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Abstract

— Ensuring the safety and reliability of railway transportation requires accurate and real-time detection of
rail surface defects such as cracks, scars, and fractures. In this study, we present an improved YOLOv8-based
defect detection model enhanced with SPD-Conv building blocks, an Efficient Multi-scale Attention (EMA)
module, and a Focal-SIoU loss function, enabling robust recognition of small and densely occluded defects
without increasing network complexity. Experimental results demonstrate significant improvements in
precision, recall, and average accuracy compared to the baseline YOLOv8 model. To further strengthen the
system, advanced YOLO variants including YOLOv5x6 and YOLOv9 were integrated, achieving higher
reliability in defect identification. Additionally, Flask-based front-end interface with secure user
authentication was developed, providing an accessible platform for real-time defect monitoring and analysis.
The proposed framework not only improves detection accuracy but also ensures scalability, usability, and
security, making it suitable for deployment in practical railway inspection scenarios.
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I. INTRODUCTION

Railway transportation continues to expand
rapidly, offering higher speed, efficiency,
and passenger capacity. However, this
growth also increases the burden on track
infrastructure, making timely detection of
rail surface defects more critical than ever.
Continuous friction and pressure from
high-speed trains lead to issues such as
cracks, corrugation, scars, and fractures on
the rail surface. If these defects are not
identified early, they «can reduce
operational safety and potentially lead to
derailments, resulting in severe accidents.
Therefore, ensuring accurate and real-time
detection of rail surface faults is essential
for maintaining railway safety and
reliability [1].

Traditional manual inspection methods are
becoming less effective due to their slow
response time, heavy labor requirements,
and inability to handle large railway
networks. To address these limitations,
researchers have explored automated
inspection systems using advanced sensors
and wireless monitoring technologies.
Wireless sensor-based rail defect detection
systems offer wider coverage and

improved stability but still face challenges
related to environmental noise, data
volume, and the detection of complex
surface defects [2].

In addition to sensor-based monitoring,
non-destructive evaluation (NDT)
techniques such as planar electromagnetic
tomography have also been applied for
detecting internal rail flaws. Although
these techniques provide high structural
insight, they require costly equipment and
skilled operators, making them less suitable
for continuous, real-time inspection in
practical railway environments [3].

II. LITERATURE SURVEY
Zhao et al. [1] presented a comprehensive
review of rail defect detection systems
using wireless sensors. Their study
highlighted how sensor-based monitoring
enables continuous, real-time defect
detection without relying solely on manual
inspections. The authors emphasized the
potential of wireless sensor networks for
identifying faults such as cracks and
fractures with minimal human intervention.
By providing insights into deployment
challenges and energy efficiency, this work
laid the foundation for integrating [oT-
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based monitoring into railway safety
management.

Feng et al. [2] investigated the application
of deep learning methods for rail surface
defect detection. They utilized
convolutional  neural  networks  to
automatically learn defect features from
rail images, overcoming the limitations of
handcrafted feature extraction. The results
showed improved detection accuracy in
recognizing cracks, corrugation, and other
small-scale defects compared to traditional
machine vision methods. Their work
demonstrated how deep learning can
significantly advance defect detection
efficiency and reliability in railway
operations.

Chen et al. [7] proposed CUFuse, a novel
approach combining camera and ultrasound
data for rail defect detection. The fusion of
multimodal data enhanced the robustness
of detection, particularly for subtle defects
that might be overlooked by a single
sensor. Experimental results confirmed that
CUFuse outperformed conventional single-
source detection systems in accuracy and
fault localization. This research underlined
the effectiveness of sensor fusion in
addressing the complexity of real-world
railway inspection scenarios.

Xu et al. [9] conducted a comparative study
of defect detection using Faster R-CNN
and Mask R-CNN models. While Faster R-
CNN achieved accurate localization of
cracks, Mask R-CNN further improved
results by providing pixel-level
segmentation of defective regions. Their
analysis showed that segmentation-based
methods are particularly effective for
distinguishing fine cracks and subtle wear
patterns. This study highlighted the
importance of model selection depending
on defect complexity and detection
precision requirements.

Siddique et al. [10] reviewed the U-Net
architecture and its variants, primarily
focusing on medical image segmentation
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but also highlighting its adaptability to
defect detection tasks such as railway
monitoring. The review discussed how U-
Net’s encoder-decoder structure enables
accurate boundary detection and fine-
grained segmentation of small regions. The
study concluded that U-Net and its
derivatives are highly effective in scenarios
requiring detailed localization, suggesting
potential applications in rail defect
detection where high-resolution accuracy is
critical.

Bharati and Pramanik [11] surveyed R-
CNN and Mask R-CNN models, focusing
on their evolution in object detection and
segmentation. They discussed
improvements in  region  proposal
mechanisms, training efficiency, and
feature pyramid networks. Their work laid
a conceptual foundation for applying
similar architectures to railway inspections.
Tu et al. [12] proposed a real-time defect
detection framework for track components,
addressing challenges like class imbalance
and subtle defect patterns. Their system
used adaptive loss functions and enhanced
visual features to distinguish between
highly similar track components. The
authors demonstrated strong performance
under varying illumination and occlusion
conditions.

Sresakoolchai and Kaewunruen [13]
investigated ~ both  supervised  and
unsupervised machine learning methods for
detecting railway defects based on track
geometry. Their study highlighted the
value of unsupervised clustering techniques
for identifying anomalies in unlabeled data.
They also discussed the limitations of
supervised methods when labeled datasets
are scarce.

Aldahdooh et al. [14] presented a
comprehensive review of adversarial attack
detection techniques in deep neural
networks. Their findings are relevant to
railway monitoring systems, as adversarial
noise can compromise model predictions.
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They highlighted defense strategies,
robustness evaluations, and the importance
of adversarial-resistant models in safety-
critical applications.

Mohan et al. [15] developed a YOLOvV2
model with bifold skip connections for
real-time train bogie defect detection. Their
approach improved feature retention and
model stability during video analysis. The
authors demonstrated that skip connections
help detect small defects even when frames
are blurred or captured at high speed.

Casas et al. [16] applied YOLOvVS for
detecting and counting stacked timber in
forestry  applications.  Their  results
showcased YOLOv8’s efficiency in
detecting densely packed objects. Although
unrelated to railways, the study reaffirmed
YOLOVS’s capability to handle complex,
cluttered environments similar to rail
defect scenes.

Reis et al. [17] presented real-time flying
object  detection using  YOLOVS,
highlighting its fast inference speed and
robustness to motion blur. Their study
confirmed YOLOv8’s suitability for
dynamic environments, supporting its
adaptation  for  high-speed  railway
inspection.

Cao [18] developed a visual inspection
system for detecting defects in heavy rail
using deep learning. The system
incorporated  improved  preprocessing
techniques, noise reduction, and optimized
CNN extraction. Their results showed
significant improvements in identifying
cracks and wear under challenging lighting
conditions.

Bai et al. [19] proposed a machine vision—
based railway surface defect detection
approach that combined classical image
processing and deep learning. Their hybrid
method improved robustness against
background noise, shadows, and surface
irregularities. They also discussed dataset
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limitations and the need for high-quality
annotated images.

Wang et al. [20] introduced a pruned
YOLOVS model for detecting rail fastener
defects. Their pruning strategy reduced
model size and inference time, making it
suitable for edge devices used in railway
monitoring. Despite being lightweight, the
model maintained high accuracy across
multiple defect categories.

Hu et al. [21] designed an enhanced
YOLOX-nano architecture for fastener
defect detection on high-speed railway
lines. Their improvements included
lightweight feature extraction modules and
attention mechanisms to improve detection
of small defects. Their results proved the
model’s  effectiveness for real-time
deployment.

Wang et al. [22] developed BL-YOLOVS,
an improved version of YOLOv8 for
detecting road defects such as cracks and
potholes. Their model incorporated
enhanced feature extraction layers and
better multiscale fusion. The demonstrated
performance gains indicate potential usage
for rail defect detection as well.

111 METHODOLOGY
In order to improve rail surface defect
identification, the suggested approach adds
three advanced components to the baseline
YOLOVS8 architecture: SPD-Conv blocks,
an Efficient Multi-scale Attention (EMA)
module, and the Focal-SIoU loss function.
By enhancing shallow-layer feature
extraction, SPD-Conv allows for improved
surface irregularity  and  fracture
identification without adding model depth.
By enhancing multi-scale feature fusion,
the EMA module guarantees precise defect
capture, regardless of how tiny or heavily
occluded they may be. For difficult
samples, Focal-SIoU improves bounding-
box regression's accuracy by zeroing in on
flaws that are difficult to pinpoint. The
system incorporates YOLOv5x6 for
consistent features over extended distances
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and YOLOV9 for better dynamic label
assignment and feature aggregation to
further increase generalizability and
robustness. Lastly, in order to facilitate
real-time defect monitoring, visualization,
and user-friendly operation in actual
railway  inspection  scenarios, an
authentication-secured Flask-based
interface is implemented.

A. Proposed Undertaking:

The proposed system extends the YOLO-
based defect detection framework by
incorporating ~ enhanced  processing,
attention, and loss optimization
mechanisms to improve accuracy in
identifying small and complex rail surface
defects. The process begins with the
collection of a diverse rail surface dataset
containing cracks, scars, fractures, and
wear marks. These images undergo
preprocessing techniques such as resizing,
normalization, noise reduction, and
contrast enhancement to highlight subtle
defects. Data augmentation methods—
including rotation, flipping, blurring, and
color jittering—are applied to improve the
model’s robustness against variations in
lighting, angle, and motion, ensuring better
generalization during real-world railway
inspections.  The  enhanced  model
integrates SPD-Conv blocks for better
shallow-layer feature extraction, EMA
attention for strong multi-scale feature
fusion, and Focal-SIoU loss for improved
bounding-box regression on hard-to-detect
defects.

To further strengthen the detection
capability, the system incorporates
multiple YOLO variants such as
YOLOVS5x6 for deeper spatial consistency,
YOLOVY for advanced dynamic label
assignment, and improved YOLOv8 with
Focal Loss for precise small-defect
localization. Each model 1is trained
independently and evaluated based on
metrics such as mAP, precision, recall, and
inference speed. This multi-model fusion
approach allows selecting the best-
performing architecture for deployment
while maintaining flexibility for different
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operating conditions. A  Flask-based
interface is integrated to enable real-time
defect detection, visualization, and secure
user authentication, making the system
suitable for field deployment in railway
inspection  vehicles  or  stationary
monitoring units.

B. System Architecture:

The system architecture is designed as a
modular pipeline where each component
contributes to improving the accuracy and
reliability of rail defect detection. The
process starts with the dataset module,
which collects and stores rail surface
images captured  under  different
environmental and operational conditions.
These images are then passed to the image
processing module, where they undergo
preprocessing operations such as resizing,
noise removal, sharpening, and contrast
enhancement to highlight subtle defects
like micro-cracks and fine scratches.
Following  preprocessing, the data
augmentation module generates diverse
variations of the images—through rotation,
flipping, brightness adjustment, cropping,
and blurring—to ensure the model learns
robust defect patterns and performs
consistently in real-world conditions.
Together, these stages prepare high-quality
input data for training advanced deep
learning models.

The processed and augmented dataset is
then used to train multiple object detection
models, including SSD, YOLOvVSn,
YOLOv6n, YOLOv7-tiny, YOLOvVSn,
YOLOv8-FocalLoss, YOLOv5x6, and the
latest  YOLOV9. The trained models
module manages the training,
optimization, and storage of these models
while integrating enhanced techniques
such as SPD-Conv blocks, EMA attention,
and Focal-SIoU loss to improve
performance in identifying small and
complex defects. Once training is
completed, the models are evaluated in the
performance evaluation module, where
precision, recall, mAP, and inference
speed are analyzed to determine the best-
performing architecture. This systematic
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flow ensures a scalable, efficient, and
accurate defect detection framework
suitable for deployment in automated
railway inspection systems.

fsso 1

i Yalo vin H
{Yola vén i
§ Yolowi-tiny 1
i Yalo vin ,:
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| Yolo vl

Fig.1. Proposed architecture
IV. IMPLEMENTATION

1. MODULES:
1.Data loading: using this module we are
going to import the dataset.
2. Image Processing: Image processing
involves several key steps to prepare
images for defect detection in railroad
tracks. This includes converting images to
blob objects, defining classes, declaring
bounding boxes, and transforming arrays
into NumPy format. Additionally, images
are resized, converted from BGR to RGB,
and masks are created for effective
analysis.
2. Data Augmentation: Data augmentation
enhances the training dataset by applying
various transformations to images, such as
randomizing, rotating, and altering images.
This process increases diversity in the
dataset, improves model robustness, and
helps prevent overfitting during the defect
detection training process.
4.Model generation: Model building -
SSD, YoloV5n, YoloVén, YoloV7-tiny,
YoloV8n, YoloV8—Focal Loss, YoloV5x6,
YoloV9. Performance evaluation metrics
for each algorithm is calculated.
5.User signup & login: Using this module
will get registration and login
6.User input: Using this module will give
input for prediction
7. Prediction: final predicted displayed
2. ALGORITHMS:
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a. SSD  (Single  Shot  MultiBox
Detector):

A common way to find objects SSD can
forecast bounding boxes and class scores
in just one run over the network, which
makes it good for real-time detection. In
rail defect detection, SSD can quickly
identify multiple types of defects
simultaneously, such as cracks, scars, and
corrugations, without requiring multiple
processing stages. Its balance of speed and
accuracy makes it suitable for large-scale
monitoring, though it may struggle with
very small or heavily occluded defects
compared to newer YOLO-based models.
b. YOLOvSn:

YOLOV5n is a lightweight version of the
YOLOVS family, specifically designed for
fast inference with reduced computational
cost. It is capable of detecting defects on
railroad tracks in real-time, making it ideal
for scenarios where both speed and
accuracy are required. Despite its small
size, YOLOvV5n delivers competitive
performance and ensures that defect
detection systems can be deployed on
devices with limited hardware resources
while maintaining reliable detection
results.

C. YOLOv6n:

YOLOvV6n introduces improved network
design and optimization strategies,
enhancing performance in detecting
objects under diverse conditions. For
railroad applications, it provides robust
detection of small and densely occluded
defects, which are often challenging for
earlier models. Its refined architecture
improves feature extraction  and
representation, ensuring that even subtle
and complex defects are identified
accurately. This makes YOLOv6n a
reliable choice for maintaining safety in
high-speed rail operations.

d. YOLOv7-tiny:

YOLOV7-tiny is optimized for
environments  with  strict  resource
constraints, such as embedded systems and
edge devices used in railway monitoring. It
maintains real-time processing speed while
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ensuring effective detection of track
surface defects. Its lightweight design
reduces memory usage and computational
requirements, making it suitable for large-
scale deployment where quick and
continuous  defect identification is
essential. Though smaller in size, it still
delivers strong detection capability for
practical applications.

e. YOLOvSn:

The key algorithm for this project,
YOLOvV8n, makes it easier to find objects.
SPD-Conv construction blocks and EMA
attention modules make it easier to find
and identify small and hidden rail faults.
Its architecture ensures high precision and
recall without increasing model
complexity. As a result, YOLOv8n
delivers superior performance compared to
earlier YOLO models, making it the most
effective solution for rail surface defect
detection in real-time scenarios.

f YOLOvS—FocalLoss:

This customized variant of YOLOVS
incorporates the Focal-SloU loss function,
which focuses on samples that are harder
to classify. By assigning higher penalties
to misclassified or subtle defects, the
model improves its sensitivity and
accuracy for challenging defect types such
as micro-cracks or faint scars. This
approach ensures that the detection system
does not overlook critical defects, thereby
increasing the reliability and robustness of
the overall monitoring system.

g YOLOv5x6:

A bigger and more complex version of
YOLOVS, YOLOv5x6 maximises
accuracy and robustness. Its expanded
architecture allows it to process high-
resolution images and extract finer details,
making it especially effective in detecting
defects within cluttered or complex track
environments. Although it requires more
computational power, it delivers reliable
monitoring performance and is ideal for
applications where accuracy is prioritized
over minimal resource usage.

h. YOLOVvY:
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YOLOVY is the latest generation of the
YOLO family, improving detection
accuracy, model efficiency, and flexibility
to new levels. It pushes real-time object
detection with novel architectural designs
and optimisation methodologies. In
railroad defect detection, YOLOV9 serves
as a Dbenchmark for performance,
showcasing how the newest innovations
can further enhance safety monitoring and
improve reliability in detecting even the
most complex and subtle surface defects.
V. EXPERIMENTAL RESULTS

The experimental analysis was conducted
on a diverse rail surface defect dataset
containing cracks, fractures, scars, and
wear patterns captured under varying
lighting and operational environments. The
baseline YOLOv8 model was first
evaluated to establish reference
performance metrics. After integrating the
extension components—SPD-Conv blocks
for improved shallow feature extraction,
the EMA module for enhanced multi-scale
attention, and the Focal-SIoU loss function
for robust bounding-box optimization—the
improved YOLOv8 model demonstrated
significant gains in precision, recall, and
mAP. The extended model showed
superior capability in recognizing small,
dense, and low-contrast defects that the
baseline often failed to detect. Specifically,
the enhanced YOLOVS achieved faster
convergence during training  while
reducing false negatives, particularly for
fine cracks and occluded defects.

To further validate system robustness,
additional experiments were conducted
using  YOLOv5x6 and  YOLOV9
architectures. YOLOv5x6 delivered strong
consistency in long-range and high-
resolution defect detection due to its
extended backbone and deeper feature
extraction. YOLOV9 achieved the highest
accuracy among all models, benefiting
from improved dynamic label assignment
and hybrid feature aggregation. When
compared across all variants, YOLOV9
achieved the best mAP, the improved
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YOLOV8 produced the best balance of
speed and accuracy, and YOLOv5x6
excelled in complex, high-detail defect
scenarios. Overall, the extension-based
framework significantly outperformed
traditional SSD and earlier YOLO
versions, delivering a reliable and efficient
solution for real-time rail defect detection
suitable for field deployment.

Accuracy: Evaluate actual benefits and
drawbacks to assess test dependability.
Then comes mathematics.:

(TN +TP)

T
Precision: Accuracy in classification or
positive instances is measured by
precision.  Accuracy is determined by
applying the following:

Accuracy =

TP

(TP + FP)

Recall: The ratio of accurately predicted
positive observations to total positives
reveals how well a model can identify all
machine learning class instances.

Precision =

TP

(FN +TP)
F1-Score: An accurate machine learning
model has a high F1 score. Integrating
recall and precision improves model
correctness. Accuracy measures how often
a model predicts a dataset correctly.

Recall =

Flo2 (Recall - Pre cision)
~ 7 (Recall + Pre cision)

__\

Fig 2 Precision graph
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VI. CONCLUSION

This study presented an enhanced rail
surface defect detection framework by
extending the capabilities of the YOLO
family of models with advanced
architectural and loss-function
improvements. By integrating SPD-Conv
blocks, the system strengthened shallow
feature  extraction, enabling reliable
identification of fine cracks and low-
contrast defect patterns. The incorporation
of the EMA module further improved
multi-scale attention and feature fusion,
while the Focal-SIoU loss function
significantly ~ boosted  bounding-box
precision, especially for small and
challenging defects. Experimental results
demonstrated clear improvements over the
baseline YOLOv8 model, achieving higher
accuracy, better recall, and more stable
detection performance across all defect
categories.

To further validate robustness and
generalization, the system was extended to
include YOLOv5x6 and YOLOV9, both of
which contributed additional strengths
such as deeper spatial consistency and
improved dynamic label assignment.
YOLOVY delivered the highest overall
mAP, while the optimized YOLOv8
achieved the best speed—accuracy trade-
off, making it highly suitable for real-time
railway inspection scenarios. Combined
with a secure Flask-based interface, the
proposed system ensures practical,
scalable deployment for continuous
monitoring.  Overall, the extended
methodology  provides a  powerful,
efficient, and reliable solution for
enhancing railway  safety  through
automated defect detection.
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