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Abstract 
In this study, we provide a new method for interpreting EEG data collected from drivers during a driving simulator. As indicators of brain 

nonlinear dynamics, we zeroed in on the Hurst exponent, Shannon entropy, and fractal dimension. While the Hurst exponent shows 

learning patterns in memory retention and habit development, the Shannon entropy and fractal dimension change during driving 

condition changes. These trends are statistically significant. These results provide new opportunities for evaluating driver performance, 

detecting safety hazards, and expanding our knowledge of the non-linear dynamics of human cognition in relation to driving and beyond, 

and they imply that the tools of Non-linear Dynamical (NLD) Theory can be used as indicators of cognitive state and changes in driving 

memory. Our research shows that NLD techniques have the ability to shed light on brain states and system variations, which opens the 

door for their incorporation into existing ML and Deep Learning models. Beyond its use in driving apps, this integration has the potential 

to enhance cognitive learning, which in turn boosts productivity and accuracy. 
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1. Introduction 

Driving is a complex skill that requires many cognitive 

capabilities. With age and experience, these skills evolve over 

time. The association between cognitive ability and driving 

performance is well established [1]. Experience has a significant 

impact on how cognitive capacities develop, resulting in 

increases in several areas, such as response time and decision- 

making ability [2]. Individuals develop a level of familiarity 

and experience with particular stimuli or tasks via repeated 

exposure, which results in quicker reaction times [3]. This 

is frequently seen in activities such as driving, athletics, or 

video games, where seasoned players react more quickly than 

inexperienced players. Because the brain may automate some 

cognitive functions with experience, reaction times shorten as 

neural pathways become more effective. However, although 

the experience can enhance cognitive abilities, age-related 

changes can also have a significant impact on cognitive function 

[4]. Certain cognitive abilities, such as memory, attention, and 

executive function, may deteriorate with age [5]. To improve 

cognitive performance and treat age-related cognitive decline 

and neurodegenerative illnesses, it is crucial to understand the 

interaction between experience, aging, and cognitive capacities. 

 

EEG analysis has been used to study driving performance in 

a variety of ways, including measuring drivers' brain activity 

while they are taking part in a simulated or real driving test to 

identify changes in brain activity linked to fatigue, distraction, 

and other factors that can impair driving performance [6-8]. 

The study of brain oscillations is another area of EEG analysis 

in simulated driving [9]. Rhythmic patterns of brain activity 

in many frequency bands, including the alpha, beta, theta, and 

gamma bands, are represented by neural oscillations. Decreased 

alpha oscillations may indicate higher alertness, while increased 

theta oscillations may indicate cognitive strain or workload 

[10]. The complexity, regularity, and scaling characteristics of 

brain activity can also be shown by measurements obtained 

from EEG data, such as Hurst exponent, Shannon frequency, 

and fractal dimension. These measurements can be used in the 

context of simulated driving to evaluate the degree of cognitive 

engagement, cognitive load, and effectiveness of information 

processing. 

 

Nonlinear dynamics is a branch of mathematics that studies 

systems with complicated behaviours that are sensitive to 

tiny changes in the initial circumstances. It is concerned with 

the investigation of nonlinear equations and the behaviour of 

systems, which cannot be simply explained using Newtonian, 

Hamiltonian, or other linear models. The brain functions as a 

nonlinear system [11]. This is due to the fact that the brain is 

made up of billions of neurons that are intricately intertwined. 

Small changes in the activity of one neuron can have a huge 

impact on the activity of neighbouring neurons. This can result 
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in behavioural, perceptual, and cognitive alterations [12]. 

Nonlinear properties are frequently observed in brain activity 

data, such as electroencephalography (EEG) or functional 

magnetic resonance imaging (fMRI) [13]. Linear models may 

not be sufficient to capture the underlying dynamics or extract 

meaningful information from such data. 

 

Hurst exponent, a measure of temporal dynamics' "long-term 

memory," has also been investigated in recent years as a tool 

for EEG signal interpretation [14]. The Hurst exponent is a 

mathematical measure used to analyse the long-term memory 

and predictability of a time series [15]. The Hurst exponent 

is used in EEG signal analysis to measure the fractal scaling 

characteristics of the signal, which are connected to the long- 

range correlations and self-similarities of the time series. By 

examining the complexity of the EEG signal, the Hurst exponent 

can be used to distinguish between healthy and pathological 

brain states [16]. For instance, research has revealed that the 

Hurst exponents of Alzheimer’s patients’ EEG signals are lower 

than those of healthy controls, indicating a loss of complexity 

and long-range correlations in brain activity [17]. The Hurst 

exponent has also been found to be altered in various neurological 

conditions including Parkinson's disease and epilepsy [18,19]. 

 

Entropy is a different approach that can be used to extract regular 

information from EEG datasets [20]. Entropy is a nonlinear 

property that measures the degree of randomness in a system. 

Because it cannot be evaluated by frequency relative power 

derived from linear analysis, it is a useful tool for classifying 

mental states based on the degree of temporal and spectral 

irregularity in the EEG signal [21]. 

 

The complexity and self-similarity of the EEG data were 

measured mathematically using the fractal dimension in EEG 

analysis. It sheds light on the temporal structure and scaling 

characteristics of the electrical activity of the brain. Fractal 

dimension is derived from the concept of fractals, which are 

geometric objects that exhibit self-similarity at different scales. 

It is calculated by splitting the signal into smaller segments and 

calculating the fluctuation within each segment. The complexity 

of the signal increases with fractal dimension. 

 

In EEG analysis, fractal dimension has been used to investigate 

a number of cognitive processes, such as decision-making, 

memory, and attention [22]. In addition, they have been used 

for biomedical signal processing [23,24]. For instance, research 

has revealed that EEG signals from people with attention deficit 

hyperactivity disorder (ADHD) have higher fractal dimensions 

in their EEG signals than those without ADHD [25]. This shows 

that the increased complexity of brain activity may be linked 

to ADHD. Additionally, research on brain illnesses, such as 

Schizophrenia, Depression and Alzheimer's disease, has made 

use of the fractal dimension [26]. For instance, research has 

revealed that EEG signals from individuals with Alzheimer's 

disease are less fractal than those from individuals without 

Alzheimer’s disease [27]. This suggests that Alzheimer's disease 

may be linked to a decline in cognitive complexity. 

 

 

Figure 1: Four Environment Conditions for the Driving Simulator 
 

In this study, we investigated the relationship between 
age, driving experience, and cognitive processes in driving 
performance by analysing EEG data collected from drivers 
and students during a simulated driving test and an on-road 
experiment. Our approach focused on utilizing nonlinear 
dynamical parameters to unveil the state of cognition and 
driving experience embedded in the EEG data. Similar 
analyses were conducted for EEG & fMRI brain signals 
solar-cycle activities and also nano-material fabrication 
[28-30]. Specifically, we computed the Hurst exponent 
to reveal the retention of memory and experience, while 

the Fractal Dimension and Shannon Entropy shed light on 
the complexity of neuronal firing and ease of cognitive 
processes. By leveraging these nonlinear parameters, we 
gained insights into the effects of age, driving experience, 
and task difficulty on driving ability. 

 
2. Materials & Methods 
Ten male three-wheeler drivers were selected for this cross- 
sectional study from five distinct three-wheeler stands 
(Autorickshaw stands) in Mumbai, India. Participants in the 
study must possess a valid driving license, have at least two 
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k= t0 

w i= t0 

years of driving experience, and log at least five hours of 
driving each day. 

 
The experiment was conducted on drivers in the Ergonomics 
Laboratory of the National Institute of Industrial Engineering 
(NITIE), Mumbai, using a fixed three-wheeler driving 
simulator (Technotrov Systems Pvt. Ltd., Maharashtra, 
Mumbai; see Fig. 1). This driving simulator is an exact 

reproduction of a three-wheeled vehicle, complete with all 
its characteristics. For this experiment, four different traffic 
situations were selected: low traffic in cities, high traffic in 
cities, and low traffic on highways. All subjects had 3 min 
of practice time to become accustomed to the system and 
procedure, followed 

 
by 15 min of EEG recording. 

 

 

Figure 2: Photo of a Subject in the 3-Wheeler Driving Simulator with DSI-7 Wireless EEG Headset Mounted on Head 
 

The experiments consisted of four EEG sessions, each lasting 

approximately four hours, which included four different 

environments and four traffic conditions for each subject. 

Thirteen 3-wheeler driver EEG data were collected on the road 

Where, S is the standard deviation of the independent variable 

x_i within the window w, k is a constant, w is the breadth of the 

temporal window, and 

1 t +w+1 2 

during high and low traffic conditions for 5 min. Wearable 

Sensing DSI-7 EEG Headset (Figure 2) was used to collect data 

from 20 subjects, which is a research-grade EEG sensing device 

with 8 dry-application sensors, including one for reference (LE) 

| (𝑡𝑡O, 𝑤𝑤) |2 � 

With average as, 

w – 1 

0 

i= t0 
�𝑥𝑥i — 𝑥𝑥 (𝑡𝑡O, 𝑤𝑤)� (2) 

and seven for recording brain wave activity (F3, F4, C3, C4, P3, 

Pz, P4) [31]. The sampling frequency was set to 300 Hz for the 

EEG data streamer. The data files that were used for the analyses 

(𝑡𝑡O, 𝑤𝑤) � 1 ∑t0+w+1 𝑥𝑥i 

And R, the range in the time-series, defined as 

(3) 

reported below for all experiments can be found at https://osf. 
R(𝑡𝑡 , 𝑤𝑤) � 𝑚𝑚a𝑥𝑥 � 𝑚𝑚 � 𝑤𝑤𝑦𝑦 (𝑡𝑡 , 𝑤𝑤) — 𝑚𝑚𝑚𝑚𝑚𝑚 � 𝑚𝑚 � 𝑤𝑤𝑦𝑦 (𝑡𝑡 , 𝑤𝑤)

 
io/8ksyq. O 1 i  O 1 i  O 

(4) 

2.1 Data Pre-Processing 

EEGLab in MATLAB was used to perform EEG pre-processing 

using the PREP pipeline [32]. Detrending was carried out 

to eliminate any cyclical or other patterns and calibrate the 

With the new variables y
i
, i=1,2,3,…,w as, 

𝑦𝑦i(𝑡𝑡O, 𝑤𝑤) � ∑t0+i+1�𝑥𝑥k — 𝑥𝑥 (𝑡𝑡O, 𝑤𝑤)� (5) 

thresholds. To eliminate linear trends, a 1 Hz high pass filter was 

applied [36]. A 50 Hz notch filter was used to eliminate the harsh 

spectral peaks at 50 Hz. For subsequent processing and feature 

extraction, the F4 electrode was selected for all individuals 

based on the spectral decomposition and signal quality. 

 

2.2 Estimation of Hurst Exponent: Nonlinear Dynamical 

Features 

The Hurst Exponent, which depends on the power law [33], was 

calculated using the Rescaled Range method (R/S) [34]. 

( R/𝑆𝑆 )w � k𝑤𝑤H (1) 

(R/S) was calculated for various time instances, averaged 

for epochs, and plotted against a log-log axis. The value of 

H, which ranges from 0 to 1, was determined using the linear 

regression slope. A time series with a value of H = 0.5 exhibits 

pure random walking or Brownian motion. On the other hand, 

H between 0.5 and 1.0 indicates a stable time series. A higher H 

indicates that the time series has a longer memory and a higher 

long-term positive autocorrelation or more frequent or persistent 

deviations. H between 0 and 0.5 indicates anti-persistence, 

whereas H is more or less equal to 0.5, indicating a random time 

series [35]. The Hurst exponent was calculated for each of the 

subjects’ 16 sessions over the 10 participants' EEG time series. 

∑ 
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i=0 

2.3 Estimation of Fractal Dimension 

Fractal dimension is a mathematical notion that measures the 

degree to which a self-similar entity occupies space and is used 

to measure the complexity of a self-similar object. The box- 

counting method is a typical method for estimating an object's 

fractal dimension. It consists of covering the element with a grid 

of boxes and counting the number of boxes containing a portion 

of the element. The following is the relationship between the 

number of boxes N and the box size r: 

 
N ~ r ( -D ) (6) 

2.4 Estimation of Shannon Entropy 

Because brain activity is a highly dynamic and complicated 

process involving the interplay of numerous separate neural 

networks functioning at various frequencies and with differing 

degrees of synchronization, EEG signals are non-linear, non- 

stationary, and random. As a result, numerous methods for 

nonlinear analysis, including entropy, have been proposed to 

effectively capture the randomness of nonlinear time series data 

[34]. 

 
Let X be a set of finite discrete random variables X= {x , x , x , 

 

where the symbol "~" means "proportional to.” Taking the 

…., x
m
}, then Shannon entropy, S(X), is defined as: 

1  2  3 

logarithm of both sides of the equation yields S(X) � —c ∑m (𝑥𝑥i) ln 𝑝𝑝(𝑥𝑥i) (8) 
 

log N ~ -D log r (7) 

 
The slope of the line obtained by plotting log N against log r 

Where c is a positive constant acting as a measuring unit and 

p (x
i
) is probability of x

i 
∈ X, satisfying: 

gives an estimate of the fractal dimension D. m 
i=0 (𝑥𝑥i) � 1 (9) 

Consider a Koch curve, which is a fractal structure created by 

constantly adding smaller equilateral triangles to each side of an 

original triangle. The fractal dimension of the Koch curve was 

approximately 1.26. The fractal dimension can be estimated using the 

box-counting approach by covering the curve with a grid of boxes 

and counting the number of boxes that contain a part of the curve 

for different box sizes. Using the above equation, the relationship 

between the number of boxes and the box size can then be used to 

estimate the fractal dimension. 

In general, more entropy denotes chaotic or more complex 

systems, and hence less predictability. 

 

3. Results and Conclusion 

The values for H, D & S for all the subjects are summarized 

in the Table 1 and Pearson Correlation Matrix between all the 

variables are plotted in Fig 3 below. 

 

Subject Session S H D Age  Driving 

Experience 

1 DAY_DRIVING_A 17.62 0.69 1.32 44  24 

DAY_DRIVING_B 17.27 0.73 1.49 
 

DAY_DRIVING_C 17.65 0.74 1.43 
 

DAY_DRIVING_D 17.72 0.75 1.46 
 

FOG_DRIVING_A 16.91 0.78 1.64 
 

FOG_DRIVING_B 17.63 0.73 1.55 
 

FOG_DRIVING_C 17.16 0.74 1.62 
 

FOG_DRIVING_D 17.11 0.77 1.70 
 

NIGHT_DRIVING_A 17.30 0.77 1.63 
 

NIGHT_DRIVING_B 16.83 0.73 1.48 
 

NIGHT_DRIVING_C 17.04 0.78 1.64 
 

NIGHT_DRIVING_D 16.80 0.76 1.66 
 

RAIN_DRIVING_A 16.97 0.73 1.40 
 

RAIN_DRIVING_B 16.79 0.75 1.59 
 

RAIN_DRIVING_C 17.09 0.77 1.61 
 

RAIN_DRIVING_D 15.91 0.79 1.62 
 

2 DAY_DRIVING_A 18.02 0.73 1.38 53  17 

DAY_DRIVING_B 17.98 0.75 1.30 
 

DAY_DRIVING_C 18.68 0.76 1.47 
 

DAY_DRIVING_D 18.59 0.72 1.50 
 

FOG_DRIVING_A 18.41 0.72 1.32 
 

FOG_DRIVING_B 17.61 0.71 1.55 
 

FOG_DRIVING_D 18.94 0.74 1.37 
 

∑ 
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 NIGHT_DRIVING_A 18.98 0.68 1.43   

NIGHT_DRIVING_B 15.48 0.68 1.58 

NIGHT_DRIVING_C 14.61 0.70 1.46 

NIGHT_DRIVING_D 17.62 0.68 1.61 

RAIN_DRIVING_A 17.08 0.74 1.39 

RAIN_DRIVING_B 16.99 0.75 1.44 

RAIN_DRIVING_C 16.99 0.75 1.44 

RAIN_DRIVING_D 18.65 0.71 1.40 

3 DAY_DRIVING_A 13.73 0.71 1.26 39 21 

DAY_DRIVING_B 17.35 0.75 1.55 

DAY_DRIVING_C 17.20 0.73 1.49 

DAY_DRIVING_D 17.23 0.73 1.50 

FOG_DRIVING_A 17.66 0.71 1.44 

FOG_DRIVING_B 17.17 0.73 1.56 

FOG_DRIVING_C 16.42 0.73 1.33 

FOG_DRIVING_D 17.37 0.72 1.52 

NIGHT_DRIVING_A 17.17 0.72 1.36 

NIGHT_DRIVING_B 17.01 0.76 1.61 

NIGHT_DRIVING_C 17.20 0.76 1.52 

NIGHT_DRIVING_D 17.13 0.75 1.50 

RAIN_DRIVING_A 17.31 0.68 1.46 

RAIN_DRIVING_B 17.21 0.75 1.49 

RAIN_DRIVING_C 17.35 0.78 1.49 

RAIN_DRIVING_D 17.03 0.77 1.55 

4 DAY_DRIVING_A 16.45 0.70 1.25 27 02 

DAY_DRIVING_B 17.66 0.74 1.36 

DAY_DRIVING_C 17.81 0.72 1.44 

DAY_DRIVING_D 18.00 0.70 1.29 

FOG_DRIVING_A 17.86 0.71 1.43 

FOG_DRIVING_B 17.88 0.67 1.30 

FOG_DRIVING_C 17.99 0.75 1.52 

FOG_DRIVING_D 18.37 0.73 1.32 

NIGHT_DRIVING_A 17.80 0.68 1.35 

NIGHT_DRIVING_B 17.77 0.68 1.55 

NIGHT_DRIVING_C 17.98 0.69 1.61 

NIGHT_DRIVING_D 18.01 0.71 1.26 

RAIN_DRIVING_A 17.80 0.74 1.47 

RAIN_DRIVING_B 17.74 0.69 1.63 

RAIN_DRIVING_C 18.02 0.69 1.33 

RAIN_DRIVING_D 17.98 0.68 1.48 

5 DAY_DRIVING_A 17.81 0.71 1.41 45 18 

DAY_DRIVING_B 16.36 0.76 1.55 

DAY_DRIVING_C 17.52 0.70 1.39 

DAY_DRIVING_D 17.36 0.75 1.56 

FOG_DRIVING_A 17.99 0.73 1.36 

FOG_DRIVING_B 17.74 0.73 1.29 

FOG_DRIVING_C 17.97 0.73 1.36 

FOG_DRIVING_D 17.83 0.73 1.35 

NIGHT_DRIVING_A 16.97 0.74 1.30 

NIGHT_DRIVING_B 17.68 0.74 1.42 
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 NIGHT_DRIVING_C 17.69 0.74 1.42   

NIGHT_DRIVING_D 17.66 0.74 1.36 

RAIN_DRIVING_A 18.02 0.71 1.43 

RAIN_DRIVING_B 17.74 0.69 1.34 

RAIN_DRIVING_C 18.22 0.71 1.45 

RAIN_DRIVING_D 17.85 0.72 1.32 

6 DAY_DRIVING_A 17.51 0.73 1.38 63 41 

DAY_DRIVING_B 17.50 0.74 1.33 

DAY_DRIVING_C 17.50 0.72 1.35 

DAY_DRIVING_D 17.51 0.72 1.32 

FOG_DRIVING_A 17.63 0.71 1.31 

FOG_DRIVING_B 17.61 0.71 1.55 

FOG_DRIVING_C 17.64 0.71 1.43 

FOG_DRIVING_D 17.72 0.76 1.54 

NIGHT_DRIVING_A 17.51 0.66 1.37 

NIGHT_DRIVING_B 17.49 0.72 1.41 

NIGHT_DRIVING_C 17.51 0.70 1.45 

NIGHT_DRIVING_D 17.62 0.68 1.61 

RAIN_DRIVING_A 17.86 0.74 1.39 

RAIN_DRIVING_B 17.93 0.75 1.40 

RAIN_DRIVING_C 17.96 0.74 1.41 

RAIN_DRIVING_D 17.96 0.73 1.36 

7 DAY_DRIVING_A 15.71 0.71 1.50 42 18 

DAY_DRIVING_B 15.71 0.73 1.45 

DAY_DRIVING_C 15.70 0.75 1.54 

DAY_DRIVING_D 15.71 0.67 1.32 

FOG_DRIVING_A 15.71 0.70 1.36 

FOG_DRIVING_B 15.71 0.73 1.22 

FOG_DRIVING_C 15.71 0.71 1.38 

FOG_DRIVING_D 15.71 0.67 1.38 

NIGHT_DRIVING_A 15.69 0.67 1.55 

NIGHT_DRIVING_B 15.71 0.71 1.23 

NIGHT_DRIVING_C 15.71 0.71 1.30 

NIGHT_DRIVING_D 15.71 0.67 1.34 

RAIN_DRIVING_A 15.70 0.68 1.45 

RAIN_DRIVING_B 15.71 0.70 1.46 

RAIN_DRIVING_C 15.70 0.70 1.49 

RAIN_DRIVING_D 15.70 0.74 1.49 

8 DAY_DRIVING_A 17.09 0.74 1.39 39 10 

DAY_DRIVING_B 17.85 0.75 1.35 

DAY_DRIVING_C 18.03 0.70 1.29 

DAY_DRIVING_D 18.05 0.70 1.31 

FOG_DRIVING_A 17.01 0.74 1.68 

FOG_DRIVING_B 17.17 0.75 1.64 

FOG_DRIVING_C 17.40 0.77 1.42 

FOG_DRIVING_D 17.52 0.75 1.41 

NIGHT_DRIVING_A 17.35 0.68 1.53 

NIGHT_DRIVING_B 16.89 0.68 1.62 

NIGHT_DRIVING_C 17.12 0.69 1.60 

NIGHT_DRIVING_D 17.22 0.75 1.64 
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 RAIN_DRIVING_A 17.34 0.70 1.35   

RAIN_DRIVING_B 17.18 0.69 1.36 

RAIN_DRIVING_C 17.44 0.73 1.47 

RAIN_DRIVING_D 16.95 0.71 1.61 

9 DAY_DRIVING_A 17.56 0.68 1.53 27 05 

DAY_DRIVING_B 17.65 0.69 1.29 

DAY_DRIVING_C 17.81 0.72 1.39 

DAY_DRIVING_D 16.83 0.72 1.50 

FOG_DRIVING_A 17.82 0.70 1.41 

FOG_DRIVING_B 17.71 0.72 1.43 

FOG_DRIVING_C 17.99 0.76 1.51 

FOG_DRIVING_D 18.01 0.74 1.33 

NIGHT_DRIVING_A 17.13 0.72 1.40 

NIGHT_DRIVING_B 17.57 0.71 1.38 

NIGHT_DRIVING_C 17.63 0.73 1.43 

NIGHT_DRIVING_D 17.62 0.69 1.31 

RAIN_DRIVING_A 17.77 0.70 1.46 

RAIN_DRIVING_B 17.84 0.72 1.31 

RAIN_DRIVING_C 17.84 0.68 1.32 

RAIN_DRIVING_D 18.01 0.75 1.36 

10 DAY_DRIVING_A 17.30 0.73 1.35 44 10 

DAY_DRIVING_B 17.48 0.71 1.28 

DAY_DRIVING_C 17.63 0.69 1.49 

DAY_DRIVING_D 17.44 0.70 1.33 

FOG_DRIVING_A 17.23 0.70 1.24 

FOG_DRIVING_B 17.21 0.72 1.35 

FOG_DRIVING_C 17.60 0.66 1.38 

FOG_DRIVING_D 17.61 0.70 1.31 

NIGHT_DRIVING_A 17.41 0.70 1.30 

NIGHT_DRIVING_B 17.33 0.70 1.49 

NIGHT_DRIVING_C 17.35 0.69 1.49 

NIGHT_DRIVING_D 17.77 0.68 1.31 

RAIN_DRIVING_A 17.10 0.71 1.42 

RAIN_DRIVING_B 17.17 0.70 1.38 

RAIN_DRIVING_C 17.63 0.72 1.55 

RAIN_DRIVING_D 17.67 0.69 1.56 

Table 1: Tabular data showing the variation in Shannon Entropy (S), Hurst Exponent (H) and Fractal Dimension (D) for 

the subjects for different sessions and difficulty levels. Sessions were divided into 4 sets comprising of different weather and 

traffic modes (Highway Low & High Traffic, City Low & High Traffic). Age and Driving Experience of the subjects were also 

recorded for review. 
 

We conducted an F-Test Two-Sample for Variances to examine 

the differences in variances between the variables under 

investigation. The p-values obtained for all pairwise comparisons 

of variables were found to be less than 0.05 as shown in Table 

2, indicating significant differences in variances between the 

variables. 
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 Subject S  Subject H  Subject D 

Mean 5.522012579 17.29931 Mean 5.52201258 0.719811 Mean 5.5220126 1.436101 

Variance 8.276411114 0.652137 Variance 8.27641111 0.000798 Variance 8.2764111 0.012073 

Observations 159 159 Observations 159 159 Observations 159 159 

df 158 158 df 158 158 df 158 158 

F 12.69121809  F 10370.592  F 685.51322  

P(F<=f) 

one-tail 

5.62503E-47  P(F<=f) 

one-tail 

6.436E-272  P(F<=f) 

one-tail 

8.31E-179  

F Critical 

one-tail 

1.300182044  F Critical 

one-tail 

1.30018204  F Critical 

one-tail 

1.300182  

 Environment S  Environment H  Environment D 

Mean 2.503144654 17.29931 Mean 2.50314465 0.719811 Mean 2.5031447 1.436101 

Variance 1.264230555 0.652137 Variance 1.26423055 0.000798 Variance 1.2642306 0.012073 

Observations 159 159 Observations 159 159 Observations 159 159 

df 158 158 df 158 158 df 158 158 

F 1.938596991  F 1584.11891  F 104.71287  

P(F<=f) 

one-tail 

1.92043E-05  P(F<=f) 

one-tail 

1.728E-207  P(F<=f) 

one-tail 

6.91E-115  

F Critical 

one-tail 

1.300182044  F Critical 

one-tail 

1.30018204  F Critical 

one-tail 

1.300182  

 Traffic Condition S  Traffic Condition H  Traffic Condition D 

Mean 2.496855346 17.29931 Mean 2.49685535 0.719811 Mean 2.4968553 1.436101 

Variance 1.264230555 0.652137 Variance 1.26423055 0.000798 Variance 1.2642306 0.012073 

Observations 159 159 Observations 159 159 Observations 159 159 

df 158 158 df 158 158 df 158 158 

F 1.938596991  F 1584.11891  F 104.71287  

P(F<=f) 

one-tail 

1.92043E-05  P(F<=f) 

one-tail 

1.728E-207  P(F<=f) 

one-tail 

6.91E-115  

F Critical 

one-tail 

1.300182044  F Critical 

one-tail 

1.30018204  F Critical 

one-tail 

1.300182  

Table 2: Tabular data showing the F-test Two-Sample for checking the variance between the independent variables (Subject, 

Simulator Traffic conditions and Environment conditions) and dependent variables (Shannon Entropy (S), Hurst Exponent 

(H) and Fractal Dimension (D). he p-values obtained for all pairwise comparisons of variables were found to be less than 

0.05, indicating significant differences in variances between the variables. 
 

Figure 3: Pearson Correlation Matrix for H, D, S, Driving Experience and Age, Clearly Showing Importance of Incorporating 

H, D, S While Understanding and Quantifying Driving Experience 
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When the difficulty level or weather changed, the driving 

simulator data analysis showed significant fluctuations in 

Shannon Entropy (S) and Fractal Dimension (D) as visible in Fig 

4 and Fig 5. While D, which denotes complexity or variations in 

neural patterns, rose during changes in driving circumstances or 

sessions, S, which stands for chaos and unpredictability, showed 

considerable swings. Thus, S and D are appropriate markers for 

investigating sudden changes in driving-related mental states 

which may be found in the Pearson Correlation Matrix as shown 

in Fig 3. 

 

Investigations were also conducted on the connection between 

driving experience and Hurst Exponent (H). H levels varied 

across driving sessions in subjects of older age and with little 

prior driving experience as shown in Fig 6. Given that the 

Hurst Exponent is used to analyze repetitive or memory-related 

patterns in EEG, the observed fluctuations in H showed weaker 

retention of driving memory. This research implies that those 

who have little driving experience and are older may have 

trouble remembering information about driving over the course 

of several sessions. 

 

The study also found that H increased when comparing the 

first and last sessions for each subject, except for those with 

low driving experience. This suggests that H can serve as a 

marker for memory retention. Participants with higher H values 

between the initial and final sessions showed better retention of 

driving-related information, indicating the role of H in assessing 

memory retention during driving. 

 

The study findings suggest that S, D, and H can serve as 

indicators of changes in the mental state and driving memory 

during driving. 

 

 
 

Figure 4: Graph showing the variation of Fractal Dimension in Simulated Driving Experiment for 10 subjects. Each vertical 

gridline represents the end of an EEG session. 

 

Figure 5: Graph showing the variation of Shannon Entropy in Simulated Driving Experiment for 10 subjects. Each vertical 

gridline represents the end of an EEG session. 
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Figure 6: Graph showing the variation of Hurst Exponent in Simulated Driving Experiment for 10 subjects. Each vertical 

gridline represents the end of an EEG session. 

These measures have the potential to develop new approaches 

for assessing driver performance and identifying safety risks. 

Moreover, this study demonstrates the applicability of nonlinear 

dynamical statistics to explain the differences among systems. By 

applying nonlinear dynamical statistics to the analysis of drivers, 

this study reveals the relationship between driving experience 

and age. Therefore, incorporating nonlinear dynamical statistics 

into existing Deep Learning and Machine Learning models may 

enhance overall learning and accuracy. Additional research is 

required to investigate the optimal integration of these markers 

and validate their efficacy using larger and more diverse datasets 

derived from cognitive learning experiments. 
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