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Abstract
— Ensuring the safety and reliability of railway transportation requires accurate and real-time detection of 
rail surface defects such as cracks, scars, and fractures. In this study, we present an improved YOLOv8-based 
defect detection model enhanced with SPD-Conv building blocks, an Efficient Multi-scale Attention (EMA) 
module, and a Focal-SIoU loss function, enabling robust recognition of small and densely occluded defects 
without increasing network complexity. Experimental results demonstrate significant improvements in 
precision, recall, and average accuracy compared to the baseline YOLOv8 model. To further strengthen the 
system, advanced YOLO variants including YOLOv5x6 and YOLOv9 were integrated, achieving higher 
reliability in defect identification. Additionally, Flask-based front-end interface with secure user 
authentication was developed, providing an accessible platform for real-time defect monitoring and analysis. 
The proposed framework not only improves detection accuracy but also ensures scalability, usability, and 
security, making it suitable for deployment in practical railway inspection scenarios. 
 
Keywords— Rail surface defect detection, YOLOv8, YOLOv9, YOLOv5x6, deep learning, SPD-Conv, EMA 
attention, Focal-SIoU loss, computer vision, real-time detection, railway safety, Flask framework, user 
authentication. 

 
I. INTRODUCTION 

Railway transportation continues to expand 
rapidly, offering higher speed, efficiency, 
and passenger capacity. However, this 
growth also increases the burden on track 
infrastructure, making timely detection of 
rail surface defects more critical than ever. 
Continuous friction and pressure from 
high-speed trains lead to issues such as 
cracks, corrugation, scars, and fractures on 
the rail surface. If these defects are not 
identified early, they can reduce 
operational safety and potentially lead to 
derailments, resulting in severe accidents. 
Therefore, ensuring accurate and real-time 
detection of rail surface faults is essential 
for maintaining railway safety and 
reliability [1]. 
 
Traditional manual inspection methods are 
becoming less effective due to their slow 
response time, heavy labor requirements, 
and inability to handle large railway 
networks. To address these limitations, 
researchers have explored automated 
inspection systems using advanced sensors 
and wireless monitoring technologies. 
Wireless sensor-based rail defect detection 
systems offer wider coverage and 

improved stability but still face challenges 
related to environmental noise, data 
volume, and the detection of complex 
surface defects [2]. 
In addition to sensor-based monitoring, 
non-destructive evaluation (NDT) 
techniques such as planar electromagnetic 
tomography have also been applied for 
detecting internal rail flaws. Although 
these techniques provide high structural 
insight, they require costly equipment and 
skilled operators, making them less suitable 
for continuous, real-time inspection in 
practical railway environments [3]. 
 

II. LITERATURE SURVEY 
Zhao et al. [1] presented a comprehensive 
review of rail defect detection systems 
using wireless sensors. Their study 
highlighted how sensor-based monitoring 
enables continuous, real-time defect 
detection without relying solely on manual 
inspections. The authors emphasized the 
potential of wireless sensor networks for 
identifying faults such as cracks and 
fractures with minimal human intervention. 
By providing insights into deployment 
challenges and energy efficiency, this work 
laid the foundation for integrating IoT-
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based monitoring into railway safety 
management. 
 
Feng et al. [2] investigated the application 
of deep learning methods for rail surface 
defect detection. They utilized 
convolutional neural networks to 
automatically learn defect features from 
rail images, overcoming the limitations of 
handcrafted feature extraction. The results 
showed improved detection accuracy in 
recognizing cracks, corrugation, and other 
small-scale defects compared to traditional 
machine vision methods. Their work 
demonstrated how deep learning can 
significantly advance defect detection 
efficiency and reliability in railway 
operations. 
 
Chen et al. [7] proposed CUFuse, a novel 
approach combining camera and ultrasound 
data for rail defect detection. The fusion of 
multimodal data enhanced the robustness 
of detection, particularly for subtle defects 
that might be overlooked by a single 
sensor. Experimental results confirmed that 
CUFuse outperformed conventional single-
source detection systems in accuracy and 
fault localization. This research underlined 
the effectiveness of sensor fusion in 
addressing the complexity of real-world 
railway inspection scenarios. 
 
Xu et al. [9] conducted a comparative study 
of defect detection using Faster R-CNN 
and Mask R-CNN models. While Faster R-
CNN achieved accurate localization of 
cracks, Mask R-CNN further improved 
results by providing pixel-level 
segmentation of defective regions. Their 
analysis showed that segmentation-based 
methods are particularly effective for 
distinguishing fine cracks and subtle wear 
patterns. This study highlighted the 
importance of model selection depending 
on defect complexity and detection 
precision requirements. 
Siddique et al. [10] reviewed the U-Net 
architecture and its variants, primarily 
focusing on medical image segmentation 

but also highlighting its adaptability to 
defect detection tasks such as railway 
monitoring. The review discussed how U-
Net’s encoder-decoder structure enables 
accurate boundary detection and fine-
grained segmentation of small regions. The 
study concluded that U-Net and its 
derivatives are highly effective in scenarios 
requiring detailed localization, suggesting 
potential applications in rail defect 
detection where high-resolution accuracy is 
critical. 
 
Bharati and Pramanik [11] surveyed R-
CNN and Mask R-CNN models, focusing 
on their evolution in object detection and 
segmentation. They discussed 
improvements in region proposal 
mechanisms, training efficiency, and 
feature pyramid networks. Their work laid 
a conceptual foundation for applying 
similar architectures to railway inspections. 
Tu et al. [12] proposed a real-time defect 
detection framework for track components, 
addressing challenges like class imbalance 
and subtle defect patterns. Their system 
used adaptive loss functions and enhanced 
visual features to distinguish between 
highly similar track components. The 
authors demonstrated strong performance 
under varying illumination and occlusion 
conditions. 
 
Sresakoolchai and Kaewunruen [13] 
investigated both supervised and 
unsupervised machine learning methods for 
detecting railway defects based on track 
geometry. Their study highlighted the 
value of unsupervised clustering techniques 
for identifying anomalies in unlabeled data. 
They also discussed the limitations of 
supervised methods when labeled datasets 
are scarce. 
 
Aldahdooh et al. [14] presented a 
comprehensive review of adversarial attack 
detection techniques in deep neural 
networks. Their findings are relevant to 
railway monitoring systems, as adversarial 
noise can compromise model predictions. 
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They highlighted defense strategies, 
robustness evaluations, and the importance 
of adversarial-resistant models in safety-
critical applications. 
 
Mohan et al. [15] developed a YOLOv2 
model with bifold skip connections for 
real-time train bogie defect detection. Their 
approach improved feature retention and 
model stability during video analysis. The 
authors demonstrated that skip connections 
help detect small defects even when frames 
are blurred or captured at high speed. 
 
Casas et al. [16] applied YOLOv8 for 
detecting and counting stacked timber in 
forestry applications. Their results 
showcased YOLOv8’s efficiency in 
detecting densely packed objects. Although 
unrelated to railways, the study reaffirmed 
YOLOv8’s capability to handle complex, 
cluttered environments similar to rail 
defect scenes. 
 
Reis et al. [17] presented real-time flying 
object detection using YOLOv8, 
highlighting its fast inference speed and 
robustness to motion blur. Their study 
confirmed YOLOv8’s suitability for 
dynamic environments, supporting its 
adaptation for high-speed railway 
inspection. 
 
Cao [18] developed a visual inspection 
system for detecting defects in heavy rail 
using deep learning. The system 
incorporated improved preprocessing 
techniques, noise reduction, and optimized 
CNN extraction. Their results showed 
significant improvements in identifying 
cracks and wear under challenging lighting 
conditions. 
 
Bai et al. [19] proposed a machine vision–
based railway surface defect detection 
approach that combined classical image 
processing and deep learning. Their hybrid 
method improved robustness against 
background noise, shadows, and surface 
irregularities. They also discussed dataset 

limitations and the need for high-quality 
annotated images. 
Wang et al. [20] introduced a pruned 
YOLOv5 model for detecting rail fastener 
defects. Their pruning strategy reduced 
model size and inference time, making it 
suitable for edge devices used in railway 
monitoring. Despite being lightweight, the 
model maintained high accuracy across 
multiple defect categories. 
 
Hu et al. [21] designed an enhanced 
YOLOX-nano architecture for fastener 
defect detection on high-speed railway 
lines. Their improvements included 
lightweight feature extraction modules and 
attention mechanisms to improve detection 
of small defects. Their results proved the 
model’s effectiveness for real-time 
deployment. 
 
Wang et al. [22] developed BL-YOLOv8, 
an improved version of YOLOv8 for 
detecting road defects such as cracks and 
potholes. Their model incorporated 
enhanced feature extraction layers and 
better multiscale fusion. The demonstrated 
performance gains indicate potential usage 
for rail defect detection as well. 
 

III. METHODOLOGY 
In order to improve rail surface defect 
identification, the suggested approach adds 
three advanced components to the baseline 
YOLOv8 architecture: SPD-Conv blocks, 
an Efficient Multi-scale Attention (EMA) 
module, and the Focal-SIoU loss function.  
By enhancing shallow-layer feature 
extraction, SPD-Conv allows for improved 
surface irregularity and fracture 
identification without adding model depth.  
By enhancing multi-scale feature fusion, 
the EMA module guarantees precise defect 
capture, regardless of how tiny or heavily 
occluded they may be.  For difficult 
samples, Focal-SIoU improves bounding-
box regression's accuracy by zeroing in on 
flaws that are difficult to pinpoint.  The 
system incorporates YOLOv5x6 for 
consistent features over extended distances 



ISSN 2347–3657 

Volume 14, Issue 1, 2026 
  

180 
 

and YOLOv9 for better dynamic label 
assignment and feature aggregation to 
further increase generalizability and 
robustness.  Lastly, in order to facilitate 
real-time defect monitoring, visualization, 
and user-friendly operation in actual 
railway inspection scenarios, an 
authentication-secured Flask-based 
interface is implemented. 
A. Proposed Undertaking: 
The proposed system extends the YOLO-
based defect detection framework by 
incorporating enhanced processing, 
attention, and loss optimization 
mechanisms to improve accuracy in 
identifying small and complex rail surface 
defects. The process begins with the 
collection of a diverse rail surface dataset 
containing cracks, scars, fractures, and 
wear marks. These images undergo 
preprocessing techniques such as resizing, 
normalization, noise reduction, and 
contrast enhancement to highlight subtle 
defects. Data augmentation methods—
including rotation, flipping, blurring, and 
color jittering—are applied to improve the 
model’s robustness against variations in 
lighting, angle, and motion, ensuring better 
generalization during real-world railway 
inspections. The enhanced model 
integrates SPD-Conv blocks for better 
shallow-layer feature extraction, EMA 
attention for strong multi-scale feature 
fusion, and Focal-SIoU loss for improved 
bounding-box regression on hard-to-detect 
defects. 
To further strengthen the detection 
capability, the system incorporates 
multiple YOLO variants such as 
YOLOv5x6 for deeper spatial consistency, 
YOLOv9 for advanced dynamic label 
assignment, and improved YOLOv8 with 
Focal Loss for precise small-defect 
localization. Each model is trained 
independently and evaluated based on 
metrics such as mAP, precision, recall, and 
inference speed. This multi-model fusion 
approach allows selecting the best-
performing architecture for deployment 
while maintaining flexibility for different 

operating conditions. A Flask-based 
interface is integrated to enable real-time 
defect detection, visualization, and secure 
user authentication, making the system 
suitable for field deployment in railway 
inspection vehicles or stationary 
monitoring units. 
B. System Architecture: 
The system architecture is designed as a 
modular pipeline where each component 
contributes to improving the accuracy and 
reliability of rail defect detection. The 
process starts with the dataset module, 
which collects and stores rail surface 
images captured under different 
environmental and operational conditions. 
These images are then passed to the image 
processing module, where they undergo 
preprocessing operations such as resizing, 
noise removal, sharpening, and contrast 
enhancement to highlight subtle defects 
like micro-cracks and fine scratches. 
Following preprocessing, the data 
augmentation module generates diverse 
variations of the images—through rotation, 
flipping, brightness adjustment, cropping, 
and blurring—to ensure the model learns 
robust defect patterns and performs 
consistently in real-world conditions. 
Together, these stages prepare high-quality 
input data for training advanced deep 
learning models. 
The processed and augmented dataset is 
then used to train multiple object detection 
models, including SSD, YOLOv5n, 
YOLOv6n, YOLOv7-tiny, YOLOv8n, 
YOLOv8-FocalLoss, YOLOv5x6, and the 
latest YOLOv9. The trained models 
module manages the training, 
optimization, and storage of these models 
while integrating enhanced techniques 
such as SPD-Conv blocks, EMA attention, 
and Focal-SIoU loss to improve 
performance in identifying small and 
complex defects. Once training is 
completed, the models are evaluated in the 
performance evaluation module, where 
precision, recall, mAP, and inference 
speed are analyzed to determine the best-
performing architecture. This systematic 
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flow ensures a scalable, efficient, and 
accurate defect detection framework 
suitable for deployment in automated 
railway inspection systems. 
 

 
 

Fig.1. Proposed architecture 
IV. IMPLEMENTATION 

1. MODULES: 
1.Data loading: using this module we are 
going to import the dataset. 
2. Image Processing: Image processing 
involves several key steps to prepare 
images for defect detection in railroad 
tracks. This includes converting images to 
blob objects, defining classes, declaring 
bounding boxes, and transforming arrays 
into NumPy format. Additionally, images 
are resized, converted from BGR to RGB, 
and masks are created for effective 
analysis. 
2. Data Augmentation: Data augmentation 
enhances the training dataset by applying 
various transformations to images, such as 
randomizing, rotating, and altering images. 
This process increases diversity in the 
dataset, improves model robustness, and 
helps prevent overfitting during the defect 
detection training process. 
4.Model generation: Model building - 
SSD, YoloV5n, YoloV6n, YoloV7-tiny, 
YoloV8n, YoloV8–Focal Loss, YoloV5x6, 
YoloV9.  Performance evaluation metrics 
for each algorithm is calculated. 
5.User signup & login: Using this module 
will get registration and login 
6.User input: Using this module will give 
input for prediction 
7. Prediction: final predicted displayed 
2. ALGORITHMS: 

a. SSD (Single Shot MultiBox 
Detector): 
A common way to find objects  SSD can 
forecast bounding boxes and class scores 
in just one run over the network, which 
makes it good for real-time detection. In 
rail defect detection, SSD can quickly 
identify multiple types of defects 
simultaneously, such as cracks, scars, and 
corrugations, without requiring multiple 
processing stages. Its balance of speed and 
accuracy makes it suitable for large-scale 
monitoring, though it may struggle with 
very small or heavily occluded defects 
compared to newer YOLO-based models. 
b. YOLOv5n: 
YOLOv5n is a lightweight version of the 
YOLOv5 family, specifically designed for 
fast inference with reduced computational 
cost. It is capable of detecting defects on 
railroad tracks in real-time, making it ideal 
for scenarios where both speed and 
accuracy are required. Despite its small 
size, YOLOv5n delivers competitive 
performance and ensures that defect 
detection systems can be deployed on 
devices with limited hardware resources 
while maintaining reliable detection 
results. 
c. YOLOv6n: 
YOLOv6n introduces improved network 
design and optimization strategies, 
enhancing performance in detecting 
objects under diverse conditions. For 
railroad applications, it provides robust 
detection of small and densely occluded 
defects, which are often challenging for 
earlier models. Its refined architecture 
improves feature extraction and 
representation, ensuring that even subtle 
and complex defects are identified 
accurately. This makes YOLOv6n a 
reliable choice for maintaining safety in 
high-speed rail operations. 
d. YOLOv7-tiny: 
YOLOv7-tiny is optimized for 
environments with strict resource 
constraints, such as embedded systems and 
edge devices used in railway monitoring. It 
maintains real-time processing speed while 
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ensuring effective detection of track 
surface defects. Its lightweight design 
reduces memory usage and computational 
requirements, making it suitable for large-
scale deployment where quick and 
continuous defect identification is 
essential. Though smaller in size, it still 
delivers strong detection capability for 
practical applications. 
e. YOLOv8n: 
The key algorithm for this project, 
YOLOv8n, makes it easier to find objects.   
SPD-Conv construction blocks and EMA 
attention modules make it easier to find 
and identify small and hidden rail faults. 
Its architecture ensures high precision and 
recall without increasing model 
complexity. As a result, YOLOv8n 
delivers superior performance compared to 
earlier YOLO models, making it the most 
effective solution for rail surface defect 
detection in real-time scenarios. 
f. YOLOv8–FocalLoss: 
This customized variant of YOLOv8 
incorporates the Focal-SIoU loss function, 
which focuses on samples that are harder 
to classify. By assigning higher penalties 
to misclassified or subtle defects, the 
model improves its sensitivity and 
accuracy for challenging defect types such 
as micro-cracks or faint scars. This 
approach ensures that the detection system 
does not overlook critical defects, thereby 
increasing the reliability and robustness of 
the overall monitoring system. 
 
g. YOLOv5x6: 
A bigger and more complex version of 
YOLOv5, YOLOv5x6 maximises 
accuracy and robustness. Its expanded 
architecture allows it to process high-
resolution images and extract finer details, 
making it especially effective in detecting 
defects within cluttered or complex track 
environments. Although it requires more 
computational power, it delivers reliable 
monitoring performance and is ideal for 
applications where accuracy is prioritized 
over minimal resource usage. 
h. YOLOv9: 

YOLOv9 is the latest generation of the 
YOLO family, improving detection 
accuracy, model efficiency, and flexibility 
to new levels.  It pushes real-time object 
detection with novel architectural designs 
and optimisation methodologies. In 
railroad defect detection, YOLOv9 serves 
as a benchmark for performance, 
showcasing how the newest innovations 
can further enhance safety monitoring and 
improve reliability in detecting even the 
most complex and subtle surface defects. 

V.  EXPERIMENTAL RESULTS 
 
The experimental analysis was conducted 
on a diverse rail surface defect dataset 
containing cracks, fractures, scars, and 
wear patterns captured under varying 
lighting and operational environments. The 
baseline YOLOv8 model was first 
evaluated to establish reference 
performance metrics. After integrating the 
extension components—SPD-Conv blocks 
for improved shallow feature extraction, 
the EMA module for enhanced multi-scale 
attention, and the Focal-SIoU loss function 
for robust bounding-box optimization—the 
improved YOLOv8 model demonstrated 
significant gains in precision, recall, and 
mAP. The extended model showed 
superior capability in recognizing small, 
dense, and low-contrast defects that the 
baseline often failed to detect. Specifically, 
the enhanced YOLOv8 achieved faster 
convergence during training while 
reducing false negatives, particularly for 
fine cracks and occluded defects. 
To further validate system robustness, 
additional experiments were conducted 
using YOLOv5x6 and YOLOv9 
architectures. YOLOv5x6 delivered strong 
consistency in long-range and high-
resolution defect detection due to its 
extended backbone and deeper feature 
extraction. YOLOv9 achieved the highest 
accuracy among all models, benefiting 
from improved dynamic label assignment 
and hybrid feature aggregation. When 
compared across all variants, YOLOv9 
achieved the best mAP, the improved 
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YOLOv8 produced the best balance of 
speed and accuracy, and YOLOv5x6 
excelled in complex, high-detail defect 
scenarios. Overall, the extension-based 
framework significantly outperformed 
traditional SSD and earlier YOLO 
versions, delivering a reliable and efficient 
solution for real-time rail defect detection 
suitable for field deployment. 
Accuracy: Evaluate actual benefits and 
drawbacks to assess test dependability.     
Then comes mathematics.: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑁 + 𝑇𝑃)

𝑇
 

Precision: Accuracy in classification or 
positive instances is measured by 
precision.   Accuracy is determined by 
applying the following: 

Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Recall: The ratio of accurately predicted 
positive observations to total positives 
reveals how well a model can identify all 
machine learning class instances. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝐹𝑁 + 𝑇𝑃)
 

F1-Score: An accurate machine learning 
model has a high F1 score.  Integrating 
recall and precision improves model 
correctness.  Accuracy measures how often 
a model predicts a dataset correctly. 
 

𝐹1 = 2 ⋅
(𝑅𝑒𝑐𝑎𝑙𝑙 ⋅ Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙 + Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛)
 

 
Fig 2 Precision graph 

VI. CONCLUSION 
 
This study presented an enhanced rail 
surface defect detection framework by 
extending the capabilities of the YOLO 
family of models with advanced 
architectural and loss-function 
improvements. By integrating SPD-Conv 
blocks, the system strengthened shallow 
feature extraction, enabling reliable 
identification of fine cracks and low-
contrast defect patterns. The incorporation 
of the EMA module further improved 
multi-scale attention and feature fusion, 
while the Focal-SIoU loss function 
significantly boosted bounding-box 
precision, especially for small and 
challenging defects. Experimental results 
demonstrated clear improvements over the 
baseline YOLOv8 model, achieving higher 
accuracy, better recall, and more stable 
detection performance across all defect 
categories. 
To further validate robustness and 
generalization, the system was extended to 
include YOLOv5x6 and YOLOv9, both of 
which contributed additional strengths 
such as deeper spatial consistency and 
improved dynamic label assignment. 
YOLOv9 delivered the highest overall 
mAP, while the optimized YOLOv8 
achieved the best speed–accuracy trade-
off, making it highly suitable for real-time 
railway inspection scenarios. Combined 
with a secure Flask-based interface, the 
proposed system ensures practical, 
scalable deployment for continuous 
monitoring. Overall, the extended 
methodology provides a powerful, 
efficient, and reliable solution for 
enhancing railway safety through 
automated defect detection. 
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