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Abstract—The rapid evolution of artificial intelligence (AI) 
and deep learning has transformed the field of nutritional 
analysis, offering significant improvements over traditional 
methods in food recognition and calorie estimation. Conventional 
techniques based on convolutional neural networks (CNNs) have 
shown promise yet remain limited by extensive data 
requirements, language dependence, and inadequate nutritional 
insights. In this paper, we propose a novel, multilingual, 
generative AI-based approach that leverages large multimodal 
models (LMMs) such as Google’s Gemini Pro Vision and 
OpenAI’s GPT-4 Vision. Our solution integrates robust image 
validation, dynamic prompt engineering, and multilingual 
natural language processing to deliver detailed calorie estimates 
and nutritional breakdowns while overcoming the challenges 
inherent in CNN-based systems. We detail the underlying 
algorithms, provide a conceptual system flowchart, and present 
comparative analyses against traditional approaches. Finally, our 
consolidated “Proposed Solution and Future Directions” section 
describes the system architecture, implementation details, and 
outlines the future research agenda. 

 
Index Terms—Food calorie estimation, generative AI, multi- 

modal models, multilingual natural language processing, deep 
learning, nutritional analysis. 

I. INTRODUCTION 

The increasing global emphasis on health and well-being 
has created an urgent need for accurate and accessible dietary 
monitoring tools. Traditional methods such as food frequency 
questionnaires and 24-hour dietary recalls suffer from limita- 
tions including memory biases, underreporting, and high user 
burden [1], [2]. With the proliferation of mobile technology, 
image-based dietary assessment (IADA) has emerged as an 
attractive alternative, as smartphones now serve as ubiquitous 
platforms for capturing food images [2], [5]. Early itera- 
tions of IADA systems relied on manual analysis of food 
photographs—a process that was both labor-intensive and 
error-prone [5]. The advent of convolutional neural networks 
(CNNs) improved automation through feature extraction and 
classification; however, such models still require vast amounts 
of labeled data, are predominantly designed for English lan- 
guage outputs, and lack detailed nutritional insights [5], [7], 

[8]. Additionally, CNN-based pipelines—often composed of 
separate modules for segmentation, classification, and volume 
estimation—are computationally expensive and prone to error 
propagation [8], [21]. Recent advances in large multimodal 
models (LMMs) such as Google’s Gemini Pro Vision and 
OpenAI’s GPT-4 Vision provide integrated frameworks that 
process both visual and textual information. These models are 
pretrained on extensive multimodal data and exhibit inherent 
multilingual capabilities, addressing key challenges in food 
calorie estimation [10], [11], [14]. In this paper, we introduce 
a comprehensive approach that leverages these models to 
deliver detailed, context-aware nutritional analyses in multiple 
languages. 

II. RELATED WORK 

Early research in food calorie estimation predominantly 
focused on convolutional neural network (CNN)–based meth- 
ods. Datasets such as Food-101, ETHZ-FOOD-101, and UEC- 
FOOD-256 have been instrumental in advancing food recogni- 
tion techniques [8], [9]. For instance, Bossard et al. introduced 
Food-101 to benchmark food classification, yet even this large- 
scale dataset does not capture the full diversity of global 
cuisines. Similarly, the ETHZ-FOOD-101 and UEC-FOOD- 
256 datasets have enabled significant progress; however, they 
are constrained by their limited representation of regional and 
cultural food variations. 
Researchers have noted several key limitations of these CNN- 
based approaches. First, data scarcity remains a critical chal- 
lenge. Extensive manual labeling is required to adequately 
capture the broad spectrum of global culinary diversity, and 
even then, many underrepresented cuisines remain poorly 
modeled [15]. Second, these systems exhibit a strong language 
dependence; the associated metadata and nutritional databases 
are predominantly in English, which restricts the applicability 
of these methods to non-English speaking populations [17]. 
Third, CNN-based methods often provide limited nutritional 
insight. While they excel at identifying food items from visual 
cues, they typically offer only a rudimentary linkage to nutri- 
tional databases without addressing portion size estimation or 
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detailed macronutrient and micronutrient breakdowns [6], [7]. 
In contrast, recent multimodal approaches have begun to 
bridge these gaps by integrating vision and language pro- 
cessing. Researchers have developed models that combine 
visual recognition with natural language understanding, en- 
abling dynamic prompt engineering and more detailed out- 
put generation. For example, studies involving GPT-4 Vi- 
sion have demonstrated robust multilingual natural language 
processing capabilities, thereby enhancing nutritional analysis 
and enabling real-time interaction [10], [12], [13]. These 
works—pioneered by teams working on state-of-the-art mul- 
timodal models—offer an integrated framework that not only 
overcomes the data limitations of traditional CNNs but also 
supports diverse linguistic inputs and outputs. 
Our research builds on these recent advances. While previous 
work has primarily addressed either food identification or basic 
calorie estimation, our approach integrates advanced image 
preprocessing, dynamic prompt generation, and multimodal 
AI inference to deliver comprehensive nutritional analysis. By 
leveraging the strengths of models like GPT-4 Vision, our 
solution is designed to provide accurate, context-aware, and 
multilingual calorie estimation, thereby addressing the critical 
shortcomings identified in earlier studies. This alignment with 
recent research in multimodal generative models enables us 
to offer a more scalable, user-centric solution that supports 
global dietary monitoring needs. 

III. BOTTLENECKS IN TRADITIONAL CNN-BASED FOOD 

RECOGNITION 

Traditional CNN-based food recognition methods face sev- 
eral critical bottlenecks: 

A. Data Scarcity and Annotation Burden 

CNNs require extensive labeled datasets to generalize well. 
Datasets like ETHZ-FOOD-101 provide a significant number 
of images but are insufficient to fully represent global culi- 
nary diversity [8], [9]. Inconsistencies in image quality and 
presentation further exacerbate these challenges [16]. 

B. Language Dependence 

Conventional systems rely on metadata and nutritional 
databases primarily in English, which limits global usability. 
Non-English speakers face difficulties accessing nutritional 
insights, rendering such systems less effective in diverse 
linguistic contexts [17]. 

C. Limited Nutritional Insight 

Most CNN-based approaches focus solely on food identifi- 
cation, linking recognized items to static nutritional data. They 
rarely estimate portion sizes or provide detailed breakdowns 
of macronutrients and micronutrients [6], [7]. 

D. Scalability and Real-Time Processing 

The multi-stage pipelines of CNN-based systems, involving 
segmentation, classification, and volume estimation, require 
substantial computational resources and frequent retraining. 
This limits scalability and hinders real-time application on 
mobile devices [8], [21]. 

IV. EXISTING FOOD CALORIE ESTIMATION METHODS: 
CHALLENGES AND LIMITATIONS 

A. Reliance on Specialized Hardware or Formats 

Many conventional methods for food calorie estimation 
hinge on using external reference objects—such as coins 
or standardized utensils—or specialized devices like depth- 
sensing cameras to gauge portion sizes [21]. While effec- 
tive under controlled circumstances, these requirements pose 
significant obstacles in real-world usage. Most users rely 
on standard smartphone cameras, and introducing additional 
hardware not only increases costs but also complicates the 
process of capturing food images in everyday situations. As 
a result, these systems are often impractical for large-scale 
adoption and fail to accommodate a broad spectrum of users 
who seek quick, convenient dietary assessments. 

B. Susceptibility to Cascading Errors 

A common architectural pattern in traditional solutions is a 
multi-stage pipeline consisting of segmentation, classification, 
and volume estimation [5], [21]. Although modularizing each 
task can simplify individual system components, any error 
in the initial step—such as incorrect segmentation—tends 
to propagate through subsequent stages. This compounding 
effect ultimately manifests as inaccurate calorie calculations, 
particularly for complex dishes featuring numerous or over- 
lapping food items. Moreover, variations in lighting, camera 
angle, or image resolution can exacerbate segmentation errors, 
further amplifying inaccuracies down the line. Consequently, 
end-users may receive results that are far less reliable than 
advertised, undermining confidence in the overall system. 

C. Limited Interaction and Language Support 

In many existing pipelines, users are restricted to a static 
interface or database-driven input. They often must manually 
search for food items or rely on English-centric metadata. This 
approach excludes vast segments of the global population, 
especially those who speak languages other than English or 
those with limited literacy in technical or scientific terminol- 
ogy. Additionally, without robust natural language processing 
(NLP) capabilities, the system cannot dynamically engage with 
users to clarify ambiguities—such as portion sizes, mixed- 
ingredient dishes, or user-specific dietary constraints. This lack 
of interaction reduces both the usability and the inclusiveness 
of traditional calorie estimation tools. 

D. Minimal Integration of Nutritional Insights 

While conventional solutions can estimate calorie counts, 
they usually do not provide a deep nutritional breakdown of 
the user’s meal. In practice, many people aim to track not just 
calories but also the distribution of macronutrients (proteins, 
fats, carbohydrates) and key micronutrients (vitamins, miner- 
als). By focusing solely on total caloric intake, these methods 
overlook the nuances of balanced eating and personalized 
health goals—such as low-sodium or high-fiber diets. Users 
requiring more detailed nutritional data must resort to external 
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applications or manual data entry, reducing the overall value 
and convenience of the calorie estimation system. 

Collectively, these limitations emphasize the necessity for a 
unified, user-friendly solution that can handle diverse image 
qualities, obviate specialized hardware, minimize multi-stage 
errors, accommodate multiple languages, and incorporate nu- 
anced nutritional insights. Our proposed generative AI-based 
method addresses these gaps by leveraging advanced image 
preprocessing, multimodal analysis, and dynamic prompt en- 
gineering to deliver a more holistic, inclusive, and accurate 
approach to food calorie estimation. 

V. PROPOSED SOLUTION AND FUTURE DIRECTIONS 

Building on the limitations discussed, our proposed solution 
leverages the strengths of Large Language Models (LLMs) to 
deliver a robust, multilingual, and holistic food calorie esti- 
mation system. By integrating state-of-the-art LLMs—capable 
of multimodal understanding and natural language genera- 
tion—into our design, we address the challenges of specialized 
hardware requirements, cascading errors, limited interaction, 
and minimal nutritional insights. 

A. LLM-Based Approach: Addressing Key Limitations 

1) Overcoming Specialized Hardware Requirements: Our 
approach eliminates the need for reference objects or 
depth cameras by leveraging LLM-driven reasoning and 
contextual cues (e.g., plate sizes, utensils) extracted 
from pretrained vision models. Consequently, users need 
only a standard smartphone camera, greatly increasing 
accessibility. 

2) Reducing Cascading Errors Through Unified 
Analysis: Traditional pipelines involve multiple 
stages—segmentation, classification, portion 
estimation—leading to error propagation. By contrast, 
we incorporate a single multimodal prompt (text + 
image) for the LLM, enabling holistic analysis in one 
pass and improving accuracy. 

3) Enabling Multilingual and Interactive Capabilities: 
LLMs excel at natural language processing in multi- 
ple languages, letting users converse in their preferred 
tongue. Dynamic, conversation-based interaction also 
supports clarification prompts (e.g., “Is that grilled or 
fried chicken?”), enhancing both user satisfaction and 
global reach. 

4) Offering Comprehensive Nutritional Insights: LLMs, en- 
riched with domain-specific corpora, can deliver detailed 
macronutrient and micronutrient profiles alongside calo- 
rie counts. Users might ask “How much sodium is in this 
dish?” and receive contextually relevant information plus 
tailored recommendations for improving dietary choices. 

B. System Architecture and LLM Integration 

Our solution builds upon a unified architecture designed 
to efficiently combine the capabilities of vision models and 
LLMs. Figure 1 provides a high-level illustration of the 
system’s workflow and integrations: 

 

 
 

Fig. 1. Conceptual diagram illustrating LLM integration for calorie estimation 
 

 
C. Future Directions 

1) Deeper Personalization 
Integrating user profiles—encompassing dietary goals, 
allergies, or medical conditions—could empower the 
LLM to deliver highly personalized calorie recommen- 
dations and food alternatives. Over time, the system 
might learn to propose healthier options aligned with 
the user’s preferences. 

2) Advanced Portion Estimation 
While current LLM-based approaches approximate vol- 
ume through context (e.g., standard plate sizes, cutlery 
references), future research could incorporate refined 3D 
modeling or smartphone sensor data (LiDAR) for greater 
accuracy in complex dishes. 

3) On-Device Inference 
Deploying smaller, optimized LLMs on mobile devices 
would reduce latency and ensure privacy by minimizing 
data transfer to cloud services. Techniques like quanti- 
zation and pruning could help meet the computational 
constraints of smartphones or edge devices. 

4) Ethics and Data Governance 
As AI systems gain access to personal health data, future 
work must rigorously address data security and user 
privacy. Regulatory compliance (GDPR, HIPAA, etc.) 
and bias mitigation strategies (ensuring fair treatment of 
diverse user groups) will remain integral to real-world 
deployment. 
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5) Real-Time Feedback and Collaboration 
Beyond calorie counts, an LLM could engage users in 
interactive dialogues about cooking methods, recipe sub- 
stitutions, and nutritional tips—potentially collaborating 
with multiple users (e.g., family or group meal planning) 
in real time. 

Through unified analysis using LLMs, our solution directly 
tackles the challenges posed by specialized hardware, cascad- 
ing errors, limited language support, and narrow nutritional 
insights. By consolidating visual and textual information into a 
single inference pipeline, we reduce error propagation, enable 
a natural language interface across multiple languages, and 
offer deeper nutritional guidance. This design paves the way 
for broader, more inclusive adoption of AI-driven dietary man- 
agement tools and sets the stage for next-generation research 
in personalized health and nutrition. 

TABLE II 
KEY EVALUATION METRICS FOR FOOD CALORIE ESTIMATION SYSTEMS 

 
TABLE I 

COMPARISON OF TRADITIONAL CNNS VS. MULTILINGUAL GENERATIVE 
AI APPROACHES 

 
AI 

 
 
 
 
 

 
Our proposed multilingual, generative AI-based solution 

addresses the major limitations of traditional CNN-based food 
calorie estimation systems. By integrating advanced multi- 
modal models and dynamic prompt engineering, the system 
delivers comprehensive, real-time nutritional analysis that is 
both scalable and accessible to a global audience. The in- 
herent multilingual capability ensures global accessibility, and 
the modular design facilitates continuous improvements and 
scalability. Furthermore, the user-centric approach enhances 
natural language interaction and overall usability. 

VI. CONCLUSION 

In this paper, we presented a novel approach to food 
calorie estimation that leverages the power of large multimodal 
generative AI models. Our method overcomes the data scarcity, 
language dependence, limited nutritional insight, and scala- 
bility issues inherent in traditional CNN-based approaches. 
The integrated system—featuring robust image preprocessing, 
dynamic prompt generation, multimodal inference, and output 
post-processing—delivers detailed and context-aware nutri- 
tional analyses in multiple languages. Preliminary evaluations 
indicate superior performance in accuracy and efficiency, and 
ongoing research will further refine the system for broader 
adoption and enhanced personalization. 
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