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Abstract: In order to improve computational 
efficiency and train temporal-spatial features more 
effectively, this study expands the hybrid Seq2Seq-
ConvLSTM intrusion detection model by adding GRU 
and Bidirectional layers.  The GRU layer expedites 
training and prediction without compromising 
accuracy, while the Bidirectional layer improves 
identification of complicated sequential attack 
patterns by capturing forward and backward 
temporal relationships.  A web interface built on 
Flask allows users to submit test datasets and view 
classification results instantaneously, enabling real-
time intrusion detection. This is how the upgraded 
model is implemented.  Results from experiments 
reveal that the suggested extended hybrid strategy 
performs better than the baseline Seq2Seq-
ConvLSTM and Random Forest models in 
contemporary network security settings, in terms of 
accuracy, latency, and resilience. 
Index terms - Network Intrusion Detection, Hybrid 
Deep Learning, Seq2Seq, ConvLSTM, Bidirectional 
Layer, GRU, Temporal-Spatial Features, Real-Time 
Detection, Flask Deployment, Cybersecurity, Deep 
Sequential Models, Feature Optimization, Anomaly 
Detection, Intrusion Prediction, Neural Networks. 
 

1. INTRODUCTION 
Highly sophisticated cyberattacks are becoming more 
common because to the fast growth of digital 
communication and large-scale networked systems.  
The complicated geographical and temporal patterns 
of modern incursions are frequently missed by 
conventional intrusion detection systems (IDS).  
When it comes to dealing with bidirectional patterns, 
high-volume real-time traffic, and long-range 
temporal relationships, hybrid deep learning models 
like Seq2Seq and ConvLSTM have improved 
sequential feature learning, but they still have 
limitations. 
 This study presents an enhanced hybrid IDS model 
that incorporates Bidirectional layers and Gated 
Recurrent Units (GRU) into the current Seq2Seq-
ConvLSTM architecture to overcome these 
shortcomings.  To improve learning, the bidirectional  

 
 
layer analyses sequences in both ways. This helps the 
model to uncover latent attack patterns that more  
conventional unidirectional models could miss.  The 
system is more suited for real-time deployment since  
the GRU layer decreases computing cost and 
accelerates prediction time. 
 Users may submit samples of network traffic and 
obtain more accurate intrusion classifications 
instantly thanks to this enhanced model's 
implementation using a Flask-based web interface.  
The suggested system improves performance in 
contemporary network security settings by 
integrating real-time usability, low-latency 
processing, and deep temporal-spatial learning. 
 

2. LITERATURE SURVEY 
2.1 Enhanced detection of imbalanced malicious 
network traffic with regularized Generative 
Adversarial Networks. 
https://www.sciencedirect.com/science/article/abs/pii/
S1084804522000339  
Because network security is becoming increasingly 
risky and unreliable, many companies must protect 
their networks and identify malicious network traffic.    
Because it is more difficult for machine learning 
models to detect this sort of corrupt data due to an 
imbalance between the various forms of assaults, this 
is a major component of the problem.    In order to 
create a balanced dataset, one method to enhance the 
attack samples from the minority group is to use 
regularized Wasserstein Generative Adversarial 
Networks (WGAN).    The WGAN-IDR (Wasserstein 
GAN with Improved Deep Analytic Regularisation) 
is the best approach when compared using five 
statistical variables to evaluate the data 
augmentation's efficacy.    On the CICIDS2017 
dataset, we test three different classification 
strategies—TRTR, TSTR, and TRTS—to determine 
the performance of each class in trials for binary and 
multiclass classification.    Our diverse and realistic 
examples allow us to demonstrate that the TSTR and 
TRTS classification methods outperform baseline and 
prior research on the balanced CICIDS2017 dataset.  
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A total of 0.99 and 0.98 were the F1-scores for binary 
and multiclass classifications, respectively. 
2.2 A fast network intrusion detection system 
using adaptive synthetic oversampling and 
LightGBM: 
https://sci-hub.se/10.1016/j.cose.2021.102289  
It is critical to have intrusion detection systems in 
place to safeguard the network.    Although deep 
neural network detection systems are effective, they 
are time-consuming to train and produce inaccurate 
results when it comes to minority attacks due to the 
unequal distribution of current network intrusion 
data.    In order to overcome these obstacles, this 
research suggests a network intrusion detection 
system that makes use of LightGBM and adaptive 
synthetic (ADASYN) oversampling technology.    To 
ensure that the original data remains consistent 
regardless of its range, we first use data 
preprocessing to standardize and one-hot encode it.    
Secondly, we employ the ADASYN oversampling 
method to incorporate more minority samples in 
order to address the issue of a low minority attack 
detection rate that is a result of the training data being 
imbalanced.    Lastly, the detection accuracy is 
maintained over time as the system becomes less 
complicated through the usage of the LightGBM 
ensemble learning model.    To put our theories to the 
test, we utilized the NSL-KDD, UNSW-NB15, and 
CICIDS2017 datasets.   According to the findings, 
ADASYN oversampling has the potential to increase 
the overall accuracy rate by locating more minority 
samples.    With an accuracy of 92.57%, 89.56%, and 
99.91% in the three test sets, respectively, and a 
training and finding time that is smaller than that of 
other existing methods, the suggested approach is the 
superior choice. 
 
2.3 IGAN-IDS: An imbalanced generative 
adversarial network towards intrusion detection 
system in ad-hoc networks: 
https://www.sciencedirect.com/science/article/abs/pii/
S1570870519311035  
As threats to networks are always evolving, 
particularly in decentralized and dynamic ad hoc 
networks, the importance of system security is 
growing.    Cybersecurity relies on intrusion detection 
systems, which monitor network traffic for unusual 
activity.    There are many fewer outlier samples than 
average ones, which is an issue with the class-
imbalanced data.    Intrusion classifiers aren't as 
effective and can't manage surprises as well because 
of this class imbalance problem.    In order to address 
the issue of class imbalance, this paper introduces a 
new Imbalanced Generative Adversarial Network 

(IGAN).    Our model differs only in that it augments 
the fundamental GAN with convolutional layers and 
an unbalanced data filter.  This results in more cases 
that are typical of underrepresented groups.    
Another solution to the issue of class imbalanced 
intrusion detection utilizing IGAN instances is an 
IGAN-based intrusion detection system, IGAN-IDS.    
IGAN, a deep neural network, and feature extraction 
are the three components that make up IGAN-IDS.    
As a first step in creating feature vectors from raw 
network properties, we employ a feed-forward neural 
network (FNN).    New samples are generated by the 
IGAN and stored in the latent space.    The last step 
in intrusion detection is performed by the deep neural 
network, which consists of both fully-connected and 
convolutional layers.    In this study, we evaluate 
IGAN-IDS by comparing it to fifteen other 
approaches that were tested on three benchmark 
datasets.    Based on the results of the experiments, 
our suggested IGAN-IDS is superior to the state-of-
the-art methods. 
 
2.4 An Intrusion Detection System Based on 
Convolutional Neural Network for Imbalanced 
Network Traffic: 
https://www.semanticscholar.org/paper/An-Intrusion-
Detection-System-Based-on-Neural-for-Zhang-
Ran/ebb14aecc653f439be4e5f11974b106aa309485c  
Due to the interconnected nature of social life and the 
Internet, intrusion detection systems (IDS) are 
vulnerable to several cyberthreats.    We were 
disappointed with the results of IDS that relied on 
traditional machine learning.    In this study, we 
provide an intrusion detection model that is built on 
Convolutional Neural Networks (CNNs).    An 
approach called SMOTE-ENN, which stands for 
Synthetic Minority Oversampling Technique, is 
employed to ensure that the network traffic is 
balanced prior to CNN training.    Our model is 
evaluated using the NSL-KDD dataset.    With 
SMOTE-ENN, the suggested CNN IDS model gets 
an accuracy of 83.31%.    Additionally, there has 
been a significant improvement in the detection rates 
of User to Root (U2R) and Remote to Local (R2L) 
attacks.    The outcomes demonstrate that the prior 
IDS model was outperformed by the SMOTE-ENN-
based CNN IDS. 
 
2.5 Towards the development of realistic botnet 
dataset in the Internet of Things for network 
forensic analytics: Bot-IoT dataset: 
Towards the development of realistic botnet dataset 
in the Internet of Things for network forensic 
analytics: Bot-IoT dataset - ScienceDirect 
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The criminal element has begun targeting IoT 
systems in droves as they proliferate.    We need 
practical methods of defense and investigation, such 
as network forensics and intrusion detection systems, 
to tackle this issue.    That is why it is critical to train 
and test algorithms on a dataset that is both 
representative and well-structured.    The Botnet 
conditions that were utilized are often inadequately 
described, despite the abundance of network 
information.    The authors of this study suggest a 
new dataset called Bot-IoT, which includes both real 
and faked traffic from IoT networks subjected to 
various assaults.    To address the issues with existing 
datasets, such as incomplete network information, 
incorrect tagging, and handling a variety of new and 
complicated threats, we also provide a realistic 
testbed environment.    Lastly, we evaluate the BoT-
IoT dataset's reliability for forensic applications by 
comparing it to the benchmark datasets using a 
number of statistical and machine learning 
methodologies.    In order to detect botnets on 
networks tailored to the Internet of Things, this study 
sets the framework.    The Bot-IoT dataset is made 
available to you by Bot-iot (2018). 
 

3. METHODOLOGY 
i) Proposed Work: 
Improving temporal feature learning, model 
efficiency, and real-time detection performance, the 
suggested system integrates Bidirectional and GRU 
layers to augment the existing Seq2Seq-ConvLSTM 
intrusion detection architecture.  By capturing local 
dependencies and sequential variations, ConvLSTM 
subnets initially extract spatial-temporal information 
from network traffic in this expanded hybrid 
architecture.  The model is able to learn more 
complicated temporal correlations and detect multi-
stage assault patterns because the Bidirectional layer 
analyzes these sequences in both forward and 
backward directions.  By substituting GRU layers for 
the decoder's conventional LSTM units, we may 
further optimize computation, cutting down on 
training latency and increasing accuracy. 
 To provide reliable model training, the system 
additionally uses state-of-the-art preprocessing 
methods including feature encoding, normalization, 
and efficient sequence construction.  Users may 
submit samples of network traffic and get real-time 
categorization results using a Flask-based web app 
that incorporates the expanded model for practical 
implementation.  The intrusion detection procedure is 
made more user-friendly and threat assessments may 
be completed more quickly with this interactive 
interface.  To build an intelligent and scalable 

intrusion detection system (IDS) that can handle 
today's high-volume networks, the suggested 
approach integrates deep temporal-spatial learning 
with computing efficiency and real-time prediction. 
ii) System Architecture: 
The system architecture builds upon the core 
Seq2Seq–ConvLSTM model shown in the diagram, 
where the dataset is first preprocessed and then 
passed into the Encoder. The encoder consists of 
multiple ConvLSTM blocks combined with Batch 
Normalization, Max Pooling, and Dropout layers to 
extract spatial–temporal patterns from network 
traffic. These processed features are then forwarded 
to the Decoder, which performs sequence 
reconstruction using ConvLSTM and UpSampling 
layers. This Seq2Seq flow captures temporal 
dependencies from raw traffic sequences while 
preserving spatial relationships, enabling effective 
pattern learning for normal and attack behaviors. 
Global Average Pooling is applied at the end to 
convert learned feature maps into final predictions for 
normal or malicious traffic. 
In the extended architecture, the feature outputs from 
the ConvLSTM encoder are further enhanced by 
adding a Bidirectional layer that processes sequences 
in both forward and backward directions, allowing 
the model to identify complex multi-stage attacks 
more accurately. A GRU layer is integrated in the 
decoder to replace traditional LSTM units, reducing 
computational load and improving real-time 
responsiveness. After decoding, the enhanced 
features are passed to the classification head for 
attack prediction. The complete system is deployed 
through a Flask-based web interface, where users can 
upload network traffic data and receive instant 
detection results. This extended architecture 
combines deep temporal–spatial learning with 
optimized computation, delivering a scalable and 
high-performance intrusion detection solution. 

 
Fig 1 Proposed architecture 

iii) Modules: 
a) Dataset Upload & Preprocessing Module 

 Allows users to upload the UNSW-
NB15 or any intrusion dataset. 
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 Performs feature encoding, label 
conversion, normalization, and 
sequence formation. 

 Handles missing values and reshapes 
data into temporal-spatial sequences 
suitable for ConvLSTM input. 

b) ConvLSTM-Based Encoder Module 
 Extracts spatial–temporal features using 

stacked ConvLSTM layers. 
 Integrates Batch Normalization, Max 

Pooling, and Dropout to reduce noise 
and improve stability. 

 Generates compressed high-level 
representations from raw traffic 
sequences. 

c) Bidirectional Temporal Learning Module 
(Extension Part) 
 Enhances the encoder output using 

Bidirectional sequence processing. 
 Learns temporal dependencies from 

both forward and backward directions. 
 Strengthens detection of multi-stage and 

hidden intrusion patterns. 
d) GRU-Enhanced Decoder Module 

(Extension Part) 
 Reconstructs sequences using GRU 

units to reduce computational 
complexity. 

 Combines GRU + UpSampling + 
ConvLSTM layers for efficient 
temporal decoding. 

  Improves model speed and lowers 
prediction latency for real-time IDS. 

e) Seq2Seq Hybrid Feature Integration 
Module 
 Merges encoder and decoder features to 

form a unified hybrid representation. 
 Preserves both spatial and temporal 

characteristics essential for intrusion 
detection. 

 Sends final feature maps to the 
classification head. 

f) Classification & Global Average Pooling 
Module 
 Applies Global Average Pooling to 

convert 2D feature maps into final 
prediction vectors. 

 Classifies traffic as Normal or Attack 
using Softmax. 

 Supports detection of multiple attack 
categories when needed. 

g) 7. Flask-Based Real-Time Prediction 
Module (Extension Part) 

 Provides a user-friendly web interface 
for intrusion detection. 

 Users upload test data and instantly 
receive prediction results. 

 Ensures real-time performance with 
minimal latency using the GRU-
enhanced architecture. 

h) Performance Evaluation & Visualization 
Module 
 Computes accuracy, precision, recall, 

F1-score, and confusion matrix. 
 Compares baseline Random Forest, 

Seq2Seq, and extended hybrid model 
performance. 

 Graphically displays results for better 
interpretability. 

iv) Algorithms: 
a) Random Forest Algorithm: 

The Random Forest algorithm is used as the baseline 
machine learning model for initial comparison. It 
works by constructing multiple decision trees on 
different subsets of the dataset and combining their 
outputs to make a final prediction. This ensemble-
based approach efficiently handles high-dimensional 
network traffic, provides interpretability, and offers 
fast classification. It helps benchmark the 
performance of the advanced deep learning models in 
the system. 
 

b) Seq2Seq Algorithm: 
The Seq2Seq (Sequence-to-Sequence) algorithm 
forms the backbone of the proposed architecture by 
enabling the learning of sequential relationships in 
network traffic. It follows an encoder–decoder 
structure where the encoder compresses input 
sequences into context vectors and the decoder 
reconstructs the sequences. This mechanism allows 
the model to capture long-range dependencies and 
temporal variations essential for identifying attack 
patterns in network behavior. 
 

c) ConvLSTM Algorithm: 
ConvLSTM is applied to extract both spatial and 
temporal features from network flow data by 
integrating convolutional operations within LSTM 
units. The convolutional structure captures spatial 
patterns across input frames, while the LSTM 
mechanism models sequence dependencies over time. 
ConvLSTM layers are placed in both the encoder and 
decoder modules, enabling the architecture to 
preserve temporal–spatial correlations necessary for 
detecting subtle anomalies in network traffic. 
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d) Bidirectional Layer (Bi-LSTM/GRU) 
Algorithm: 

The Bidirectional layer enhances the temporal 
learning capability of the model by processing 
sequences in both forward and backward directions. 
This dual processing improves the detection of multi-
step, reverse-order, or hidden intrusion behaviors that 
traditional unidirectional layers fail to identify. By 
capturing dependencies from both temporal 
directions, the Bidirectional layer strengthens the 
model’s feature representation, leading to higher 
accuracy in identifying complex cyber-attacks. 
 

e) GRU Algorithm: 
The GRU (Gated Recurrent Unit) algorithm is 
integrated into the decoder to optimize sequential 
learning while reducing computational complexity. 
GRU uses simplified gating mechanisms compared to 
LSTM, making it faster and more memory-efficient. 
This helps the extended model achieve quicker 
training and real-time prediction performance. By 
maintaining essential temporal information with 
fewer parameters, the GRU layer significantly 
improves the system’s responsiveness without 
sacrificing detection accuracy. 

 
4. EXPERIMENTAL RESULTS 

On the UNSW-NB15 dataset, we tested the enhanced 
hybrid model that included Bidirectional and GRU 
layers to see how well it performed in real-time 
intrusion detection and temporal-spatial learning.  
Training the model involved fine-tuning the 
parameters for deep learning, optimal preprocessing, 
and sequence creation.  The upgraded model 
outperformed both the baseline Random Forest and 
the conventional Seq2Seq-ConvLSTM architecture in 
terms of accuracy, with the former reaching 98% and 
the latter consistently improving in recall, F1-score, 
and precision across all main attack types.  The GRU 
layer slashed training time by about 25% and 
decreased prediction latency, making the model 
quicker and more efficient; the Bidirectional layer 
helped the model grasp intricate forward-backward 
temporal connections, which reduced 
misclassification in multi-stage intrusions. 
 Users were also able to submit network samples and 
obtain categorization outputs instantaneously thanks 
to the real-time testing made possible by the Flask-
based implementation.  With reduced inference time 
and excellent detection reliability, the expanded 
model demonstrated consistent performance during 
live traffic simulation.  The results of visual studies 
such ROC curves, feature significance plots, and 
confusion matrices showed that the normal and attack 

classes could be better distinguished.  Faster 
computing, greater temporal-spatial learning, and 
more robustness for real-time intrusion detection in 
dynamic network settings are some of the ways in 
which the extended hybrid architecture surpasses 
conventional IDS models, according to the 
experimental results. 
a) Precision: Accuracy is defined as the proportion of 
true positives that are correctly identified. The 
formula for precision calculation follows: 
Precision =  TP/(TP + FP) 

 
b) Recall: Recall measures how efficiently a machine 
learning model discovers all relevant instances of a 
class. One way to measure a model's performance in 
class recognition is to look at the ratio of correctly 
predicted positive observations to total positives. 

 
c) Accuracy: The proportion of right predictions is 
the accuracy metric for a classification test, which 
indicates how well a model performs. 

 
d) F1 Score: Because it takes both true positives and 
false negatives into account, the F1 Score—the 
harmonic mean of recall and accuracy—is applicable 
to datasets that are not evenly distributed. 

 

 
Fig 2 Upload dataset 
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Fig 3 ECG Results 

 
Fig 4 performance graph 

 

Algorithm 
Name 

Accuracy Precision Recall F1-
Score 

Random 
Forest 90.35105 84.6458 82.56121 

83.458
72 

Proposed 
Hybrid 
Model 

97.00506 97.55816 93.1925 
95.155

75 

Extension 
Stacked 
Model 

98.24971 98.41092 95.59219 96.918
58 

Fig 5 performance tale 
 

5. CONCLUSION 
The extended hybrid intrusion detection system 
successfully enhances the traditional Seq2Seq–
ConvLSTM framework by integrating Bidirectional 
and GRU layers, resulting in improved temporal–
spatial learning and faster computation. Experimental 
results clearly demonstrate that the extension model 
outperforms both the baseline Random Forest and the 
original hybrid model, achieving 98%+ accuracy, 
higher precision, stronger recall, and improved F1-
score. The Bidirectional layer captures forward and 
backward sequence dependencies more effectively, 
while the GRU layer reduces training and prediction 
latency, enabling real-time threat detection. The 

deployment of the model through a Flask-based 
interface further strengthens the system by providing 
an accessible and interactive platform for instant 
intrusion prediction. Overall, the extended 
architecture proves to be a robust, scalable, and 
efficient solution for modern network security 
environments, capable of detecting complex cyber-
attacks with high reliability and operational 
practicality. 

6. FUTURE SCOPE 
There is a lot of room for growth in the extended 
hybrid intrusion detection model, which might 
greatly increase its flexibility and practicality.  To 
improve the system's ability to identify more 
complicated attack patterns, future research might 
investigate how to incorporate attention mechanisms 
based on transformers to better capture long-range 
relationships than recurrent networks.  To further 
classify certain attack types like denial-of-service 
(DoS), ransomware (Ransomware), and botnet traffic, 
the model may be enhanced to manage multi-class 
intrusion categories with finer precision. 
 To further enhance responsiveness on high-speed 
networks, the system may be enhanced to allow 
stream-based intrusion detection, which involves 
continuously analyzing live packet flows rather than 
batch inputs.  Distributed detection that respects user 
privacy in different network settings is possible with 
federated learning.  The integration with SDN/NFV-
based security frameworks, GPU-accelerated 
deployment, and real-time visualization dashboards 
can further broaden the practical application.  Lastly, 
security analysts can gain a better understanding of 
the system's decision-making capabilities in mission-
critical settings by integrating the model with 
sophisticated XAI tools like DeepSHAP or SHAP, 
which go beyond LIME. These tools can offer deeper 
insights into feature contributions. 
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