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Abstract—The rapid evolution of artificial intelligence (AI)
and deep learning has transformed the field of nutritional
analysis, offering significant improvements over traditional
methods in food recognition and calorie estimation. Conventional
techniques based on convolutional neural networks (CNNs) have
shown promise yet remain limited by extensive data
requirements, language dependence, and inadequate nutritional
insights. In this paper, we propose a novel, multilingual,
generative Al-based approach that leverages large multimodal
models (LMMs) such as Google’s Gemini Pro Vision and
OpenAD’s GPT-4 Vision. Our solution integrates robust image
validation, dynamic prompt engineering, and multilingual
natural language processing to deliver detailed calorie estimates
and nutritional breakdowns while overcoming the challenges
inherent in CNN-based systems. We detail the underlying
algorithms, provide a conceptual system flowchart, and present
comparative analyses against traditional approaches. Finally, our
consolidated “Proposed Solution and Future Directions” section
describes the system architecture, implementation details, and
outlines the future research agenda.

Index Terms—Food calorie estimation, generative Al, multi-
modal models, multilingual natural language processing, deep
learning, nutritional analysis.

1. INTRODUCTION

The increasing global emphasis on health and well-being
has created an urgent need for accurate and accessible dietary
monitoring tools. Traditional methods such as food frequency
questionnaires and 24-hour dietary recalls suffer from limita-
tions including memory biases, underreporting, and high user
burden [1], [2]. With the proliferation of mobile technology,
image-based dietary assessment (IADA) has emerged as an
attractive alternative, as smartphones now serve as ubiquitous
platforms for capturing food images [2], [5]. Early itera-
tions of IADA systems relied on manual analysis of food
photographs—a process that was both labor-intensive and
error-prone [5]. The advent of convolutional neural networks
(CNNs) improved automation through feature extraction and
classification; however, such models still require vast amounts
of labeled data, are predominantly designed for English lan-
guage outputs, and lack detailed nutritional insights [5], [7],

[8]. Additionally, CNN-based pipelines—often composed of
separate modules for segmentation, classification, and volume
estimation—are computationally expensive and prone to error
propagation [8], [21]. Recent advances in large multimodal
models (LMMs) such as Google’s Gemini Pro Vision and
OpenAl’s GPT-4 Vision provide integrated frameworks that
process both visual and textual information. These models are
pretrained on extensive multimodal data and exhibit inherent
multilingual capabilities, addressing key challenges in food
calorie estimation [10], [11], [14]. In this paper, we introduce
a comprehensive approach that leverages these models to
deliver detailed, context-aware nutritional analyses in multiple
languages.

II. RELATED WORK

Early research in food calorie estimation predominantly
focused on convolutional neural network (CNN)-based meth-
ods. Datasets such as Food-101, ETHZ-FOOD-101, and UEC-
FOOD-256 have been instrumental in advancing food recogni-
tion techniques [8], [9]. For instance, Bossard et al. introduced
Food-101 to benchmark food classification, yet even this large-
scale dataset does not capture the full diversity of global
cuisines. Similarly, the ETHZ-FOOD-101 and UEC-FOOD-
256 datasets have enabled significant progress; however, they
are constrained by their limited representation of regional and
cultural food variations.

Researchers have noted several key limitations of these CNN-
based approaches. First, data scarcity remains a critical chal-
lenge. Extensive manual labeling is required to adequately
capture the broad spectrum of global culinary diversity, and
even then, many underrepresented cuisines remain poorly
modeled [15]. Second, these systems exhibit a strong language
dependence; the associated metadata and nutritional databases
are predominantly in English, which restricts the applicability
of these methods to non-English speaking populations [17].
Third, CNN-based methods often provide limited nutritional
insight. While they excel at identifying food items from visual
cues, they typically offer only a rudimentary linkage to nutri-
tional databases without addressing portion size estimation or
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detailed macronutrient and micronutrient breakdowns [6], [7].
In contrast, recent multimodal approaches have begun to
bridge these gaps by integrating vision and language pro-
cessing. Researchers have developed models that combine
visual recognition with natural language understanding, en-
abling dynamic prompt engineering and more detailed out-
put generation. For example, studies involving GPT-4 Vi-
sion have demonstrated robust multilingual natural language
processing capabilities, thereby enhancing nutritional analysis
and enabling real-time interaction [10], [12], [13]. These
works—pioneered by teams working on state-of-the-art mul-
timodal models—offer an integrated framework that not only
overcomes the data limitations of traditional CNNs but also
supports diverse linguistic inputs and outputs.

Our research builds on these recent advances. While previous
work has primarily addressed either food identification or basic
calorie estimation, our approach integrates advanced image
preprocessing, dynamic prompt generation, and multimodal
Al inference to deliver comprehensive nutritional analysis. By
leveraging the strengths of models like GPT-4 Vision, our
solution is designed to provide accurate, context-aware, and
multilingual calorie estimation, thereby addressing the critical
shortcomings identified in earlier studies. This alignment with
recent research in multimodal generative models enables us
to offer a more scalable, user-centric solution that supports
global dietary monitoring needs.

III. BOTTLENECKS IN TRADITIONAL CNN-BASED FOOD
RECOGNITION

Traditional CNN-based food recognition methods face sev-
eral critical bottlenecks:

A. Data Scarcity and Annotation Burden

CNNs require extensive labeled datasets to generalize well.
Datasets like ETHZ-FOOD-101 provide a significant number
of images but are insufficient to fully represent global culi-
nary diversity [8], [9]. Inconsistencies in image quality and
presentation further exacerbate these challenges [16].

B. Language Dependence

Conventional systems rely on metadata and nutritional
databases primarily in English, which limits global usability.
Non-English speakers face difficulties accessing nutritional
insights, rendering such systems less effective in diverse
linguistic contexts [17].

C. Limited Nutritional Insight

Most CNN-based approaches focus solely on food identifi-
cation, linking recognized items to static nutritional data. They
rarely estimate portion sizes or provide detailed breakdowns
of macronutrients and micronutrients [6], [7].

D. Scalability and Real-Time Processing

The multi-stage pipelines of CNN-based systems, involving
segmentation, classification, and volume estimation, require
substantial computational resources and frequent retraining.
This limits scalability and hinders real-time application on
mobile devices [8], [21].
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IV. EXISTING FOOD CALORIE ESTIMATION METHODS:
CHALLENGES AND LIMITATIONS

A. Reliance on Specialized Hardware or Formats

Many conventional methods for food calorie estimation
hinge on using external reference objects—such as coins
or standardized utensils—or specialized devices like depth-
sensing cameras to gauge portion sizes [21]. While effec-
tive under controlled circumstances, these requirements pose
significant obstacles in real-world usage. Most users rely
on standard smartphone cameras, and introducing additional
hardware not only increases costs but also complicates the
process of capturing food images in everyday situations. As
a result, these systems are often impractical for large-scale
adoption and fail to accommodate a broad spectrum of users
who seek quick, convenient dietary assessments.

B. Susceptibility to Cascading Errors

A common architectural pattern in traditional solutions is a
multi-stage pipeline consisting of segmentation, classification,
and volume estimation [5], [21]. Although modularizing each
task can simplify individual system components, any error
in the initial step—such as incorrect segmentation—tends
to propagate through subsequent stages. This compounding
effect ultimately manifests as inaccurate calorie calculations,
particularly for complex dishes featuring numerous or over-
lapping food items. Moreover, variations in lighting, camera
angle, or image resolution can exacerbate segmentation errors,
further amplifying inaccuracies down the line. Consequently,
end-users may receive results that are far less reliable than
advertised, undermining confidence in the overall system.

C. Limited Interaction and Language Support

In many existing pipelines, users are restricted to a static
interface or database-driven input. They often must manually
search for food items or rely on English-centric metadata. This
approach excludes vast segments of the global population,
especially those who speak languages other than English or
those with limited literacy in technical or scientific terminol-
ogy. Additionally, without robust natural language processing
(NLP) capabilities, the system cannot dynamically engage with
users to clarify ambiguities—such as portion sizes, mixed-
ingredient dishes, or user-specific dietary constraints. This lack
of interaction reduces both the usability and the inclusiveness
of traditional calorie estimation tools.

D. Minimal Integration of Nutritional Insights

While conventional solutions can estimate calorie counts,
they usually do not provide a deep nutritional breakdown of
the user’s meal. In practice, many people aim to track not just
calories but also the distribution of macronutrients (proteins,
fats, carbohydrates) and key micronutrients (vitamins, miner-
als). By focusing solely on total caloric intake, these methods
overlook the nuances of balanced eating and personalized
health goals—such as low-sodium or high-fiber diets. Users
requiring more detailed nutritional data must resort to external
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applications or manual data entry, reducing the overall value
and convenience of the calorie estimation system.

Collectively, these limitations emphasize the necessity for a
unified, user-friendly solution that can handle diverse image
qualities, obviate specialized hardware, minimize multi-stage
errors, accommodate multiple languages, and incorporate nu-
anced nutritional insights. Our proposed generative Al-based
method addresses these gaps by leveraging advanced image
preprocessing, multimodal analysis, and dynamic prompt en-
gineering to deliver a more holistic, inclusive, and accurate
approach to food calorie estimation.

V. PROPOSED SOLUTION AND FUTURE DIRECTIONS

Building on the limitations discussed, our proposed solution
leverages the strengths of Large Language Models (LLMs) to
deliver a robust, multilingual, and holistic food calorie esti-
mation system. By integrating state-of-the-art LLMs—capable
of multimodal understanding and natural language genera-
tion—into our design, we address the challenges of specialized
hardware requirements, cascading errors, limited interaction,
and minimal nutritional insights.

A. LLM-Based Approach: Addressing Key Limitations

1) Overcoming Specialized Hardware Requirements: Our
approach eliminates the need for reference objects or
depth cameras by leveraging LLM-driven reasoning and
contextual cues (e.g., plate sizes, utensils) extracted
from pretrained vision models. Consequently, users need
only a standard smartphone camera, greatly increasing

accessibility.

2) Reducing Cascading Errors Through  Unified
Analysis:  Traditional pipelines involve multiple
stages—segmentation, classification, portion

estimation—leading to error propagation. By contrast,
we incorporate a single multimodal prompt (text +
image) for the LLM, enabling holistic analysis in one
pass and improving accuracy.

3) Enabling Multilingual and Interactive Capabilities:
LLMs excel at natural language processing in multi-
ple languages, letting users converse in their preferred
tongue. Dynamic, conversation-based interaction also
supports clarification prompts (e.g., “Is that grilled or
fried chicken?”), enhancing both user satisfaction and
global reach.

4) Offering Comprehensive Nutritional Insights: LLMs, en-
riched with domain-specific corpora, can deliver detailed
macronutrient and micronutrient profiles alongside calo-
rie counts. Users might ask “How much sodium is in this
dish?” and receive contextually relevant information plus
tailored recommendations for improving dietary choices.

B. System Architecture and LLM Integration

Our solution builds upon a unified architecture designed
to efficiently combine the capabilities of vision models and
LLMs. Figure 1 provides a high-level illustration of the
system’s workflow and integrations:
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User Interface (Mobile/Web)

- Capture/Upload Food Image
- Language Preferences/Prompts
1. Image Validation & Preprocessing Module

- Check format, resolution, brightness
- Apply normalization, noise reduction

l

2. Multimodal Prompt Construction & LLM Integration
- Combine image features + user instructions
- Construct prompt (calorie est., portion size,
language preference) for LLM

l

3. Vision-LLM Inference (Unified Analysis)
- LLM processes image context + text prompt
- Identifies food items, estimates portions
- Generates natural language nutritional output

l

4, Output Post-Processing & User Feedback Loop
- Format results (language, layout, key insights)
- Collect user feedback for continuous refinement

Fig. 1. Conceptual diagram illustrating LLM integration for calorie estimation

C. Future Directions

1) Deeper Personalization
Integrating user profiles—encompassing dietary goals,
allergies, or medical conditions—could empower the
LLM to deliver highly personalized calorie recommen-
dations and food alternatives. Over time, the system
might learn to propose healthier options aligned with
the user’s preferences.

2) Advanced Portion Estimation
While current LLM-based approaches approximate vol-
ume through context (e.g., standard plate sizes, cutlery
references), future research could incorporate refined 3D
modeling or smartphone sensor data (LiDAR) for greater
accuracy in complex dishes.

3) On-Device Inference
Deploying smaller, optimized LLMs on mobile devices
would reduce latency and ensure privacy by minimizing
data transfer to cloud services. Techniques like quanti-
zation and pruning could help meet the computational
constraints of smartphones or edge devices.

4) Ethics and Data Governance
As Al systems gain access to personal health data, future
work must rigorously address data security and user
privacy. Regulatory compliance (GDPR, HIPAA, etc.)
and bias mitigation strategies (ensuring fair treatment of
diverse user groups) will remain integral to real-world
deployment.
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5) Real-Time Feedback and Collaboration
Beyond calorie counts, an LLM could engage users in
interactive dialogues about cooking methods, recipe sub-
stitutions, and nutritional tips—potentially collaborating
with multiple users (e.g., family or group meal planning)
in real time.

Through unified analysis using LLMs, our solution directly
tackles the challenges posed by specialized hardware, cascad-
ing errors, limited language support, and narrow nutritional
insights. By consolidating visual and textual information into a
single inference pipeline, we reduce error propagation, enable
a natural language interface across multiple languages, and
offer deeper nutritional guidance. This design paves the way
for broader, more inclusive adoption of Al-driven dietary man-
agement tools and sets the stage for next-generation research
in personalized health and nutrition.

TABLE I
COMPARISON OF TRADITIONAL CNNS VS. MULTILINGUAL GENERATIVE
Al APPROACHES

TABLE II
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KEY EVALUATION METRICS FOR FOOD CALORIE ESTIMATION SYSTEMS

Feature Traditional CNNs Multilingual Generative
Al

Data Re- | Require large, labeled | Leverages multimodal

quirements datasets; struggle with | data (images and text);
less common cuisines [8], | generalizes from diverse
[15]. data sources.

Language Typically rely on English- | Inherently = multilingual;

Support centric metadata [17]. supports input/output in

various languages [11],
[14].

Nutritional Focus on food identifica- | Provides detailed calorie

Insight tion; limited estimation of | estimation, portion size
portion sizes and nutrients | in- ference, and nutrient
[6]. anal- ysis.

Scalability High computational ex- | Lower maintenance;
pense; frequent retraining | prompt-based updates and
required [8], [21]. improved generalization

capabilities.

User Interac- | Limited natural language | Enables conversational in-

tion interaction; teraction and real-time es-

database | timation via natural lan-
- dependent [5]. guage.

Metric Specific Metric Description

Category

Top-k Accuracy Whether the correct food

Accuracy item_ appears in the top-k
predictions.

Mean Average Precision | Accuracy of food localiza-

(mAP) tion and identification.

Mean Absolute  Error | Average magnitude of er-

(MAE) rors in calorie/nutrient es-
timation.

Root Mean Squared Error | Square root of the average

(RMSE) squared errors in estima-
tion.

Efficiency Processing Time Time required to process
an image and generate an
output.

Computational Resources Memory and processing
power required for model
inference.

e Language Coverage Number of languages sup-

Multilingual e y ported in inputgaundg outerl)t.

Translation Accuracy Accuracy of language-
specific output, if
translation is used.

U ! Usability Ease and intuitiveness of

ser Experience .
using the system.

User Satisfaction Measured via surveys and

feedback.

Our proposed multilingual, generative Al-based solution
addresses the major limitations of traditional CNN-based food
calorie estimation systems. By integrating advanced multi-
modal models and dynamic prompt engineering, the system
delivers comprehensive, real-time nutritional analysis that is
both scalable and accessible to a global audience. The in-
herent multilingual capability ensures global accessibility, and
the modular design facilitates continuous improvements and
scalability. Furthermore, the user-centric approach enhances
natural language interaction and overall usability.

VI. CONCLUSION

In this paper, we presented a novel approach to food
calorie estimation that leverages the power of large multimodal
generative Al models. Our method overcomes the data scarcity,
language dependence, limited nutritional insight, and scala-
bility issues inherent in traditional CNN-based approaches.
The integrated system—featuring robust image preprocessing,
dynamic prompt generation, multimodal inference, and output
post-processing—delivers detailed and context-aware nutri-
tional analyses in multiple languages. Preliminary evaluations
indicate superior performance in accuracy and efficiency, and
ongoing research will further refine the system for broader
adoption and enhanced personalization.
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