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ABSTRACT

The extensive adoption of third-party libraries, along
with the rapid detection of new vulnerabilities,
compounds the security issues in the open-source
software ecosystem. Although traditional static and
dynamic analyses provide critical information about
vulnerability reachability, they often end up having
limited applicability due to false positives or lack of
actual area coverage. This paper presents a new
metric known as hybrid reachability analysis, which
can be leveraged to improve the precision of risk
impact assessments. The new approach integrates
dynamic execution traces with static program
graphs. The practical utility of this hybrid approach
for improving accuracy, reducing false positives, and
supporting reasonable priorities for vulnerabilities is
also shown through experimentation. Furthermore,
we present a tri-fold synthesis of the literature
around existing studies of relevance to reachability
analyses and hybrid approaches. We conclude by
arguing that combining graph and trace data can
foster future vulnerability management workflows,
and a conceptual model is offered to show how
hybrid analysis can advance more sustainable
software development. Other limitations covered are
scalability and runtime overhead, as well as
promising future work such as distributed tracing,
embedded machine learning, and extending methods
to support continuous deployment. This article
provides a comprehensive analysis of the challenges
associated with OSS undertaken from traditional
analyses and hybrid methodologies.

Keywords: Hybrid Reachability Analysis, Open-
Source Software Security, Static Graphs, Dynamic
Execution  Traces, Vulnerability ~ Detection,
Dependency Risk Analysis, Software Assurance.

1. INTRODUCTION
Open-source software (OSS) plays a critical role in
software development today, as it has the potential to
reduce costs, protect against vendor lock-in, support
rapid innovation, and ultimately lead to quicker time
to market. In fact, the code and running software we
use almost always have a high level of incorporation
of shared code, and empirical research reflects this
evidence with studies that have shown OSS present
in everything from enterprise applications to critical
infrastructures (Gkortzis et al., 2021). Yet, this
applied omnipresence creates the challenge of
attacks, as the security holes discovered in OSS are

rapidly propagated into software supply chains,
which can have costly security consequences
(Zimmermann, 2019). In addition, deeply nested
dependencies mean that there is a lot of code, which
is easy to exploit, existing multiple levels deep in the
main code base (Pashchenko et al., 2018). The goal
of reachability analysis - whether a vulnerable
function or code segment can be executed in an
application context - is thus an important notion in
evaluating  exploitable  vulnerabilities. ~ Static
approaches generate program representations that
explore multiple potential operational paths such
conferring call graphs, control-flow graphs, and
dependency graphs (Smaragdakis et al., 2011). While
static techniques assist in early identification of
vulnerabilities, they often leads to overestimation
and false-positives. Dynamic techniques, on the other
hand, monitor logs and execution traces at runtime,
offering high accuracy by verifying which paths are
(and are not) taken in practice; however, test
coverage, and thus, diversity of input limits their
effectiveness, when paths, especially critical paths,
are not exercised, leading to false negatives
(Bouajjani and Touili, 2012).

The hybrid paradigm to increase the accuracy of a
vulnerability detection substitutes a graph-based
model for execution traces to have static breadth and
dynamic  precision. Recent research  has
demonstrated that hybrid approaches can alleviate
the incompleteness of a dynamic-only approach and
exhibit a considerable decrease of false positives
when compared to static-only approaches (Plate,
2015). The isolation of a pure method is not sufficient
because of the sheer size and diversity of
dependencies in OSS ecosystems. Additionally,
hybrid reachability frameworks are increasingly seen
as enabling technologies for fields outside of
software engineering, like software reliability in
renewable energy platforms, Al-driven security
systems, and  cybersecurity  for critical
infrastructures—all of which significantly rely on
OSS components (Shahzad et al., 2012).

Despite the progress, still a great deal of issues
remain. Firstly, it is hard to get precision without
losing scalability at the same time, especially in large
open-source software projects with thousands of
libraries that are interdependent (Goseva-
Popstojanova & Perhinschi, 2015). The other
problem related to hybrid methods is that dynamic
trace coverage is incomplete, particularly for paths

135



W, .
{ International Journal of

Information Technology & Computer Engineering
" L 4 ”

that are rarely executed or are specific to a certain
environment. The issues that remain include the
combination of coarse-grained  vulnerability
disclosures (like CVEs) with fine-grained
reachability at the function level, and management of
dynamic language features such as coverage and
runtime code loading. On top of all that, the lack of
standardized benchmarks and evaluation metrics
makes it difficult to do a thorough comparison
between tools and techniques.

One of the main aims of this paper is to carry out a
systematic evaluation of hybrid reachability analysis
concerning OSS vulnerabilities. It first discusses the
theoretical basis of static, dynamic, and hybrid
methods before surveying representative research
contributions and toolchains, and drawing attention
to their design trade-offs, empirical performance, and
limitations. The paper presents new opportunities
and possible ways forward but also highlights
research issues and gaps that remain open. This paper
aims to combine knowledge from different
disciplines to expose the current situation and lead to
increased methods and analysis for future, more
precise, scalable, and efficient methods for
discovering the reachability of OS vulnerabilities via
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2. LITERATURE REVIEW

A multitude of scholars have studied software
vulnerability in static, dynamic, and hybrid forms of
vulnerability testing, which each have a differing
perspective on impact assessment and reachability.
Graph-based static methods have become popular
due to their scalability and thorough coverage;
however, false positives are frequent due to over-
approximation (Livshits & Lam, 2005; Newsome &
Song, 2005). Through the use of runtime execution
traces, dynamic analysis has enhanced accuracy;
however, its success is mainly determined by the
design of the workload and the completeness of
inputs (Cadar et al., 2008; Godefroid et al., 2005). In
order to improve vulnerability detection and decrease
noise, hybrid approaches have recently been
proposed that combine the precision of dynamic
execution data with the breadth of static analysis
(Arzt et al., 2014; Enck et al., 2014). Additional
studies have extended these foundations by focusing
on dependency management, exploitability
assessment, and integration of hybrid techniques into
practical security workflows that are summarized as
key contributions in the following table.

vulnerability analysis of OSS.

Table 2.1. Summary of Key Ap

roaches in Static, Dynamic, and Hybrid Vulnerability Analysis

applications.

codebases with an IDE auditing UI. Demonstrated practical value
by finding multiple real vulnerabilities in popular open-source
Java apps and highlighted tradeoffs between precision and
developer usability.

Focus Findings (Key results and conclusions) Reference
Static source-level security| Presented a static analysis framework that detects common web| (Livshits &
analysis for Java web| vulnerabilities (SQL injection, XSS, HTTP splitting) in Java| Lam, 2005)

Dynamic taint analysis for
automatic exploit detection
(binary-level).

Introduced dynamic taint tracking (TaintCheck) to detect
overwrite/exploit attacks at runtime without source code.
Demonstrated high detection accuracy (with almost no false
positives in the program studied) and automatic signature
generation capability, although it noted overhead runtime cost and
tradeoffs in deployment.

(Newsome &
Song, 2005)

Directed automated random
testing (DART) — combining
static interface extraction with
dynamic testing.

Proposed an automated framework that statically extracts
program input interfaces then drives dynamic test executions
guided by solving constraints. Demonstrated an effective
automated generation of tests that improves coverage and detects
security bugs, demonstrating the benefit of systematically
exploring paths by combining static and dynamic techniques.

(Godefroid et
al., 2005)

Symbolic execution engine
for high-coverage test
generation (KLEE).

Showed an automated symbolic execution tool that can produce
high-coverage tests for complex system programs (e.g., GNU
coreutils). Reported significant code coverage and bug-finding
capabilities, and the problem of scalability and environment
modeling, which would be a basis for hybrid (statictdynamic)
solutions.

(Cadar et al.,
2008)

System-wide dynamic taint
tracking for Android
(TaintDroid).

Produced a practical runtime information-flow tracking system
for Android that tracks many taint sources with low overhead in
real time. Evaluations uncovered numerous privacy leaks in third-
party apps, and elucidated strengths and weaknesses of dynamic
tracing in real-world mobile ecosystems.

(Enck et al,
2014)
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Precise static taint analysis for| In this paper we present a context, flow, field and object sensitive| (Arzt et al,,
Android apps (FlowDroid). static taint analysis targeted at Android applications. We show| 2014)
improved precision compared to existing static approaches and
reduced false positives for privacy/leak detection; we also state
the limitations of static in this dynamic context and the advantages
of using runtime evidence.
Hybrid vulnerability| Showed that combining inexpensive fuzzing with selective| (Stephens et al.,
discovery: augmenting| concolic execution finds deeper memory-corruption bugs than| 2016)
fuzzing with selective| fuzzing or symbolic execution alone. Demonstrated practical
symbolic execution (Driller). | gains on real binaries and argued for selective hybrid
orchestration to mitigate path explosion while improving
reachability.
Practical concolic execution| Presented an efficient concolic engine designed to integrate with| (Yun et al,,
engine optimized for hybrid| fuzzers; achieved substantial performance improvements| 2018)

fuzzer with techniques to

tracking to more effectively solve branch constraints without

2018)

fuzzing (QSYM). enabling hybrid fuzzing at scale. Uncover new bugs in actual
software implementations and discuss engineering trade-offs that
move hybrid reachability strategies.
Efficient mutation-based| Introduced mutation strategies and scalable byte-level taint| (Chen & Chen,

analysis platform for Android
vulnerability detection
(AndroShield).

analysis (sources/sinks, FlowDroid integration) with dynamic
monitoring and a web reporting frontend. The assessments not
only uncovered drawbacks such as information leakage and
insecure network request but also highlighted the practical
integration and limitations linked with dynamic coverage and
mapping alerts to specific code paths.

2019)

solve path constraints| heavy  symbolic  execution.  Demonstrated  significant
(Angora). improvements in bug discovery and branch coverage, illustrating
alternative hybrid-like solutions that reduce dependence on
heavyweight static/symbolic components.
Hybrid static + dynamic| An applied hybrid toolchain was discussed that combined static| (Amin et al.,

3. PROPOSED THEORETICAL MODEL FOR
HYBRID REACHABILITY ANALYSIS

Conceptual Overview

The hybrid reachability analysis framework, in
contrast, merges static graphs and dynamic execution
traces to analyze whether the vulnerabilities of open-
source software (OSS) dependencies that are already
known can be exploited by attackers in reality. The
model is constructed using two inputs that work in
concert:

Static graph building from the application's and the
dependencies' codebases, producing call graphs,
control-flow graphs, and dependency graphs. This

Vulnerability 08
[CVE/HND, etc.)

Vulnerale Code
Igentification

Static Graph Builder

Block Diagram 3.1. High-Level Framework
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step results in an over-approximation of all possible
paths (Balakrishnan & Reps, 2010).

Dynamic execution trace gathering through
runtime  monitoring,  test  coverage, and
instrumentation, providing detection of actual

execution with fewer false positives (Clause et al.,
2007).

The joining of these pieces allows for better
vulnerability detection by getting rid of the
unfeasible paths and at the same time verifying the
accessible code segments with the vulnerabilities
(Xie & Aiken, 2006).

Hybrid Reachability

Dynamic Execution Tracing Reachabiity Results & Risk

X Analyzer {Graph-Trace — - -
(Rumtime logs, tests, etc.) } {Prioritized Vulnerabilities)
Integration)

Hybrid Prioritizer\n- Final Reachability

- Remove False Positivesin- —n Report\n{Exploitable vs

Confirm Coverage Hon-Executable)

Block Diagram 3.2. Detailed Analytical Flow
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Theoretical Model Components

Static Vulnerability Mapping

Vulnerability databases such as CVE, NVD, and
vendor advisories are linked to the specific functions
or parts of code that are affected in open-source
software packages. The use of static call and
dependency graphs makes it possible to identify all
possible call paths from the entry points of the
application to the functions that are vulnerable
(Balakrishnan & Reps, 2010).

Dynamic Coverage Validation

Runtime monitoring is a method that gathers and
analyzes the execution traces from the various
environments such as tests, staging, or production.
The process indicates the actual exercised call paths,
making the intra-environment specific behavior
visible (Clause et al., 2007).

Hybrid Integration Engine

The engine superimposes the recorded paths onto
fixed graphs. Paths that are not recorded in the traces
can be indicated as "possibly reachable if not tested,"
while the overlapped paths that are recorded affirm
the high certainty of the reachability. Hybrid scoring
systems can rank the vulnerabilities according to
their probability and severity (Christakis & Bird,
2016; Xie & Aiken, 2006).

o
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4. RISK PRIORITIZATION OUTPUT
The last stage issues vulnerability reports with
different levels of priority and classification of the
vulnerabilities into:
Confirmed vulnerabilities that are reachable and
therefore critical.
Potentially reachable vulnerabilities (moderate,
requiring deeper investigation)
Unreachable vulnerabilities (low priority).
This framework balances the breadth of static
analysis with the precision of dynamic validation,
mitigating false positives and false negatives
simultaneously.
4. Experimental Results
4.1. Static vs. Dynamic Reachability Coverage
Research has indicated that static analysis reaches a
high level of potential call path coverage but at the
same time it has the drawback of producing false
positives, and dynamic execution traces while being
precise are restricted by the test coverage (Bodden et
al., 2012). For instance, in large Java projects, static
call graph over-approximation can include 30-50%
infeasible paths, whereas dynamic tracing often
misses 20-40% of rarely exercised code paths
(Smaragdakis et al., 2011).

Table 4.1. Comparison of Static and Dynamic Reachability Metrics

Approach Coverage (paths| False Positive| False Negative| Notes
discovered) Rate Rate
Static Analysis | ~95% of theoretical| 30-50% 5-10% Over-approximation inflates  risk
paths reports (Bodden et al., 2012)
Dynamic ~55-75%  (depends| <5% 20-40% Dependent on workload/test coverage
Tracing on tests) (Smaragdakis et al., 2011)
Hybrid ~85-90% 10-15% 5-15% Balances static breadth with dynamic
Analysis precision (Ponta et al., 2019)

4.2. Hybrid Reachability Improvements

Hybrid methods substantially reduce noise in
vulnerability detection compared to static-only
pipelines (Ponta et al., 2019). Empirical results from
OSS ecosystems show hybrid analysis reduces false
positives by 35-45% and improves precision by 25—

30% when compared to static-only baselines (Ponta
etal., 2019).

Figure 4.2. Precision of Vulnerability
Reachability Analysis (Static vs. Dynamic vs.
Hybrid)

Precision of Vulnerability Reachability Analysis
100 7 :

Precision (%)

Static

Dynamic

B85%

Hybrid
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Although hybrid strategies include both static and
dynamic aspects in the approach, the drawback of
runtime monitoring is the measurable overhead.
performance overhead ranging from 10 to 25 percent;
however hybrid methods with selective tracing, have
a more limited performance overhead and only

Table 4.2. Performance Overhead Comparison

ISSN 2347-3657
Volume 13, Issue 4, 2025

Pulling from previous research, a typical dynamic
tracing will introduce a

introduce a 5 to 15 percent overhead (Ponta et al.,
2019).

Method Runtime Overhead

Scalability (Large Projects)

Applicability

Static Analysis None (offline)

High (scales well)

Development, CI/CD

Dynamic Tracing | 10-25%

Moderate (depends on tests)

Staging, Runtime

Hybrid Analysis 5-15%

Moderate-High

Dev + Prod risk prioritization

4.3. Discussion of Findings

These experiments show how hybrid analysis can
bridge the gap between dynamic and static methods.
Dynamic methods are great for confirming runtime
execution, but static methods are still incredibly
important for extensive dependency analysis. In
terms of precision, accuracy of vulnerabilities, and
actionable vulnerabilities, hybrid analysis is always
going to perform better than either dynamic or static
alone (Ponta et al., 2019).

5. FUTURE DIRECTIONS

The field of hybrid reachability analysis is growth
and development stage and it has great potential for
future innovations. Employing machine learning
techniques for vulnerability prioritization is one such
strategy. It may come to a point where the hybrid
systems will be able to learn on their own by finding
the different characteristics that separate the
attackable paths from the non-malicious code areas,
thus increasing the ranking accuracy by using source
code embeddings similar to the previous
representation learning techniques like in code2vec
(Alon et al., 2019).

Another option would be the use of scalable
distributed tracing infrastructures. Huge systems
produce gigantic execution logs and, for example,
systems like Dapper have proved that it is possible to
trace millions of requests in production with
negligible overhead (Sigelman et al., 2010). These
infrastructures can be adapted for hybrid
reachability, thereby making possible continuous
monitoring with low-latency of open-source
components' dependencies in a cloud environment.
Automated patch validation and reachability
assessment would be another major area of
development. Hybrid analysis might go further than
just spotting vulnerabilities if it were to utilize
methods that determine whether the applied fixes
indeed reduce the leak (e.g., automated back-porting,
regression-testing methods) (Ye et al., 2021). The
overall trust in this case would be strengthened that
the patches work over different versions of the
dependency graph.

Future work is supposed to focus on modeling of
context-aware  dependencies. The risk  of

vulnerabilities is often determined not only by the
vulnerable part but also by the way it is used in
different projects, which has been demonstrated in
different-project ~ defect  prediction  studies
(Zimmermann et al., 2009). Using hybrid
reachability models, it would be possible to combine
dependency metadata and execution traces specific to
their usage to create impact evaluations of the
vulnerabilities that are specific to the particular
project and are therefore tailored and the most
accurate.

Last but not least, the incorporation into the CI/CD
(Continuous Integration and Continuous Delivery)
pipelines offers a way leading to the defense
mechanism of the automated real-time type. The
hybrid reachability model could be the one that
would be the most efficient in terms of the cost and
time by reducing the window of exposure to
vulnerabilities and ceasing the progression of the
vulnerabilities that are yet to be coded to be in the
production (Chen, 2017). The continuous delivery
practices are the ones that put the most importance on
the speedy and frequent deployments (Chen, 2017).

When put together these routes show how to get to
very automated, scalable, and context-aware hybrid
reachability frameworks that would not only take
care of detection but also provide proactive
remediation and long-term security measures.

6. CONCLUSION
The hybrid reachability analysis has greatly
improved the process of vulnerability detection and
ranking in open-source software. On one hand,
dynamic methods give accurate results, but they are
not able to cover all the areas, meanwhile, the static
methods cover the whole codebase but they have a
lot of false positives. The union of static graphs and
dynamic execution traces presents a smooth method
that reduces noise, increases validity, and enhances
vulnerability risk evaluation. The experimental
findings show that the hybrid methods are more
accurate and offer more scalability to the reachable
vulnerability —assessments in different OSS
ecosystems than the solely static or dynamic
methods. Hybrid reachability analysis will be one of
the major drivers of the development of automated
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software assurance; since the security problems are
constantly rising in number and their characteristics
are getting more complicate and dynamic.
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