W, .
{ International Journal of

Information Technology & Computer Engineering
" L 4 ”

ISSN 2347-3657

Volume 14, Issue 1,2026

Handwritten Digit Recognition Using ML

N .Abhinav!, Dr.Md.Asif?
B.Tech Student, Department Of Electronics and Computer Engineering, J.B Institute of Engineering and
Technology, Hyderabad, India!
Associate Professor, Department Of Electronics and Computer Engineering, J.B Institute of Engineering and
Technology, Hyderabad, India®
nabhiabhinav123@gmail.com, asif.ecm@jbiet.edu.in

Abstract

Handwritten digit recognition is a fundamental
problem in the field of pattern recognition and
machine learning, with wide-ranging applications
in document processing, postal automation, banking
systems, and optical character recognition. This
study presents the development of a machine
learning—based model for accurate recognition of
handwritten digits. The proposed system involves
preprocessing techniques such as normalization,
noise removal, and feature extraction to enhance the
quality of input images. Various machine learning
algorithms are trained and evaluated on a standard
handwritten digit dataset to classify digits from 0 to
9. Model performance is assessed using accuracy,
precision, recall, and confusion matrix analysis. The
results demonstrate that the implemented machine
learning approach achieves high recognition
accuracy and robust performance across different
handwriting styles. This work highlights the
effectiveness of machine learning techniques in
automating handwritten digit recognition tasks and
provides a foundation for further improvements
using advanced deep learning models.

Keywords: Machine Learning, Digital Image, CNN.

Introduction

Handwritten digit recognition has been an important
research area in the fields of pattern recognition,
computer vision, and machine learning for several
decades. Before the emergence of digital input
devices, handwritten digits were commonly used in
postal mail sorting, bank cheque processing, and
form data entry. Automating the interpretation of
handwritten digits became a crucial task for
reducing human effort, minimizing errors, and
increasing processing speed in these applications.
Early approaches to handwritten digit recognition
relied on manual feature engineering, where experts
designed rules or extracted geometric and statistical
features from digit images. Although these methods
performed well for simpler tasks, they struggled
with variations in writing styles, distortions, and
noise inherent in human handwriting.

The development of machine learning significantly
revolutionized this domain. With the availability of
large datasets such as the MNIST database and
improved computational power, machine learning

algorithms—especially deep learning techniques—
became capable of learning features directly from
raw pixel data. This shift eliminated the need for
handcrafted feature extraction and led to highly
accurate digit recognition systems.

Today, handwritten digit recognition serves as a
standard benchmark problem for evaluating
machine learning models. It provides an excellent
platform for understanding image preprocessing,
model training, classification techniques, and
performance evaluation. Its real-world relevance,
combined with its suitability for experimentation,
makes it a foundational project for students and
researchers exploring machine learning and artificial
intelligence.

Technologies Required

The development of a handwritten digit recognition
system using machine learning requires a
combination of software tools, programming
libraries, and computational frameworks. These
technologies enable efficient data preprocessing,
model training, evaluation, and deployment.
Machine learning tasks, particularly deep learning
approaches such as Convolutional Neural Networks
(CNNs), demand reliable tools capable of handling
large datasets, performing numerical computations,
and supporting GPU acceleration. The following
sections outline the essential software requirements
used in building this project.

Software Requirements

The paper uses Python as the main programming
language along with essential libraries such as
TensorFlow and Keras for building and training the
CNN model. NumPy and Pandas are used for data
handling and numerical operations, while Matplotlib
helps visualize performance metrics. Scikit-learn
supports evaluation and comparison with classical
machine learning algorithms. The implementation
and testing are carried out in Jupyter Notebook or
Google Colab, which provide an interactive
environment with GPU support.

Python Programming Language

Python is the primary language used due to its
simplicity, extensive library support, and suitability
for machine learning and deep learning applications.

50

W, .
{ International Journal of

Information Technology & Computer Engineering
" L 4 ”

TensorFlow / Keras

These deep learning frameworks are used to design,
train, and evaluate the CNN model.

TensorFlow provides powerful numerical
computation and GPU support.

Keras offers a high-level API for building neural
networks quickly and efficiently.

NumPy

A fundamental scientific computing library for
handling numerical operations, arrays, and matrix
computations required in preprocessing and model
development.

Pandas

Used for handling datasets, loading image metadata
(if required), and performing data transformations or
analysis.

Matplotlib / Seaborn

Visualization libraries used to plot training curves,
confusion matrices, accuracy graphs, and other
performance metrics.

Hardware Requirements

The handwritten digit recognition system requires
basic yet efficient hardware to support data
processing, model training, and testing. A computer
with at least an Intel i5 or equivalent processor and
8 GB RAM is recommended for handling numerical
computations and dataset operations smoothly. A
minimum of 20 GB of disk space is needed to store
datasets, libraries, and trained models. While CPU-
based execution is sufficient for basic training, using
a GPU—such as an NVIDIA CUDA-enabled
graphics card—significantly accelerates the training
of Convolutional Neural Networks (CNNs). In cases
where local GPU hardware is unavailable, cloud
platforms like Google Colab can provide GPU
support. A stable internet connection is also required
for installing dependencies, downloading datasets,
and running cloud-based environments.

Existing Systems

Existing handwritten digit recognition systems rely
primarily on traditional machine learning techniques
and early optical character recognition (OCR)
methods. These systems typically use handcrafted
features such as pixel intensity, edge detection,
zoning, histogram of gradients, or geometric
patterns to represent each digit. After feature
extraction, classical classifiers like k-Nearest
Neighbors (KNN), Support Vector Machines
(SVM), Logistic Regression, and Decision Trees are
used to classify the digits.Although these systems
perform reasonably well on clean and standardized
datasets, they suffer from several limitations. First,
handcrafted features are not robust to variations in
handwriting styles, sizes, orientations, or noise,

ISSN 2347-3657
Volume 14, Issue 1,2026

which makes recognition less accurate in real-world
conditions. Second, most existing systems require
extensive preprocessing and manual tuning, making
them difficult to scale or adapt to new types of
handwritten data. Traditional OCR solutions also
struggle with background noise, skewed digits,
blurred images, and connected or overlapping
characters.Additionally, existing systems lack the
ability to learn complex patterns automatically.
Their accuracy drops significantly when faced with
diverse handwriting from different individuals. They
are also computationally inefficient for large
datasets because classical models do not utilize GPU
acceleration and often rely on slow distance-based
or rule-based methods.

Proposed System

The proposed system introduces an advanced
handwritten digit recognition model based on
machine learning, specifically utilizing
Convolutional Neural Networks (CNNs) to
overcome the limitations of traditional OCR and
classical machine learning approaches. Unlike
existing systems that rely heavily on manual feature
extraction, the proposed system automatically learns
meaningful features directly from pixel-level data.
This significantly enhances accuracy, adaptability,
and robustness when dealing with diverse
handwriting styles, noise, distortions, and variations
in digit size or orientation.

Problem Statement

Handwritten digit recognition has become an
essential component in various domains such as
banking, postal automation, academic assessment,
digital documentation, and automated data entry.
However, the manual interpretation of handwritten
digits is slow, inconsistent, and prone to human
error. Traditional OCR and machine learning
techniques struggle to reliably recognize digits due
to the natural variations in human handwriting. This
chapter discusses the core problem, limitations of
existing systems, consequences of these limitations,
and the necessity for an advanced machine learning—
based solution.

Problem Definition

The main problem addressed in this project is the
difficulty in accurately recognizing handwritten
digits from scanned or captured images due to
variations in writing styles, shapes, sizes,
orientations, and noise. Existing systems do not
generalize well across different handwriting
patterns, leading to misclassification and
inefficiencies. Therefore, there is a need for an
automated, robust, and high-accuracy system that
can reliably interpret handwritten digits using
machine.

51

o

00 oo

W, :
{ International Journal of

Information Technology & Computer Engineering

System Design

The system design of the Handwritten Digit
Recognition System establishes the structural and
functional blueprint for building an accurate,
efficient, and user-friendly ML-based recognition
solution. This chapter outlines the architectural
principles, major components, internal workflows,
and design choices that contribute to reliable digit
classification.

The system combines key processes including
image preprocessing, feature extraction, neural
network inference, and performance evaluation.
The primary aim is to ensure that handwritten digit
images—whether drawn on a canvas, uploaded as
files, or captured digitally—are processed
consistently and classified with high accuracy. The
design supports scalability, modularity, and ease of
integration with external systems such as form-
processing tools, attendance systems, banking
verification software, and postal automation
modules.

System Architecture Overview

The system follows a layered architecture to
separate inputs, processing logic, model operations,
and data storage. This enhances maintainability,
improves performance, and allows independent
optimization of workflow stages.

Architectural Layers

Presentation Layer

User interface (desktop UI, Tkinter canvas, or web
interface).

Allows users to draw, upload, or provide digit
images.

Input & Preprocessing Layer

Performs grayscale conversion, noise removal,
thresholding, resizing (28x28), and normalization.
Ensures all images match the format required by the
ML model.

Model Inference Layer

Uses a trained Convolutional Neural
(CNN).

Handles feature extraction and classification.
Produces predicted digit along with confidence
scores.

Evaluation Layer

Calculates accuracy, precision, recall, F1-score, and
confusion matrix.
Monitors model
improvements.

Data Storage Layer
Stores training datasets (MNIST), model files (.h5),
user inputs, and logs.

May use local storage or cloud-based object storage.
Integration Layer

Provides APIs for external system integration.
Supports deployment in banking, postal systems,
education platforms, etc.

Network

performance for future

o

SNk W=

ISSN 2347-3657
Volume 14, Issue 1,2026

This layered architecture ensures that the system is
flexible, scalable, and optimized for real-time digit
recognition.

Machine Learning Model & Feature Processing
Engine

The ML engine is the core component of the system.
It performs data preprocessing, deep learning-based
feature extraction, and prediction generation.

Key Functions of the ML Engine

Image Preprocessing
Converts raw input
grayscale images.
Removes noise, normalizes pixels, and enhances
edge clarity.

Feature Extraction

CNN layers detect edges, curves, corners, and stroke
patterns unique to digits.

Classification

Fully connected layers classify digits (0-9) based on
extracted features.

Softmax layer generates probability scores for each
digit.

Confidence Estimation

Indicates model certainty for each prediction.
Useful for identifying ambiguous or unclear input
images.

into standardized 28x28

Model Training and Evaluation

Model training is performed offline using the
MNIST dataset or a custom dataset collected from
users.

Training Pipeline

Dataset loading and splitting

Normalization and augmentation

CNN model training

Epoch-based optimization using backpropagation
Model saving and versioning

Evaluation Metrics

Accuracy — Percentage of correctly recognized
digits

Precision & Recall — Evaluate correctness of
individual digit classes

F1-Score — Harmonic mean of precision and recall
Confusion Matrix — Visual comparison of actual
vs. predicted digits

Continuous monitoring helps refine
performance and detect misclassifications.

model

Verification & Reliability Layer

This layer ensures that the outputs generated by the
system are dependable and transparent.

Key Responsibilities

Traceability: Each prediction is logged with
timestamp, confidence, and input image.

Error Checking: Detects incorrectly shaped or
corrupted images.

Consistent Preprocessing: Ensures identical steps
for all images for fairness in prediction.

52

v, .
{ International Journal of

Information Technology & Computer Engineering
" L F.

Reliability Indicators: Performance metrics allow
continuous evaluation and optimization.

This layer guarantees trustworthiness and supports
auditability in applications such as banking or
document verification.

Optimization Engine for Prediction Efficiency
While the CNN handles classification, an
optimization engine ensures fast and resource-
efficient recognition.

Optimization Techniques

Batch processing for faster computation

GPU acceleration (optional)

Model pruning or quantization for deployment on
low-power devices

Adaptive resizing to optimize memory usage

The result is a highly responsive real-time
recognition system suitable for desktop or cloud
deployment.

Input Integration for Practical Usability

The system supports multiple methods for capturing
handwritten inputs:

1. Drawing Pad or Canvas (Tkinter UI)

Users can draw digits using a mouse or stylus.

2. Image Upload

Supports JPG, PNG, and BMP formats.

3. Real-Time Capture

Can integrate with cameras or scanners for
automation.

4. External System Integration

Possible through APIs for:

Bank cheque reading

Postal code recognition

Classroom digit-based assessments

Document form entry automation

The system is built to accommodate diverse real-
world environments.

Workflow & Data Pipeline Architecture
The entire digit recognition process follows an
efficient workflow:

0N0O 0O WLWO RO WONOO

ISSN 2347-3657
Volume 14, Issue 1,2026

Input Acquisition

User draws/upload digit.

System captures the raw image.

Preprocessing

Noise removal, thresholding, normalization.
Feature Extraction

CNN layers produce high-level patterns.

Inference

CNN model predicts digit (0-9).

Output Generation

Predicted result and confidence score shown to user.
Storage and Logging

Save prediction history, model results, and errors.
Performance Analytics (Optional)

Admin dashboard to track overall accuracy and
usage.

DIAGRAMS

Diagrams are an essential tool for simplifying and
visually representing the internal workings of a
machine learning—based system. In the context of
the Handwritten Digit Recognition using Machine
Learning project, diagrams play a crucial role in
illustrating how different components—such as data
preprocessing, feature extraction, model training,
prediction, and result display—interact with each
other. These diagrams clearly depict the flow of
information, starting from input image acquisition to
preprocessing, neural network inference, and final
classification output. By presenting these processes
visually, diagrams help reduce ambiguity during
development, making system implementation,
debugging, and future improvements more efficient
and structured. UML diagrams, in particular, act as
a bridge between conceptual understanding and
implementation details by providing a shared visual
language for developers, evaluators, and
stakeholders. They accurately communicate
workflow interactions, module responsibilities, state
transitions, and data relationships within the digit
recognition system.

Class Diagram

Input

First layer

Second layer

Output

Third layer

53

\Y ¢) ISSN 2347-3657
", Q [nternational Journal of

Information Te(hnology & Computer Engineenng Volume 14, Issue 1, 2026

Sequence Diagram

I Input Data

.

I Pre-processing of data I

!

I Segmentation I

!

I Feature Extraction I

!
Cnmu Model Libmqr)

C“iassif}'."f{:mpizcl

Recomnized character

Collaboration Diagram

i
= R q
Ergermlble 1
, Class Labels
| af New-
[sossizen
= classiiiers -
5/ < |
Handwaitten Feature Exataction Conthination Final Class
Ldigit [Contrast extraciion 0oF Label
Diataset Claszidication Prediciions

54

Vé : ISSN 2347-3657
(S International Journal of

Information Te(hnology 5 COmPUTE(Engmeenng Volume 14, Issue 1’ 2026
Activity Diagram
|.:1'— — "‘-!
— | Preprocessing(Phase 1)
-~ 5 A Tram et |‘-,_
;'-\..___ _— i-'! : |y Segmentation Classiication
- Madifaed Framing
SHp— [:-.__ - Fegture mitractom
Test Sat i
aded
Recognized
digits, signs
and ...
State Chart Diagram
Input Layer Hidden Layers Classification Layer
N
i K i R
1 HP® . " : ¥ !
1 HRE : : : £ |
' -": - - [}
1 HIE E z eoel g
H HEIEIBIEIF IR E L= E = |
: HENG I IBIEIEIEIEEE =" 1
' e é MIEITEIETEIIEE =
' E: o S E O G i [ET
i H R e e e -—— :
L} it (] L]
L] 'Ll L]]
S e S ———

ER Diagram

User Project

55

W, .
{ International Journal of

Information Technology & Computer Engineering
" L 4 ”

ISSN 2347-3657

Volume 14, Issue 1,2026

Results And Discussion

The results obtained from testing the Handwritten
Digit Recognition System demonstrate that the
model performs with high accuracy, stability, and
reliability. Comprehensive evaluation using
standard ML metrics verified that the system
correctly recognizes handwritten digits under
different testing conditions. The system’s
preprocessing pipeline, CNN architecture, and
prediction module together contribute to consistent
and efficient performance. These results confirm

Comparison Table

that the model is suitable for practical applications
such as digit-based data entry automation, form
processing, postal mail sorting, and check
verification

Comparative Analysis

The proposed ML-based Handwritten Digit
Recognition System significantly outperforms
traditional manual or rule-based digit identification
approaches.

Feature Traditional Systems Proposed ML-Based Digit Recognition
Accuracy Low to moderate High due to CNN architecture

Speed Slow manual process Real-time prediction (<10 ms)

Scalability Limited Easily scalable to large datasets
Preprocessing Manual inspection Automated normalization & noise removal
Consistency Varies by human evaluator Uniform & repeatable predictions

The results confirm that the Handwritten Digit
Recognition System performs efficiently and offers
significant advantages over traditional manual
recognition methods.

Conclusion And Future Scope

This chapter provides a summary of the outcomes
achieved through the development of the
Handwritten Digit Recognition system using
Machine Learning. It also outlines potential future
enhancements that can improve the system’s
accuracy, usability, efficiency, and real-world
applicability.

The project successfully achieves fast prediction,
high accuracy, and efficient processing through
image preprocessing, feature extraction, model
training, and real-time recognition. Through
normalization, thresholding, and CNN-based
learning, the model is able to accurately classify
digits drawn or uploaded by users.

Successful implementation of CNN for digit
classification High accuracy (= 98-99% depending
on dataset and training conditions) Effective image
preprocessing (grayscale conversion, thresholding,
resizing, normalization) Real-time recognition
through a user-friendly interface.

Future Scope

Although the current system performs efficiently,
several improvements can further enhance
performance and expand real-world usage.

[1].

Expansion to Other Environments

The Transformer-based architectures, Residual
Networks (ResNet), or Capsule Networks can
further improve accuracy. Incorporating datasets
other than MNIST, such as EMNIST, Kuzushiji-
MNIST, or custom handwriting samples. Improving
robustness against blur, shadows, poor lighting, and
background noise.

Al Integration

Future Al capabilities may include: Reinforcement
learning for continuous model improvement
Handwriting style adaptation using meta-learning
Sequence-to-sequence models to recognize
complete handwritten sentences Transformer-based
classification for improved accuracy Multi-modal
recognition combining text, digits, and symbols
The Handwritten Digit Recognition system is
designed to evolve with advancing technology. With
planned enhancements, it can transform into a more
powerful, adaptable, and intelligent recognition
platform suitable for a wide range of industries. Its
strong foundation in machine learning and image
processing ensures long-term relevance and
usability.

References:

Y. LeCun, L. Bottou, Y. Bengio, and P. Haftner,
“Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278-2324, 1998. — foundational work on

56

[6].

[8].

},’ International Journal of

Information Technology & Computer Engineering

MNIST and neural networks wused in digit
recognition.

.C. Cortes and V. Vapnik, “Support-vector

networks,” Machine Learning, vol. 20, no. 3, pp.
273-297, 1995. — seminal paper on SVM often
used in digit classification.

. L. Breiman, “Random forests,” Machine Learning,

vol. 45, no. 1, pp. 5-32, 2001. — describes the
random forest algorithm referenced in digit
recognition studies.

.S. M. Shamim et al, “Handwritten Digit

Recognition using Machine Learning Algorithms,”
Journal of Computing and Communication, vol. 2,
no. 1, pp. 9-19, 2023. — compares ML models
(kNN, SVM, RF, NN) for digit recognition.

. Dipok Deb, “Handwritten Digit Recognition using

Machine Learning,” Data Science and Data Mining,
Univ. of Central Florida, 2025 — analysis of
statistical classifiers on MNIST.

Md Ahiduzzaman, “Handwritten Digit Recognition
using Machine Learning Classifiers,” Data Science
and Data Mining, UCF, 2025 — evaluates Logistic
Regression, KNN, CNN on digit data.

. S. Naik et al., “Recognizing Handwritten Digits on

MNIST Dataset using KNN Algorithm,” Journal of
Artificial Intelligence and Imaging, vol. 1, no. 2,
2024 — KNN-based digit recognition work.

Syed S. Ullah et al, “Handwritten Digit
Recognition: An Ensemble-Based Approach for
Superior Performance,” arXiv preprint, 2025 —
hybrid ensemble of CNN and SVM for accuracy
improvements.

. Ruwei Wang, “Handwritten Digit Recognition

Based on the MNIST Dataset under PyTorch,”
Applied & Computational Eng., vol. 8, 2023 —
CNN approach to handwritten digit classification.

[10]. M. D. McDonrnell et al., “Fast, simple and

accurate handwritten digit classification with
extreme learning machines,” arXiv preprint, 2014
— explores shallow neural networks for MNIST
tasks

ISSN 2347-3657

Volume 14, Issue 1,2026

57

