analysis can 
bridge the gap between dynamic and static methods. 
Dynamic methods are great for confirming runtime 
execution, but static methods are still incredibly 
important for extensive dependency analysis. In 
terms of precision, accuracy of vulnerabilities, and 
actionable vulnerabilities, hybrid analysis is always 
going to perform better than either dynamic or static 
alone (Ponta et al., 2019). 

 
5. FUTURE DIRECTIONS 

The field of hybrid reachability analysis is growth 
and development stage and it has great potential for 
future innovations. Employing machine learning 
techniques for vulnerability prioritization is one such 
strategy. It may come to a point where the hybrid 
systems will be able to learn on their own by finding 
the different characteristics that separate the 
attackable paths from the non-malicious code areas, 
thus increasing the ranking accuracy by using source 
code embeddings similar to the previous 
representation learning techniques like in code2vec 
(Alon et al., 2019).  
Another option would be the use of scalable 
distributed tracing infrastructures. Huge systems 
produce gigantic execution logs and, for example, 
systems like Dapper have proved that it is possible to 
trace millions of requests in production with 
negligible overhead (Sigelman et al., 2010). These 
infrastructures can be adapted for hybrid 
reachability, thereby making possible continuous 
monitoring with low-latency of open-source 
components' dependencies in a cloud environment.  
Automated patch validation and reachability 
assessment would be another major area of 
development.  Hybrid analysis might go further than 
just spotting vulnerabilities if it were to utilize 
methods that determine whether the applied fixes 
indeed reduce the leak (e.g., automated back-porting, 
regression-testing methods) (Ye et al., 2021). The 
overall trust in this case would be strengthened that 
the patches work over different versions of the 
dependency graph. 
Future work is supposed to focus on modeling of 
context-aware dependencies. The risk of 

vulnerabilities is often determined not only by the 
vulnerable part but also by the way it is used in 
different projects, which has been demonstrated in 
different-project defect prediction studies 
(Zimmermann et al., 2009). Using hybrid 
reachability models, it would be possible to combine 
dependency metadata and execution traces specific to 
their usage to create impact evaluations of the 
vulnerabilities that are specific to the particular 
project and are therefore tailored and the most 
accurate. 
Last but not least, the incorporation into the CI/CD 
(Continuous Integration and Continuous Delivery) 
pipelines offers a way leading to the defense 
mechanism of the automated real-time type. The 
hybrid reachability model could be the one that 
would be the most efficient in terms of the cost and 
time by reducing the window of exposure to 
vulnerabilities and ceasing the progression of the 
vulnerabilities that are yet to be coded to be in the 
production (Chen, 2017). The continuous delivery 
practices are the ones that put the most importance on 
the speedy and frequent deployments (Chen, 2017). 
When put together these routes show how to get to 
very automated, scalable, and context-aware hybrid 
reachability frameworks that would not only take 
care of detection but also provide proactive 
remediation and long-term security measures. 
 

6. CONCLUSION 
The hybrid reachability analysis has greatly 
improved the process of vulnerability detection and 
ranking in open-source software. On one hand, 
dynamic methods give accurate results, but they are 
not able to cover all the areas, meanwhile, the static 
methods cover the whole codebase but they have a 
lot of false positives. The union of static graphs and 
dynamic execution traces presents a smooth method 
that reduces noise, increases validity, and enhances 
vulnerability risk evaluation. The experimental 
findings show that the hybrid methods are more 
accurate and offer more scalability to the reachable 
vulnerability assessments in different OSS 
ecosystems than the solely static or dynamic 
methods. Hybrid reachability analysis will be one of 
the major drivers of the development of automated 
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software assurance; since the security problems are 
constantly rising in number and their characteristics 
are getting more complicate and dynamic. 
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