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Abstract

In this study, we provide a new method for interpreting EEG data collected from drivers during a driving simulator. As indicators of brain
nonlinear dynamics, we zeroed in on the Hurst exponent, Shannon entropy, and fractal dimension. While the Hurst exponent shows
learning patterns in memory retention and habit development, the Shannon entropy and fractal dimension change during driving
condition changes. These trends are statistically significant. These results provide new opportunities for evaluating driver performance,
detecting safety hazards, and expanding our knowledge of the non-linear dynamics of human cognition in relation to driving and beyond,
and they imply that the tools of Non-linear Dynamical (NLD) Theory can be used as indicators of cognitive state and changes in driving
memory. Our research shows that NLD techniques have the ability to shed light on brain states and system variations, which opens the
door for their incorporation into existing ML and Deep Learning models. Beyond its use in driving apps, this integration has the potential
to enhance cognitive learning, which in turn boosts productivity and accuracy.
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1. Introduction

Driving is a complex skill that requires many cognitive
capabilities. With age and experience, these skills evolve over
time. The association between cognitive ability and driving
performance is well established [1]. Experience has a significant
impact on how cognitive capacities develop, resulting in
increases in several areas, such as response time and decision-
making ability [2]. Individuals develop a level of familiarity
and experience with particular stimuli or tasks via repeated
exposure, which results in quicker reaction times [3]. This
is frequently seen in activities such as driving, athletics, or
video games, where seasoned players react more quickly than
inexperienced players. Because the brain may automate some
cognitive functions with experience, reaction times shorten as
neural pathways become more effective. However, although
the experience can enhance cognitive abilities, age-related
changes can also have a significant impact on cognitive function
[4]. Certain cognitive abilities, such as memory, attention, and
executive function, may deteriorate with age [5]. To improve
cognitive performance and treat age-related cognitive decline
and neurodegenerative illnesses, it is crucial to understand the
interaction between experience, aging, and cognitive capacities.

EEG analysis has been used to study driving performance in
a variety of ways, including measuring drivers' brain activity
while they are taking part in a simulated or real driving test to

identify changes in brain activity linked to fatigue, distraction,
and other factors that can impair driving performance [6-8].
The study of brain oscillations is another area of EEG analysis
in simulated driving [9]. Rhythmic patterns of brain activity
in many frequency bands, including the alpha, beta, theta, and
gamma bands, are represented by neural oscillations. Decreased
alpha oscillations may indicate higher alertness, while increased
theta oscillations may indicate cognitive strain or workload
[10]. The complexity, regularity, and scaling characteristics of
brain activity can also be shown by measurements obtained
from EEG data, such as Hurst exponent, Shannon frequency,
and fractal dimension. These measurements can be used in the
context of simulated driving to evaluate the degree of cognitive
engagement, cognitive load, and effectiveness of information
processing.

Nonlinear dynamics is a branch of mathematics that studies
systems with complicated behaviours that are sensitive to
tiny changes in the initial circumstances. It is concerned with
the investigation of nonlinear equations and the behaviour of
systems, which cannot be simply explained using Newtonian,
Hamiltonian, or other linear models. The brain functions as a
nonlinear system [11]. This is due to the fact that the brain is
made up of billions of neurons that are intricately intertwined.
Small changes in the activity of one neuron can have a huge
impact on the activity of neighbouring neurons. This can result
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in behavioural, perceptual, and cognitive alterations [12].
Nonlinear properties are frequently observed in brain activity
data, such as electroencephalography (EEG) or functional
magnetic resonance imaging (fMRI) [13]. Linear models may
not be sufficient to capture the underlying dynamics or extract
meaningful information from such data.

Hurst exponent, a measure of temporal dynamics' "long-term
memory," has also been investigated in recent years as a tool
for EEG signal interpretation [14]. The Hurst exponent is a
mathematical measure used to analyse the long-term memory
and predictability of a time series [15]. The Hurst exponent
is used in EEG signal analysis to measure the fractal scaling
characteristics of the signal, which are connected to the long-
range correlations and self-similarities of the time series. By
examining the complexity of the EEG signal, the Hurst exponent
can be used to distinguish between healthy and pathological
brain states [16]. For instance, research has revealed that the
Hurst exponents of Alzheimer’s patients’ EEG signals are lower
than those of healthy controls, indicating a loss of complexity
and long-range correlations in brain activity [17]. The Hurst
exponent has also been found to be altered in various neurological
conditions including Parkinson's disease and epilepsy [18,19].

Entropy is a different approach that can be used to extract regular
information from EEG datasets [20]. Entropy is a nonlinear
property that measures the degree of randomness in a system.
Because it cannot be evaluated by frequency relative power
derived from linear analysis, it is a useful tool for classifying
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mental states based on the degree of temporal and spectral
irregularity in the EEG signal [21].

The complexity and self-similarity of the EEG data were
measured mathematically using the fractal dimension in EEG
analysis. It sheds light on the temporal structure and scaling
characteristics of the electrical activity of the brain. Fractal
dimension is derived from the concept of fractals, which are
geometric objects that exhibit self-similarity at different scales.
It is calculated by splitting the signal into smaller segments and
calculating the fluctuation within each segment. The complexity
of the signal increases with fractal dimension.

In EEG analysis, fractal dimension has been used to investigate
a number of cognitive processes, such as decision-making,
memory, and attention [22]. In addition, they have been used
for biomedical signal processing [23,24]. For instance, research
has revealed that EEG signals from people with attention deficit
hyperactivity disorder (ADHD) have higher fractal dimensions
in their EEG signals than those without ADHD [25]. This shows
that the increased complexity of brain activity may be linked
to ADHD. Additionally, research on brain illnesses, such as
Schizophrenia, Depression and Alzheimer's disease, has made
use of the fractal dimension [26]. For instance, research has
revealed that EEG signals from individuals with Alzheimer's
disease are less fractal than those from individuals without
Alzheimer’s disease [27]. This suggests that Alzheimer's disease
may be linked to a decline in cognitive complexity.

Figure 1: Four Environment Conditions for the Driving Simulator

In this study, we investigated the relationship between
age, driving experience, and cognitive processes in driving
performance by analysing EEG data collected from drivers
and students during a simulated driving test and an on-road
experiment. Our approach focused on utilizing nonlinear
dynamical parameters to unveil the state of cognition and
driving experience embedded in the EEG data. Similar
analyses were conducted for EEG & fMRI brain signals
solar-cycle activities and also nano-material fabrication
[28-30]. Specifically, we computed the Hurst exponent
to reveal the retention of memory and experience, while

the Fractal Dimension and Shannon Entropy shed light on
the complexity of neuronal firing and ease of cognitive
processes. By leveraging these nonlinear parameters, we
gained insights into the effects of age, driving experience,
and task difficulty on driving ability.

2. Materials & Methods

Ten male three-wheeler drivers were selected for this cross-
sectional study from five distinct three-wheeler stands
(Autorickshaw stands) in Mumbai, India. Participants in the
study must possess a valid driving license, have at least two

33



L .
‘ﬁntematmna] Journal of
Information Technology & Computer Engineering
years of driving experience, and log at least five hours of
driving each day.

The experiment was conducted on drivers in the Ergonomics
Laboratory of the National Institute of Industrial Engineering
(NITIE), Mumbai, using a fixed three-wheeler driving
simulator (Technotrov Systems Pvt. Ltd., Maharashtra,
Mumbai; see Fig. 1). This driving simulator is an exact
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reproduction of a three-wheeled vehicle, complete with all
its characteristics. For this experiment, four different traffic
situations were selected: low traffic in cities, high traffic in
cities, and low traffic on highways. All subjects had 3 min
of practice time to become accustomed to the system and
procedure, followed

by 15 min of EEG recording.

Figure 2: Photo of a Subject in the 3-Wheeler Driving Simulator with DSI-7 Wireless EEG Headset Mounted on Head

The experiments consisted of four EEG sessions, each lasting
approximately four hours, which included four different
environments and four traffic conditions for each subject.
Thirteen 3-wheeler driver EEG data were collected on the road
during high and low traffic conditions for 5 min. Wearable
Sensing DSI-7 EEG Headset (Figure 2) was used to collect data
from 20 subjects, which is a research-grade EEG sensing device
with 8 dry-application sensors, including one for reference (LE)
and seven for recording brain wave activity (F3, F4, C3, C4, P3,
Pz, P4) [31]. The sampling frequency was set to 300 Hz for the
EEG data streamer. The data files that were used for the analyses
reported below for all experiments can be found at https:/osf.
i0/8ksyq.

2.1 Data Pre-Processing

EEGLab in MATLAB was used to perform EEG pre-processing
using the PREP pipeline [32]. Detrending was carried out
to eliminate any cyclical or other patterns and calibrate the
thresholds. To eliminate linear trends, a 1 Hz high pass filter was
applied [36]. A 50 Hz notch filter was used to eliminate the harsh
spectral peaks at 50 Hz. For subsequent processing and feature
extraction, the F4 electrode was selected for all individuals
based on the spectral decomposition and signal quality.

2.2 Estimation of Hurst Exponent: Nonlinear Dynamical
Features

The Hurst Exponent, which depends on the power law [33], was
calculated using the Rescaled Range method (R/S) [34].

(R/SS Jw € kwwt (1)

Where, S is the standard deviation of the independent variable
x_1 within the window w, k is a constant, w is the breadth of the
temporal window, and

1 t +w+1 2
2 —yo -
| (tto, ww) |* @ — 1Zi= t Qi — xx (tto, ww)@ ®)
With average as,
(tto,ww) @ j—v Et‘i’;wgol xXXi 3)

And R, the range in the time-series, defined as

R(tt gvw) €@ mmaxx € mm € wwyy (¢t , wyw) — mmmmmm € mm € wwyy (¢t gvw)
“)

With the new variables y, i=1,2,3,...,w as,
yyiltto,ww) @ JL4 M — x&(tto, ww)€ 5)

(R/S) was calculated for various time instances, averaged
for epochs, and plotted against a log-log axis. The value of
H, which ranges from 0 to 1, was determined using the linear
regression slope. A time series with a value of H = 0.5 exhibits
pure random walking or Brownian motion. On the other hand,
H between 0.5 and 1.0 indicates a stable time series. A higher H
indicates that the time series has a longer memory and a higher
long-term positive autocorrelation or more frequent or persistent
deviations. H between 0 and 0.5 indicates anti-persistence,
whereas H is more or less equal to 0.5, indicating a random time
series [35]. The Hurst exponent was calculated for each of the
subjects’ 16 sessions over the 10 participants' EEG time series.
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2.3 Estimation of Fractal Dimension

Fractal dimension is a mathematical notion that measures the
degree to which a self-similar entity occupies space and is used
to measure the complexity of a self-similar object. The box-
counting method is a typical method for estimating an object's
fractal dimension. It consists of covering the element with a grid
of boxes and counting the number of boxes containing a portion
of the element. The following is the relationship between the
number of boxes N and the box size r:
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2.4 Estimation of Shannon Entropy

Because brain activity is a highly dynamic and complicated
process involving the interplay of numerous separate neural
networks functioning at various frequencies and with differing
degrees of synchronization, EEG signals are non-linear, non-
stationary, and random. As a result, numerous methods for
nonlinear analysis, including entropy, have been proposed to
effectively capture the randomness of nonlinear time series data
[34].

N~p (D) (6)

Let X be a set of finite discrete random variables X= {x , x , x ,
1 2 3

..., X}, then Shannon entropy, S(X), is defined as:

where the symbol "~" means "proportional to.” Taking the

logarithm of both sides of the equation yields

S(X) @ —c¢ 22 (xxi) In pp(xx) ®)

log N~-Dlogr )

Where c is a positive constant acting as a measuring unit and
p (x,) is probability of x, € X, satisfying:

The slope of the line obtained by plotting log N against log r
gives an estimate of the fractal dimension D. > (ex) @ 1
In general, more entropy denotes chaotic or more complex
systems, and hence less predictability.

()

Consider a Koch curve, which is a fractal structure created by
constantly adding smaller equilateral triangles to each side of an
original triangle. The fractal dimension of the Koch curve was
approximately 1.26. The fractal dimension can be estimated using the
box-counting approach by covering the curve with a grid of boxes
and counting the number of boxes that contain a part of the curve
for different box sizes. Using the above equation, the relationship
between the number of boxes and the box size can then be used to
estimate the fractal dimension.

3. Results and Conclusion

The values for H, D & S for all the subjects are summarized
in the Table 1 and Pearson Correlation Matrix between all the
variables are plotted in Fig 3 below.

Subject | Session S H D Age Driving
Experience
1 DAY_DRIVING A 17.62 0.69 1.32 44 24
DAY_DRIVING B 17.27 0.73 1.49
DAY DRIVING C 17.65 0.74 1.43
DAY DRIVING D 17.72 0.75 1.46
FOG_DRIVING_A 1691 0.78 1.64
FOG_DRIVING B 17.63 0.73 1.55
FOG_DRIVING C 17.16 0.74 1.62
FOG DRIVING D 17.11 0.77 1.70
NIGHT DRIVING A 17.30 0.77 1.63
NIGHT _DRIVING B 16.83 0.73 1.48
NIGHT_DRIVING C 17.04 0.78 1.64
NIGHT_DRIVING D 16.80 0.76 1.66
RAIN_DRIVING_A 16.97 0.73 1.40
RAIN DRIVING B 16.79 0.75 1.59
RAIN_DRIVING C 17.09 0.77 1.61
RAIN_DRIVING D 1591 0.79 1.62
2 DAY DRIVING A 18.02 0.73 1.38 53 17
DAY DRIVING B 17.98 0.75 1.30
DAY DRIVING C 18.68 0.76 1.47
DAY_DRIVING D 18.59 0.72 1.50
FOG_DRIVING_A 18.41 0.72 1.32
FOG_DRIVING_B 17.61 0.71 1.55
FOG_DRIVING_D 18.94 0.74 1.37
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NIGHT DRIVING A 18.98 0.68 1.43
NIGHT DRIVING B 15.48 0.68 1.58
NIGHT DRIVING C 14.61 0.70 1.46
NIGHT DRIVING D 17.62 0.68 1.61
RAIN DRIVING A 17.08 0.74 1.39
RAIN DRIVING B 16.99 0.75 1.44
RAIN _DRIVING C 16.99 0.75 1.44
RAIN_DRIVING D 18.65 0.71 1.40
DAY DRIVING A 13.73 0.71 1.26 39 21
DAY DRIVING B 17.35 0.75 1.55
DAY DRIVING C 17.20 0.73 1.49
DAY DRIVING D 17.23 0.73 1.50
FOG_DRIVING A 17.66 0.71 1.44
FOG DRIVING B 17.17 0.73 1.56
FOG DRIVING C 16.42 0.73 1.33
FOG_DRIVING D 17.37 0.72 1.52
NIGHT DRIVING A 17.17 0.72 1.36
NIGHT DRIVING B 17.01 0.76 1.61
NIGHT DRIVING C 17.20 0.76 1.52
NIGHT DRIVING D 17.13 0.75 1.50
RAIN DRIVING A 17.31 0.68 1.46
RAIN DRIVING B 17.21 0.75 1.49
RAIN DRIVING C 17.35 0.78 1.49
RAIN DRIVING D 17.03 0.77 1.55
DAY _DRIVING_ A 16.45 0.70 1.25 27 02
DAY_DRIVING_ B 17.66 0.74 1.36
DAY_DRIVING_C 17.81 0.72 1.44
DAY_DRIVING D 18.00 0.70 1.29
FOG_DRIVING A 17.86 0.71 1.43
FOG_DRIVING B 17.88 0.67 1.30
FOG_DRIVING_C 17.99 0.75 1.52
FOG_DRIVING D 18.37 0.73 1.32
NIGHT _DRIVING A 17.80 0.68 1.35
NIGHT_DRIVING B 17.77 0.68 1.55
NIGHT DRIVING C 17.98 0.69 1.61
NIGHT DRIVING D 18.01 0.71 1.26
RAIN_DRIVING A 17.80 0.74 1.47
RAIN_DRIVING B 17.74 0.69 1.63
RAIN_DRIVING _C 18.02 0.69 1.33
RAIN DRIVING D 17.98 0.68 1.48
DAY DRIVING A 17.81 0.71 1.41 45 18
DAY DRIVING B 16.36 0.76 1.55
DAY DRIVING C 17.52 0.70 1.39
DAY _DRIVING D 17.36 0.75 1.56
FOG_DRIVING A 17.99 0.73 1.36
FOG_DRIVING B 17.74 0.73 1.29
FOG DRIVING C 17.97 0.73 1.36
FOG DRIVING D 17.83 0.73 1.35
NIGHT DRIVING A 16.97 0.74 1.30
NIGHT DRIVING B 17.68 0.74 142
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NIGHT_DRIVING_C 17.69 0.74 1.42
NIGHT_DRIVING_D 17.66 0.74 1.36
RAIN_DRIVING_A 18.02 0.71 1.43
RAIN_DRIVING_B 17.74 0.69 1.34
RAIN_DRIVING_C 18.22 0.71 1.45
RAIN_DRIVING_D 17.85 0.72 1.32

6 DAY_DRIVING_A 17.51 0.73 1.38 63 41
DAY_DRIVING_ B 17.50 0.74 1.33
DAY_DRIVING_C 17.50 0.72 1.35
DAY_DRIVING_D 17.51 0.72 1.32
FOG_DRIVING_A 17.63 0.71 1.31
FOG_DRIVING B 17.61 0.71 1.55
FOG_DRIVING _C 17.64 0.71 1.43
FOG_DRIVING D 17.72 0.76 1.54
NIGHT_DRIVING_A 17.51 0.66 1.37
NIGHT_DRIVING_B 17.49 0.72 1.41
NIGHT_DRIVING_C 17.51 0.70 1.45
NIGHT_DRIVING_D 17.62 0.68 1.61
RAIN_DRIVING_A 17.86 0.74 1.39
RAIN_DRIVING_B 17.93 0.75 1.40
RAIN_DRIVING_C 17.96 0.74 1.41
RAIN_DRIVING_D 17.96 0.73 1.36

7 DAY_DRIVING_A 15.71 0.71 1.50 42 18
DAY_DRIVING B 15.71 0.73 1.45
DAY_DRIVING C 15.70 0.75 1.54
DAY_DRIVING D 15.71 0.67 1.32
FOG_DRIVING_A 15.71 0.70 1.36
FOG_DRIVING_B 15.71 0.73 1.22
FOG_DRIVING_C 15.71 0.71 1.38
FOG_DRIVING_D 15.71 0.67 1.38
NIGHT_DRIVING_A 15.69 0.67 1.55
NIGHT_DRIVING_B 15.71 0.71 1.23
NIGHT_DRIVING_C 15.71 0.71 1.30
NIGHT_DRIVING_D 15.71 0.67 1.34
RAIN_DRIVING_A 15.70 0.68 1.45
RAIN_DRIVING_B 15.71 0.70 1.46
RAIN_DRIVING _C 15.70 0.70 1.49
RAIN_DRIVING D 15.70 0.74 1.49

8 DAY_DRIVING_A 17.09 0.74 1.39 39 10
DAY_DRIVING B 17.85 0.75 1.35
DAY_DRIVING _C 18.03 0.70 1.29
DAY_DRIVING_D 18.05 0.70 1.31
FOG_DRIVING_A 17.01 0.74 1.68
FOG_DRIVING_B 17.17 0.75 1.64
FOG_DRIVING_C 17.40 0.77 1.42
FOG_DRIVING_D 17.52 0.75 1.41
NIGHT_DRIVING_A 17.35 0.68 1.53
NIGHT_DRIVING B 16.89 0.68 1.62
NIGHT_DRIVING_C 17.12 0.69 1.60
NIGHT_DRIVING_D 17.22 0.75 1.64
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RAIN DRIVING A 17.34 0.70 1.35
RAIN_DRIVING B 17.18 0.69 1.36
RAIN_DRIVING C 17.44 0.73 1.47
RAIN_DRIVING D 16.95 0.71 1.61

9 DAY DRIVING A 17.56 0.68 1.53 27 05
DAY _DRIVING B 17.65 0.69 1.29
DAY DRIVING C 17.81 0.72 1.39
DAY DRIVING D 16.83 0.72 1.50
FOG_DRIVING A 17.82 0.70 1.41
FOG_DRIVING B 17.71 0.72 1.43
FOG_DRIVING C 17.99 0.76 1.51
FOG_DRIVING D 18.01 0.74 1.33
NIGHT DRIVING A 17.13 0.72 1.40
NIGHT DRIVING B 17.57 0.71 1.38
NIGHT DRIVING C 17.63 0.73 1.43
NIGHT DRIVING D 17.62 0.69 1.31
RAIN_DRIVING A 17.77 0.70 1.46
RAIN_DRIVING B 17.84 0.72 131
RAIN_DRIVING C 17.84 0.68 1.32
RAIN_DRIVING D 18.01 0.75 1.36

10 DAY DRIVING A 17.30 0.73 1.35 44 10
DAY DRIVING B 17.48 0.71 1.28
DAY _DRIVING C 17.63 0.69 1.49
DAY DRIVING D 17.44 0.70 133
FOG DRIVING A 17.23 0.70 1.24
FOG_DRIVING B 17.21 0.72 135
FOG_DRIVING C 17.60 0.66 1.38
FOG _DRIVING D 17.61 0.70 1.31
NIGHT DRIVING A 17.41 0.70 1.30
NIGHT DRIVING B 17.33 0.70 1.49
NIGHT DRIVING C 17.35 0.69 1.49
NIGHT DRIVING D 17.77 0.68 1.31
RAIN_DRIVING A 17.10 0.71 1.42
RAIN DRIVING B 17.17 0.70 1.38
RAIN_DRIVING C 17.63 0.72 1.55
RAIN_DRIVING D 17.67 0.69 1.56

Table 1: Tabular data showing the variation in Shannon Entropy (S), Hurst Exponent (H) and Fractal Dimension (D) for
the subjects for different sessions and difficulty levels. Sessions were divided into 4 sets comprising of different weather and
traffic modes (Highway Low & High Traffic, City Low & High Traffic). Age and Driving Experience of the subjects were also
recorded for review.

We conducted an F-Test Two-Sample for Variances to examine of variables were found to be less than 0.05 as shown in Table
the differences in variances between the variables under 2, indicating significant differences in variances between the
investigation. The p-values obtained for all pairwise comparisons  variables.
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Subject S Subject H Subject D
Mean 5.522012579 17.29931 | Mean 5.52201258 0.719811 | Mean 5.5220126 1.436101
Variance 8.276411114 0.652137 | Variance 8.27641111 0.000798 | Variance 8.2764111 0.012073
Observations | 159 159 Observations | 159 159 Observations | 159 159
df 158 158 df 158 158 df 158 158
F 12.69121809 F 10370.592 F 685.51322
P(F<=f) 5.62503E-47 P(F<=f) 6.436E-272 P(F<=f) 8.31E-179
one-tail one-tail one-tail
F Critical 1.300182044 F Critical 1.30018204 F Critical 1.300182
one-tail one-tail one-tail

Environment S Environment H Environment D
Mean 2.503144654 17.29931 | Mean 2.50314465 0.719811 | Mean 2.5031447 1436101
Variance 1.264230555 0.652137 | Variance 1.26423055 0.000798 | Variance 1.2642306 0.012073
Observations | 159 159 Observations | 159 159 Observations | 159 159
df 158 158 df 158 158 df 158 158
F 1.938596991 F 1584.11891 F 104.71287
P(F<=f) 1.92043E-05 P(F<=f) 1.728E-207 P(F<=f) 6.91E-115
one-tail one-tail one-tail
F Critical 1.300182044 F Critical 1.30018204 F Critical 1.300182
one-tail one-tail one-tail

Traffic Condition | S Traffic Condition | H Traffic Condition | D
Mean 2.496855346 17.29931 | Mean 2.49685535 0.719811 | Mean 2.4968553 1.436101
Variance 1.264230555 0.652137 | Variance 1.26423055 0.000798 | Variance 1.2642306 0.012073
Observations | 159 159 Observations | 159 159 Observations | 159 159
df 158 158 df 158 158 df 158 158
F 1.938596991 F 1584.11891 F 104.71287
P(F<=f) 1.92043E-05 P(F<=f) 1.728E-207 P(F<=f) 6.91E-115
one-tail one-tail one-tail
F Critical 1.300182044 F Critical 1.30018204 F Critical 1.300182
one-tail one-tail one-tail

Table 2: Tabular data showing the F-test Two-Sample for checking the variance between the independent variables (Subject,

Simulator Traffic conditions and Environment conditions) and dependent variables (Shannon Entropy (S), Hurst Exponent
(H) and Fractal Dimension (D). he p-values obtained for all pairwise comparisons of variables were found to be less than
0.05, indicating significant differences in variances between the variables.

Driving Experience

-0.091

-0.0083

-

Driving Experience -

-1.0

-0.8

Figure 3: Pearson Correlation Matrix for H, D, S, Driving Experience and Age, Clearly Showing Importance of Incorporating
H, D, S While Understanding and Quantifying Driving Experience
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When the difficulty level or weather changed, the driving
simulator data analysis showed significant fluctuations in
Shannon Entropy (S) and Fractal Dimension (D) as visible in Fig
4 and Fig 5. While D, which denotes complexity or variations in
neural patterns, rose during changes in driving circumstances or
sessions, S, which stands for chaos and unpredictability, showed
considerable swings. Thus, S and D are appropriate markers for
investigating sudden changes in driving-related mental states
which may be found in the Pearson Correlation Matrix as shown
in Fig 3.

Investigations were also conducted on the connection between
driving experience and Hurst Exponent (H). H levels varied
across driving sessions in subjects of older age and with little
prior driving experience as shown in Fig 6. Given that the
Hurst Exponent is used to analyze repetitive or memory-related
patterns in EEG, the observed fluctuations in H showed weaker

ISSN 2347-3657
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retention of driving memory. This research implies that those
who have little driving experience and are older may have
trouble remembering information about driving over the course
of several sessions.

The study also found that H increased when comparing the
first and last sessions for each subject, except for those with
low driving experience. This suggests that H can serve as a
marker for memory retention. Participants with higher H values
between the initial and final sessions showed better retention of
driving-related information, indicating the role of H in assessing
memory retention during driving.

The study findings suggest that S, D, and H can serve as
indicators of changes in the mental state and driving memory
during driving.
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Figure 4: Graph showing the variation of Fractal Dimension in Simulated Driving Experiment for 10 subjects. Each vertical

gridline represents the end of an EEG session.
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Figure 5: Graph showing the variation of Shannon Entropy in Simulated Driving Experiment for 10 subjects. Each vertical

gridline represents the end of an EEG session.
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These measures have the potential to develop new approaches
for assessing driver performance and identifying safety risks.
Moreover, this study demonstrates the applicability of nonlinear
dynamical statistics to explain the differences among systems. By
applying nonlinear dynamical statistics to the analysis of drivers,
this study reveals the relationship between driving experience
and age. Therefore, incorporating nonlinear dynamical statistics
into existing Deep Learning and Machine Learning models may
enhance overall learning and accuracy. Additional research is
required to investigate the optimal integration of these markers
and validate their efficacy using larger and more diverse datasets

derived from cognitive learning experiments.
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