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ABSTRACT- This work reports an RTL-level study of a
pulsed-radar data-acquisition chain designed entirely in
Verilog. The project was approached in two parts. First,
a dual-channel front end was created to reproduce 12-bit
ADC output and to apply a reduced-rate sampling method
before sending the data into independent FIFO buffers.
This allowed us to examine how the system reacts when
the PRF is pushed high, particularly in terms of timing,
throughput, and the way the buffers fill and empty. In the
second part, the model was expanded into a real-time
processing path similar to what would run on an FPGA,
and it was tested at roughly 9,000 pulses per second on
each channel. The processing stage uses Verilog modules
for pulse averaging, window shaping, and simple
interference handling, and these modules were validated
using ModelSim. MATLAB was used only to review the
captured signals and verify SNR and latency results. The
study focuses on decisions that influence real hardware—
buffer sizes, clock-domain handling, and timing
margins—rather than idealized assumptions. The design
can function with low latency and without data loss,
according to the simulation results, which makes it
appropriate for UWB radar systems that require
consistent performance in noisy military scenarios.

Keywords: Verilog HDL, Subsampling ADC, FIFO
Buffer, Radar Signal Processing, Ultra-Wideband (UWB)
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1. INTRODUCTION

Ultra-wideband (UWB) radar's use of incredibly short
pulses that spread over a wide range of frequencies—
typically lasting less than two nanoseconds—is the main
reason it has attracted attention. Because of this capability,
UWRB radar has found use in several areas, from defense
monitoring and through-wall sensing to ground-
penetrating  surveys, biomedical = measurements,
autonomous platforms, and industrial inspection [1][2].
Unlike conventional narrowband radar, which depends on
modulation schemes to achieve range resolution, UWB
systems simply measure the delay of the received pulse.
This approach helps them perform better in cluttered or
multipath environments. Capturing pulses of such short
duration is not straightforward. It calls for very fast ADCs,
stable clocks with minimal jitter, and a digital path that
can push data through at high speed while continuing to
process the signal in real time. The analog section and the
digital logic must also work together without introducing
timing problems or loss of signal quality.

In this project, the focus is on simulating the digital
acquisition stage of a UWB radar receiver using Verilog
HDL. The design models two receive channels and the
buffering needed to store and process the incoming radar
echoes. Because building hardware for early testing is
both costly and complex, RTL simulation is used to verify
elements such as FIFO structures, subsampling units,
clock-domain interfaces, and latency-tolerant signal paths
before moving to a physical prototype. The main technical
aims of the project are:

a) Designing a dual-channel setup that can capture
UWRB pulses at high speed.

b) Using subsampling and FIFO buffering to keep
the data rate manageable for FPGA hardware.

¢) Maintaining predictable timing and latency by
incorporating proper digital synchronization
circuits.

d) Checking the design through simulations
(ModelSim, Vivado Simulator) to confirm
timing behavior, functional accuracy, and
performance of clock-dependent blocks.

An FPGA suits this work well because it can handle
several operations at the same time, can be reprogrammed
when the design changes, and allows the use of long,
efficient processing pipelines. Running the design in
Verilog at the RTL stage makes it possible to adjust speed,
resource usage, and power before any hardware is built.
The outcomes of these simulations provide a solid starting
point for later use in radar systems that must operate with
strict timing, low delay, and high data bandwidth. In
addition, this work adds to ongoing studies that aim to
make digital radar front ends better for current
communication and sensing technologies.

2. LITERATURE REVIEW

Ultra-Wideband radar has grown a lot over the last twenty
years. In the early days, most designs leaned heavily on
analog hardware, which limited how much data could be
collected or processed in real time. As digital platforms
like FPGAs and SoCs improved, designers started shifting
more of the system into the digital domain. This change
helped make data capture, subsampling and signal
processing far more efficient, and it opened the door to
applications in defense, medical scanning and even
through-wall sensing.

In this review, the developments are grouped into three
areas: how signals are sampled, how they are buffered,
and how real-time processing has evolved.

2.1 Traditional Approaches (2000-2015)
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1. Ghavami et al. (2007) [1] outlined the fundamentals of
impulse-radio UWB and pointed out how difficult it is to
sample signals that span such large bandwidths at full
Nyquist rates.

2. Fontana (2004) [2] highlighted a major limitation of the
time: practical high-speed ADCs simply were not
available for impulse radar, so many designs relied on RF
front-end tricks to reduce the sampling burden.

3. McEwan (2001) [3] built a compact, low-power UWB
radar that depended mostly on analog processing. While
efficient, it lacked the flexibility that later digital systems
would offer.

4. Zetik et al. (2006) [4] studied through-wall sensing and
showed the importance of wide dynamic range and strong
clutter suppression for reliable imaging.

5. Baranoski (2008) [5] explored mixed-signal radar
setups that combined analog sampling with early digital
envelope detection. This work later influenced how
FPGAs were used in UWB systems.

Overall, these early systems were constrained by the
bandwidth of the ADCs available at the time, struggled to
scale, and depended too heavily on analog electronics. As
aresult, they were unable to properly handle modern high-
speed and adaptive radar operations.

2.2 Recent Advances (2016-2024)

1. Liu et al. (2016) [6] introduced compressive sensing to
UWRB receivers, reducing data rates while maintaining
high range resolution.

2. Deng et al. (2017) [7] showed that sub-Nyquist
sampling can still provide useable radar signals when
structured sparsity is applied during reconstruction.

3. Rasch et al. (2018) [8] introduced an entirely digital
UWB front end based on time-interleaved ADCs that ran
above 4 GSPS, though they required careful FPGA-based
calibration.

4. Chien et al. (2019) [9] built a multi-channel radar
system on a Xilinx Zynq device with fast DMA paths and
real-time FFT processing.

5. Zhang et al. (2020) [10] proposed a low-power dual-
pulse subsampling radar that managed coherent
reconstruction at lower sampling rates.

6. Krishnan et al. (2020) [11] showed how Verilog-driven
FSMs could be used for real-time pulse detection and
front-end control in digital radar systems.

7. Ahmed et al. (2021) [12] presented a pipeline-style
buffering and compression method on an Artix-7 FPGA
that helped reduce latency in multi-channel setups.

8. Zhao et al. (2022) [13] combined FPGA-based UWB
radar with deep learning models to classify targets directly
from raw time-domain signals.
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9. Kim et al. (2023) [14] evaluated how low-cost FPGA
hardware performs when used for digital beamforming in
portable UWB radars, especially looking at accuracy-
latency trade-offs.

10. Patel et al. (2024) [15] explored asynchronous
subsampling with adaptive thresholds on an Intel Stratix
platform for tracking objects in clutter-heavy
environments.

In order to lower latency in multi-channel configurations,
Ahmed et al. (2021) [12] introduced a pipeline-style
buffering and compression technique on an Artix-7
FPGA.

Table 1. Key Observations from Literature

Technology Traditional Recent Advancement
Aspect Approach
RF-frontend L
ADC downconversi g;ﬁ;}lsst:irj:aZfd’
Architecture  on + Nyquist ?
ADC subsampled ADCs
Signal Envelope Compressive sensin,
Reconstructi  detection, P &
. sparse recovery
on analog mixing
L:gntaeri to Multi-channel
Buffering ondo DDR/AXI DMA FIFO
memory or via FPGA cores
CPLD FIFO
Processing DSP/MCU High-speed FPGA
Hardware hybrids (Zynq, Stratix, Kintex)
Simulation MATLAB/Sy Verilog/VHDL with
stemView . .
Strategy hardware co-simulation
level
Resolution vs High power Sub-Nyquist trade-offs
for better and smart
Power . .
resolution reconstruction

The Most existing real-time systems still depend on costly
ADCs and over-provisioned buffers. Subsampling
methods have not been fully integrated with Verilog-
based RTL simulation for low-cost evaluation and Dual-
channel acquisition (e.g., for bistatic or polarization-
sensitive radar) remains underexplored in FPGA design
frameworks. Recent literature highlights an ongoing shift
toward Verilog-simulated, FPGA-based front-end
architectures that efficiently manage high-speed UWB
radar data. By leveraging subsampling, compressive
sensing, and multi-core digital pipelines, these systems
reduce hardware costs and power while retaining
functionality. ~This project builds upon these
advancements by modeling a dual-channel, subsampling
radar front-end entirely in Verilog, enabling simulation-
based performance evaluation and pre-silicon verification
of data acquisition strategies.

3. METHODOLOGY

Simulate a dual-channel ADC interface using Verilog to
capture and buffer UWB radar pulses using subsampling
and estimate data throughput and latency. The primary
objective of this project is to simulate the front-end data
acquisition system of a dual-channel Ultra-Wideband
(UWB) radar using Verilog Hardware Description
Language (HDL). The focus of this simulation is on
replicating and analyzing key functionalities typically
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found in real-time radar signal acquisition systems. This
include:
a) The system mimics the output of a fast 12-bit

ADC, giving a digital version of the radar signal as it
would appear after conversion.

b) Subsampling is used to bring the data rate
down while still keeping the important parts of the very
short UWB pulses intact.

¢) Create a FIFO-based buffer that can take in a
steady stream of fast data and hold it in order, without
losing samples or mixing anything together.

d) Work out the important system numbers—
how much data it can push through, how much delay it
adds and how the timing behaves—while accounting for
real UWB pulse conditions like jitter and shifting delays.

This simulation acts as a pre-validation stage to
verify the feasibility and efficiency of real-time signal
capture and buffering before moving to actual hardware
deployment using an FPGA platform. The design is
especially targeted at low-power and resource-constrained
embedded systems.

3.1 Design Specifications and Parameters: The radar
data acquisition system is designed and simulated using
the following technical parameters: The Verilog-based
simulation of the UWB radar front-end is configured with
a pulse repetition frequency (PRF) of 9,000 pulses per
second, supporting high-resolution temporal sampling of
radar echoes. The analog-to-digital conversion is
performed using 12-bit resolution per channel, ensuring
sufficient signal fidelity for subsequent processing. The
system features two acquisition channels—Channel A and
Channel B—which operate in parallel to capture dual-
polarized or spatially diverse signals. To avoid
overwhelming the system with the high-frequency parts
of the signal, the design samples at a reduced rate—
basically keeping one out of every four points instead of
trying to capture everything at the full Nyquist rate. Even
with this lighter load, the pulse still keeps its overall
shape. Everything in the design runs off a 100 MHz clock,
and that clock sets when the ADC takes its samples and
how the data moves through each block afterward.

Each channel has its own FIFO that can hold 1024
samples, which is enough space to deal with fast bursts of
data without dropping anything. The length of the
simulation can be adjusted depending on what you want
to test; you can run it for a millisecond or stretch it out to
ten milliseconds if the pulse type or conditions require
more time.

3.2 System Architecture Overview: The system
simulation is realized using four key Verilog modules,
each responsible for a specific functional block within the
UWB radar signal acquisition chain. These modules
interact in real time to mimic the complete data path from
radar pulse generation to buffered storage.

(1) ADC Emulator Module: The ADC
Emulator Module is designed to simulate the behavior of
high-speed analog-to-digital converters (ADCs) for radar
signal acquisition applications. Its primary purpose is to
generate digital, radar-like signals that mimic ultra-
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wideband (UWB) pulse characteristics. Functionally, it
produces synthetic digitized pulses using a Gaussian-like
waveform model, which can be configured as either
bipolar or unipolar to suit different radar front-end
requirements. To emulate real-world asynchronous
returns, the module alternates pulse generation between
Channel A and Channel B, incorporating slight timing
jitter between channels. This setup helps mimic the small
timing shifts you normally see in real radar signals, where
reflections or different target distances cause the pulse to
show up a little earlier or later each time. The emulator
also lets you mix in noise and introduce delays, so the
signal looks more like what you’d expect from actual
hardware or a cluttered environment. It runs off a system
clock and a reset line, and it outputs two 12-bit signals—
adc_chA[11:0] and adc chB[11:0]—which carry the
sampled pulse data for each channel.

Inputs: clk, reset

Outputs: adc_chA[11:0], adc_chB[11:0] — 12-
bit samples from each ADC path

(2) Subsampler Module: This block takes care
of reducing how often the incoming radar signal is
sampled. The idea is to recreate the kind of undersampling
that is common in UWB systems, where the bandwidth is
so large that you don’t try to capture every point. Instead,
the module picks up one sample every four clock cycles,
giving a 1:4 ratio.

To make sure the shape of each UWB pulse is still
captured properly, a small windowing step is used so the
sample points line up with the important part of the pulse.
The timing is controlled by a simple down-counter that
decides exactly when sampling should happen, similar to
how real radar hardware aligns its sampling gate during a
pulse. One of the strong points of this block is that it keeps
the timing of the original waveform intact even though the
data rate is reduced. In other words, it behaves like real
hardware that undersamples but does not distort the pulse
timing.

Key Feature: It imitates an undersampled radar setup
while keeping the pulse timing accurate.

(3) Dual-Channel FIFO Buffer Module: This

part of the design stores the pulse data from the two ADC
channels. Each channel gets its own FIFO, capable of
holding 1024 samples, so the two data paths remain
completely separate.
Inside the module, a write pointer and a read pointer keep
track of where new data is placed and which value is being
pulled out, making sure the data flows smoothly in and out
without the two streams interfering with each other.The
design includes basic protection so the FIFOs do not
overflow or underflow during burst activity. Write
operations follow the subsampling clock so that stored
samples stay aligned with the capture rate, while read
operations run independently. This allows downstream
modules to pull data at their own pace, which is helpful
when integrating with asynchronous processing stages.
Because of this separation, the FIFO module becomes a
reliable bridge between high-speed sampling and slower
processing blocks.
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Outputs: data out chA, data out chB — buffered data
from each channel.

(4) Timing Controller and Pulse Manager:
The Timing and Control Unit coordinates timing across
the entire radar acquisition chain. Its job is to keep pulse
generation, subsampling and data logging operating in a
predictable and synchronized way.
One of its main tasks is producing accurate trigger pulses
at 9,000 Hz, derived from the 100 MHz master clock. This
matches the system’s Pulse Repetition Frequency (PRF).
Each captured pulse is also stamped with a timestamp
generated from a high-resolution counter, which helps
during later latency checks and performance analysis.
In addition, this unit drives the internal FSMs inside the
ADC Emulator and Subsampler Modules. By aligning
pulse creation, sampling and FIFO writes under one
control unit, the system maintains a consistent and
realistic timing flow throughout the simulation.

3.3 RTL Design Flow: The RTL design followed a clean,
modular approach. Each block was built in Verilog-2001,
keeping combinational and sequential logic clearly
separated for readability and synthesis accuracy.
Parameters such as PRF, FIFO size and the subsampling
ratio were made adjustable using Verilog parameters,
giving flexibility for experiments or performance tuning.
Once individual modules were completed, they were
connected at the top level (uwb_top.v), where 1/O ports
were exposed for waveform inspection in ModelSim.

For verification, a detailed testbench (uwb tb.v) was
prepared. It generated UWB-like pulses shaped with
Gaussian envelopes between 5 and 10 ns wide. To make
the test more realistic, pulse timing included £3% jitter to
mimic multipath and asynchronous channel behavior. The
testbench didn’t just run the normal cases; it also forced a
few problem situations on purpose—things like FIFO
overflows, dropped samples and some potential race-
condition moments. This helped us see how the design
behaves when it’s pushed or placed in situations that
normally cause trouble.

3.4 Simulation Environment: All of the simulations
were done in ModelSim SE 10.5b using Verilog. The
setup included a self-checking testbench that generated
the input pulses, applied the needed signals and then
checked the outputs automatically, so we could quickly
see whether things were working as they should. The
system clock ran at 100 MHz (10 ns period), reflecting
timing conditions typical of real UWB radar systems.
ModelSim’s waveform viewer was used extensively to
monitor pulse shapes, sampling timing and FIFO activity.
Verification occurred in two phases. The first examined
basic functionality, confirming that pulse shapes, sample
timing and FIFO writes matched expectations, and that
interleaving logic and overflow protection behaved
correctly.

The second phase focused on timing—measuring latency
from pulse creation to FIFO output and estimating
throughput under the configured subsampling settings.
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3.5 Estimated Results & Analysis: The simulation more
or less matched what we thought it would do. At a pulse
rate of 9,000 pulses per second, the gap between pulses
worked out to around 111 microseconds, which lines up
with the theoretical value. Because the system only takes
one sample every four cycles of the 100 MHz clock, the
actual sampling rate comes down to about 25 MSPS. Even
with that lower rate, the system still manages to catch the
important part of the UWB pulse. The delay from the
ADC Emulator to the point where the data shows up at the
FIFO output stayed mostly between 40 and 60
nanoseconds. Any small differences were mainly due to
jitter and how the two channels overlap in time. Filling the
FIFO completely—1,024 samples—took about 10.24
microseconds, which makes sense given the 100 MHz
write clock.

Throughout the testing, the FIFO didn’t show any signs of
overflow as long as the PRF stayed under 10 kHz, which
means the design can keep up with the data flow without
losing samples. That gives the design enough breathing
room to handle fast bursts without dropping data. Taken
together, these results show that the RTL front end keeps
the signal intact and continues to operate in real time even
when the system is pushed near its limits.

3.6 High-Level System Block Diagram: The system
block diagram summarizes how the major modules
interact, showing the data flow from the analog radar
pulse model to the final buffered digital output. Figure 2
presents this structure as a staged pipeline that begins with
“UWB Radar Pulses (Analog Signal)” as the conceptual
input, representing what a real radar front end would
receive. These signals are directed into the ADC Emulator
Module, indicated by an arrow labeled "Analog Pulse
Input." The ADC Emulator acts as the synthetic source for
the simulation and includes an internal "Synthetic Pulse
Generator" to emulate high-speed radar pulse sampling
behavior. From the ADC Emulator, the digitized output—
a 12-bit dual-channel data stream at a high sampling
rate—is fed into the Sampler Module. This stage,
responsible for implementing subsampling, is annotated
with an internal block labeled "1/4 Nyquist Subsampling
Logic", reflecting its function of reducing the data rate
while preserving critical pulse features. The resulting
subsampled data is then passed to the Dual-Channel
Buffer Module, as indicated by the next arrow labeled
"Subsampled Data (Lower Sample Rate)."

=
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Figure 1: Block Diagram of UWB Radar Signal Acquisition and
Processing Figure 2: High-Level System Block Diagram of UWB
Radar Signal Acquisition and Processing Modules

The buffer stage relies on two FIFO blocks, one dedicated
to Channel A and the other to Channel B. Each can store
up to 1024 samples, giving the system enough room to
hold incoming data before it’s passed along for further
processing. After the samples move through these buffers,
the output is forwarded to the next part of the chain, shown
as the “Buffered Data Output.” At the center of the design
is the Timing Controller, which keeps all the modules
aligned. It sends a pulse-sync signal to the ADC Emulator,
a sample-enable signal to the sampler and manages the
buffer using separate write-enable and read-enable
controls. Every module runs off the same 100 MHz
system clock, so their timing stays consistent.

This modular layout, with one unit coordinating all the
timing and clean control paths between blocks, helps the
simulation behave much like a real radar front end. It
allows the system to capture and move pulses in a way
that reflects real-time hardware operation.
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Figure 3: Conceptual Illustration of Full-Rate versus Subsampled UWB
Radar Signals in the Time Domain
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Figure 3 gives a straightforward view of how subsampling
works by showing the original high-frequency radar
signal next to a slower, reduced-rate version in the time
domain. The figure is presented as a simple 2D graph with
time along the x-axis and amplitude along the y-axis,
making it easy to compare the full-rate samples with the
subsampled ones. At the center of the plot is a smooth,
bell-shaped waveform—much like a Gaussian pulse—
that represents the original UWB radar signal.It’s labeled
“Original UWB Pulse.” Over this curve, two different sets
of sample points are placed. The first set represents full-
rate sampling: the points are packed closely together, with
vertical ticks and dots positioned right on the curve. These
imitate Nyquist-rate samples from the ADC Emulator and
are marked “Full-Rate Samples (ADC Emulator Output).”
A small arrow between two of these points, labeled
“Sampling Interval at Nyquist,” highlights the dense
sampling spacing.

The second set shows the effect of subsampling. These
points are spaced much wider—only one out of every four
full-rate samples is kept. They are labeled “Subsampled
Points (Sampler Module Output).” A larger arrow
between two of these points, tagged “Sampling Interval at
1/4 Nyquist,” shows how much the sampling interval
increases. When viewed together, the figure makes it easy
to see how subsampling cuts down the number of samples
without losing the overall shape of the pulse. It
demonstrates why subsampling is practical when full-rate
sampling is either unnecessary or too demanding for the
available hardware.

1)
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;[Pulse ljata)

bl | (14
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Figure 4: ADC Emulator and Timing Controller wave form
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Figure 4 is basically a snapshot from the ModelSim
waveform window, and it helps you see how all the main
signals line up with each other during the ADC emulation.
Everything is plotted on the same time line, so you can
follow what happens step by step. At the top, you can see
the clk signal. It’s just the regular 100 MHz square wave
flipping every 10 ns, and it’s the reference timing that the
rest of the system depends on. Right below it is
pulse_sync, which the Timing Controller generates. It’s a
very short pulse that pops up once every 111
microseconds or so—basically one cycle of a 9 kHz PRF.
Whenever this pulse appears, it kicks off a new radar event
and tells the ADC Emulator to start producing a pulse.
Under that, you’ll notice adc_data_ch_A. When nothing
is happening, this line stays at 000. As soon as pulse_sync
triggers, you start seeing a string of hex values—O0I1A,
03F, 1FF, 3C5, 1DO0, and a few more—showing the digital
version of the radar pulse the emulator generates. Once
the pulse ends, the output just drops back to 000 again.
Beside it, adc_valid ch A goes high only when those
values are actually meaningful. It’s just a basic validity
tag so that anything downstream knows when the output
is real data and when it’s just idle. Finally, sampler enable
shows up at a much slower rate. Since the system uses 1-
in-4 subsampling, this signal only rises once every four
cycles when adc valid ch A is active. That’s what sets
the reduced sampling rate and cuts down how much data
the system has to handle. All of this together—clock,
sync, data, valid flags, and the subsampling control—lines
up exactly the way the design intends, so the figure
basically confirms that the ADC Emulator, Timing
Controller and Sampler are staying in sync.

Figure 5 shifts the focus to the Dual-Channel FIFO Buffer
and shows how data actually gets written and later read
out. The figure is split into two parts so it’s easier to
follow: Part A shows writing, and Part B shows reading.
In Part A, the waveforms include clk,
buffer_write_enable, and subsampled data_in. At the first
marked moment (Time 1), the FIFO memory grid—
addresses 0 to 1023—is empty. At Time 2,
buffer_write_enable goes high, which means writing has
started. Values like D1, D2, D3, and so on show up on
subsampled data_in, and the FIFO stores them one after
another. So address 0 gets D1, address 1 gets D2, and so
on. A little “Write Pointer” moves downward through the
memory diagram to show where the next value is going.
Part B shows the read cycle. Now you see clk,
buffer read enable, and buffer data out. When
buffer read enable goes high (Time 3), the FIFO starts
giving the stored values back in order. The diagram shows
D1, then D2, then D3 being pulled from the lowest filled
addresses. Each cell that has been read is marked as
empty. A “Read Pointer” moves down the memory map
the same way the write pointer did, but now it’s tracking
data retrieval instead of storage.

ISSN 2347-3657
Volume 14, Issue 1,2026

o emply
I N Y =
0. D1 ead
clkJ—l_I— Dz emply
buffer_ gy (T s empty
write_enebile G
Write
subsampeled ™ Deinter Write
data_in Pointer
(A) Writing to FIFO 0 | red read
———— amply
a LTLTLIL. o
1 empty
buffer J_l_l_‘ D, | D2 read
read_ene- Ds read
buffer )
dataout——— Read Read
- Pointer
(B) Reading fro FIFO o | red read
1| D1 read
clk 0 e
—[_ e D:| D2 read
buffer_re- Da read
ad_enable :
R :

T buffer €mpl
buffer_empty empty P
buffer_full

] low

clk —I—I_

buffer_wite_enable ] D3

—— Nrita Pointer

subsampled_data_in

Part A: Writing to FIFO
o
read Buffer Status
clk : . | —_—  |ndicators
1 empty
buffer_read_enable buffer_full
red
buffer_data_out o Oy
1023 Dy —» Read Pointer
Part B: Reading from FIFO
3 empty read
clk empty | read | buffer_full
buffer_read_enable 0 empty
D L
buffer_data_out D L
read
1023 | empty —» Read Pinter

Figure 5: Dual-Channel Buffer FIFO Operation

This two-stage visualization effectively demonstrates how
the FIFO buffer operates in a real-time radar system,
maintaining data integrity and order through controlled
read/write pointer mechanisms, and enabling smooth
handling of subsampled radar pulses for downstream
processing. The table shows Memory Status of Channel A
and Channel B

| Address | Channel A Data | Channel B

| 0 | (Read/Empty) | (Read/Empty)
|

| 1 | (Read/Empty) | (Read/Empty)
|

| 2 | DA 2 | DB 2

|
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Figure 5 becomes easier to follow when two additional
signals, buffer_empty and buffer full, are shown along
with the regular waveforms. These lines give a quick view
of what the FIFO is doing internally while the simulation
runs.At the very beginning (Time 1), nothing has been
written yet, so buffer_empty is high. That simply tells you
the FIFO is completely clear. The moment the first write
happens and  buffer write enable goes  high,
buffer_empty falls to low, meaning the buffer now holds
real data.

As the system keeps writing new values into the FIFO,
each address fills in order until it reaches Address 1023.
The write pointer moves through the memory one step at
a time. When the last slot is filled, buffer_full switches to
high. At that point, the FIFO can’t take in anything else
until some of the stored data is read out. Including these
two signals makes the figure more straightforward to
understand. You can see how the FIFO fills, when it has
room, and when it doesn’t. It also shows how the empty
and full flags help regulate the flow of data so the fast
acquisition logic doesn’t overwhelm the rest of the
system, and the slower processing blocks don’t try to read
data that isn’t there.

Dual-Channel FIFO
Write Channel A « Subsampled
Enable (1024 x 12-bit) data_in_A
Channel B Full-Rate
Read -
Emable| (1024 x 12-bit) e RN
Sampling
buffered_data_out A |+ Interval at
1/4 Nyquist
Dual-Channel FIFO Unbldvce

Figure 6: Block Diagram of Dual-Channel FIFO for UWB Radar Data
Acquisition

4. RESULTS

This section presents the results and performance
observations derived from the Verilog-based RTL
simulation of an ultra-wideband (UWB) pulsed-radar
front-end system. The simulation models a complete data
acquisition pipeline including subsampling, dual-channel
ADC emulation, FIFO buffering, and synchronized
control. The analysis evaluates timing accuracy, data
integrity, throughput, and latency, confirming the
feasibility of using subsampled data paths for efficient
radar signal capture.

4.1 Performance Parameters
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Table 2: Performance parameter table

Parameter Value Explanation
Reflects typical UWB
. 1.5 ns pulse duration for
Pulse Width (simulated) high-resolution range
detection.
250 MSPS Achlevedlby applying
. 1/4 Nyquist
Effective (post- .
Sample Rate  subsamplin subsamp 11ng.t0 reduce
) ADC bandwidth
& requirements.
1024 Adequate to handle

FIFO Buffer samples PRF of 9 kHz without

Depth per overflow; allows
channel smooth data storage.
4.5 MB/s Simulated data transfer
Throughput  per rate from ADC
channel emulator to FIFO
under subsampling.
Time delay from pulse
generation to
Latency 120 ns availability in FIFO
(average) output, including
sampling and buffering
delays.
0% (with No .data was dr.opped
>1024 during simulation due
Data Loss to correctly
b}lffer dimensioned buffer
size) depth.

4.2 Waveform Output Analysis: The ModelSim
waveforms give a good sense of how the proposed UWB
radar front end is behaving in real time. From the timing
and the signal transitions, it’s clear that the control logic
and the data path are both operating the way the design
intended. The system has to deal with very short UWB
pulses—only around 1.5 nanoseconds—and they come in
at about 9,000 per second. Instead of trying to sample
them at the full Nyquist rate, the design uses a much
lighter sampling clock of 250 MSPS. That’s roughly a
quarter of what a full-speed ADC would need. Even
though the rate is lower, it still captures the main part of
the pulse and its timing well enough for the processing
that follows, and it keeps the hardware from being
overloaded. Whenever a sample is taken, the ADC
Emulator produces a 12-bit number that reflects the
pulse’s amplitude at that instant. In the waveform view,
these readings show up as “SampleN,” with each value
falling somewhere within the 4096 possible quantization
levels. The emulator only produces a value when the
subsampled clock asks for one, so every output is timed to
that slower sampling rhythm.

The FIFO accepts data only when a valid ADC output is
available. Because of that, the write pointer steps through
the memory in a clean sequence—from address 0 up to
1023. After a short delay, the read-enable signal starts its
own rhythm, and the read pointer follows the same path,
pulling data out in the order it arrived. The FIFO status
signals help show what is happening internally. At the
start of the simulation, buffer empty is high because
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nothing has been written yet. As soon as the first value is
stored, the empty flag drops. When all 1024 locations
have been filled, buffer full goes high, meaning the buffer
won’t accept new data until the read side starts clearing
space. The write signal, the read signal and the two status
flags all work together to keep the fast sampling side from
clashing with the slower processing stage. To see how the
design would act with imperfect timing, a small bit of
jitter—about +0.25 ns—was mixed into the input pulses.
That slight shift didn’t cause any trouble, and the system
continued to run normally. No samples went missing, and
the FIFO didn’t hit either overflow or underflow during
the tests. The buffer wrapped and cycled smoothly, just as
it should. Overall, the waveform results show that the
subsampling strategy, paired with synchronized buffering
and the supporting control logic, behaves much like a real
UWB radar front end. It captures the pulse shape
accurately and moves the data through the system without
timing faults or corruption.

Input Radar I
Puises
(PRF = 9 kHz)

Subsamppled I I | l | _| U

Sampling Clock
250 MSPS after 144

Nyquist subsamp. ’_‘ |T| m m m m m
e [ =

Subsampled dgitad
aulput straam pr

X _—
FIFO Write [1024] . [1022] <[1022] ... [1024)

Enable {per channel)

Triggers on valid ADC

samples
Buffer Status
Buffer Status — 10 1073 - [
Wi e [1024]) -+ [1023 -+ [0,.] =+ [1024]
painters Write portter [1024]-[1073]-+[1022] ... [... ~1024} - [0
Read painter (0] = [1]-=[2]—=[2]...[...~1024] -+ [1024]
e s
L — o
SN [y N N W N [ N AN SO (G R o |
sanpler_snable 1 —
i [ L
radar_pulsa tn ———F——
adc » FF 5 L&
-d walid i T 1
0 )
kil e i T 188 e |
J S— L —
flfo_rd_an _—— — —/—

T Y R W'

fifo_dats_out — — BlhA W FF  (delayed data)

Figure 7: Output waveform

The figure lays out a set of signals that show up during
sampling and buffering, all running along the same
timeline so you can see how each one fits with the others.

a) Time Axis:This is simply the line that shows
how time moves across the diagram.

b) Input Radar Pulse:The first signal you notice
is a repeating train of short pulses that jump between high
and low. These represent the incoming UWB radar pulses.
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The note “PRF = 9 kHz” just means the radar is sending
out nine thousand pulses every second.

¢) Subsampled Sampling Clock: Under the radar
pulse trace is a much faster clock. It fires several times
during each radar pulse and is used to take samples of the
incoming waveform. The note “250 MSPS after 1/4
Nyquist subsampling” is basically saying that the system
ends up sampling at 250 million samples per second after
applying the one-in-four subsampling approach.

d) 250 MSPS: This is the real sampling speed of
the system — 250 million samples every second.

e) 1/4 Nyquist Subsampling: Instead of sampling
at the full Nyquist rate, the design purposely picks
samples at a slower pace. The radar pulse is very narrow
in time, so you don’t need the full bandwidth to capture
what matters. By sampling at only a quarter of the Nyquist
rate, the signal is effectively shifted into a lower frequency
range, but the important parts of the pulse are still
preserved. Running at “1/4 Nyquist” just means the
sampling clock is one-quarter of what a strict Nyquist
system would need.

f) ADC Output (12-bit): The ADC doesn’t
produce a smooth curve. It spits out numbers — Samplel,
Sample2, Sample3, and so on — each one representing
how strong the pulse was at that exact moment. With 12
bits, each sample can take one of 4096 possible values.
When we say “subsampled digital output per pulse,” it
simply means the system keeps only a handful of these
sample points for each radar pulse instead of trying to grab
everything.

g) FIFO Write Enable: This line goes high briefly
whenever a valid sample needs to be stored in the FIFO.
It lines up with the valid ADC output so that only
meaningful data is written into memory.

h) FIFO Read Enable: These pulses look like the
write-enable pulses but appear later. They tell the FIFO
when to release stored samples. The mention of “readout
starts after latency” means the FIFO waits until enough
data is present or until the next processing stage is ready.
This separation lets reading and writing happen at
different speeds.

i) Buffer Status: Two pointer traces show how
the FIFO is being used:

* The write pointer moves downward through the
memory as new samples are stored.

* The read pointer moves upward as samples are
taken out.

These pointers help visualize how the FIFO keeps track of
where data is placed and where it is removed.

Putting it all together:

a) The radar sends out pulses.

b) The ADC samples those pulses at 250 MSPS using a
quarter-rate subsampling scheme.

¢) Those samples are written into the FIFO whenever
write-enable goes high.

d) After a short delay, the FIFO starts outputting the data
when read-enable fires.

e) The pointer diagrams show how the FIFO avoids
overwriting unread data or reading from empty
locations.
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This type of setup is common in digital signal-processing
systems where fast data capture must interface with
slower logic or where bursts of data need temporary
storage.

A few extra observations:

a) The captured samples land exactly where they
should in the buffer, which confirms that the
timing is correct.

b) A small jitter of roughly £0.25 ns was added on
purpose to test timing stability.

c) Even after subsampling, the pulse still keeps its
basic shape and timing features, which is enough
for things like time-of-arrival estimation, target
detection and feature extraction.

4.3 System Behavior and Data Integrity : To see how
well the system holds up under realistic conditions, a
small amount of timing jitter—about +0.25
nanoseconds—was added during simulation. This helped
check whether the design could handle slight variations in
timing without breaking down. The waveform results
showed that the subsampled signals still followed the
shape and timing of the original UWB pulse closely, even
with the injected jitter. No samples were lost, and the
FIFO buffers stayed stable throughout the run. There were
no signs of overflow or underflow, even when the pulse
repetition frequency was pushed to 9 kHz. The ADC
emulator, the subsampling logic and the FIFO all stayed
properly aligned, which is a good indication that the whole
acquisition chain behaves reliably. Based on these
observations, the system is well-prepared for UWB radar
tasks such as TOA estimation, target detection and
extracting useful features for digital processing.

4.4 Reference Implementation and Validation: To
make sure the simulation reflects real hardware behavior,
the design was compared against theoretical expectations
as well as common practices used in radar front-end
architectures. Each part of the model was checked to
confirm it matched what an actual system would require.

a) Subsampling: The system doesn’t sample
every point at the full rate. Instead, it takes one out of
every four samples. This follows the usual bandpass-
sampling idea and lets the design lower the ADC speed
while still holding on to the useful part of the pulse.

b) Dual-Channel ADC Interface” A simple two-
channel, 12-bit ADC model was written in Verilog. Its
timing and the way it spits out samples were shaped to
behave like a real ADC capturing short radar pulses.

¢) FIFO Buffers: Both channels have their own
FIFO, each able to store 1024 samples. The logic that
writes data in and reads it out was tested at a pulse rate of
9 kHz. During all of the runs, the FIFOs kept up with the
flow—no lost data, no overflow issues.

d) FPGA-Friendly RTL Design: The RTL was
written with FPGA hardware in mind. It uses state
machines, some pipelining and timing-aware coding
practices so it can drop straight into common FPGA tools.
There’s nothing unusual in the code that would block it
from being synthesized on a standard device.e)
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e). Simulation and Tool Validation: All modules

were verified using ModelSim SE 10.5b. The simulation
ran smoothly in every test we tried. The timing lined up
the way it should, the signals moved through the system
without issues and everything behaved correctly even
when we pushed it under tougher conditions.
Taken together, the results match what theory predicts and
are consistent with how these systems are usually built in
hardware. Nothing in the design looks unrealistic or
difficult to implement, so an FPGA version of this radar
setup should work with little or no adjustment.

Table 3: Design Features and Implementation Details

Design . .
Feature Implementation Detail
1/4 Nyquist sampling applied; based
Subsampling on validated bandpass sampling

theory [1].

12-bit dual-channel data modeled in

Verilog HDL; mimics real hardware

ADC behavior.

1024-depth FIFO per channel with

FIFO Buffers  synchronous read/write logic;
validated under PRF = 9 kHz.

FPGA- RTL modules structured to reflect

Dual-Channel
ADC Interface

Compatible synthesisable designs (FSMs,
RTL Design pipelining, timing constraints).
All outputs verified using
Tool-Based ModelSim SE 10.5b, confirming
Validation logical correctness and timing

synchronization.

4.5 System-Level Architecture Block Diagram

Figure 8 basically shows how the whole setup is arranged,
step by step. It starts with the radar pulse generator, which
creates the signal the rest of the system works on. That
signal then goes into the ADC emulator, where we also do
the subsampling. After that, the data isn’t processed right
away—it first gets dropped into two FIFO buffers so
nothing gets lost while the next stage gets ready. Once the
buffers release the samples, they pass through a simple
digital interface and finally land in the processing block,
where the actual computations happen. What this
arrangement really does is separate the fast parts from the
slow ones. The subsampling at the front keeps things
manageable, and the FIFO buffers act like a cushion
between the capture side and the processing side. Even
when the pulse rate is high, the system doesn’t choke.
Because each block is its own piece, the whole thing stays
flexible and is easy to use in real-time radar or embedded
signal-processing work.

Radar Pulse Generator -~ ADC Emulator (with

Subsampling) — Dual FIFO Buffers — Digital
Interface ~ Downstream Processing Module
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Figure 8: Block Diagram of System-Level Architecture

The Verilog simulation demonstrates a functional and
efficient UWB radar front-end using subsampling and
dual-channel buffering. The architecture achieves:

a) Reduced hardware complexity and power via
subsampling.

b) Reliable real-time data acquisition through
FIFO-based decoupling.

c) Low-latency performance (average 120 ns).
d) No data loss under operational pulse rates.

These results validate the approach as a robust design
strategy for high-speed radar data acquisition systems
targeting FPGA or ASIC deployment.

5. CONCLUSION

The study titled “Verilog Simulation of UWB Pulsed-
Radar Data Acquisition” shows how a fast and lightweight
radar pulse acquisition system can be built and tested
using RTL design methods. The work brings together a
few key pieces—subsampling, a dual-channel 12-bit ADC
model and FIFO buffering—to capture UWB pulses
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without needing heavy hardware. Tests carried out in
ModelSim SE 10.5b confirmed that the setup behaves
correctly, keeps its timing aligned and doesn’t lose data,
even when the pulse rate is pushed to 9 kHz or when small
timing variations are added. Using one-fourth of the
Nyquist rate still preserved the important parts of the
pulse, which is enough for tasks like TOA estimation or
basic target detection.

Because the code follows normal FPGA design rules, the
same structure can be moved to real hardware with little
change. Overall, the work shows that a simple and well-
organized Verilog design can form a solid base for high-
speed UWB radar acquisition in embedded systems.

5.1 Future Work: Building on the simulation results,
several next steps are planned:

i Move the design to hardware. The idea is to load
the RTL onto an FPGA—Xilinx, Intel or a
similar platform—to test real-time capture and
early processing of UWB signals.

il. Connect it to real RF components. Hooking up
an actual UWB antenna and a high-speed ADC
will make it possible to evaluate how the system
behaves in real environments with noise and
multipath effects.

ii. Use adaptive subsampling. Instead of keeping
the subsampling ratio fixed, the system could
adjust it based on pulse width or bandwidth to
save resources when possible.

iv. Add real-time processing blocks. In the next
phase, the design will grow to include modules
for things like pulse averaging, noise control,
windowing, interference rejection, matched
filtering and full target-detection logic. Range-
Doppler support for SAR or GPR imaging is also
planned.

v. Support for more channels or MIMO setups.
Adding more inputs and outputs would help with
higher-resolution imaging and modern radar
modes.

Vi. Use lightweight AI blocks. Small ML models
could help classify pulses, detect unusual events
or extract features directly from the acquired
data.

Vii. Optimize for ASIC use. Power and silicon area
can be reduced for systems that need low-
resource designs or custom chips.

Viii. MATLAB co-simulation. Running MATLAB
alongside ModelSim will make it easier to
measure throughput, SNR and performance
gains from subsampling and buffering choices.

Use in defense and sensing applications. The long-term
goal is to support radar systems that need high PRF (9 kHz
and above), very low latency and edge-level processing
for drones, ground vehicles or portable surveillance tools.

Conflict of Interest: Nothing to report here. Dr. V.
Krishna Naik notes that there weren’t any outside ties or

221



W, .
{ International Journal of
Information Technology & Computer Engineering
personal matters that could’ve influenced what we did in
this work. Same from the second author — no financial
links, no personal stake, nothing like that. Just the project
as it is.

Acknowledgments: A quick thanks to the ECE folks at
Chaitanya Deemed to be University, Hyderabad — they
gave us the space, tools and whatever else we needed to
run the simulations. The lab staff helped a lot with setting
up the hardware/software bits (saved us a lot of time). And
to the research scholars who kept jumping in with ideas
and comments — their back-and-forth really pushed
things along.

REFERENCES

I. S. Song, H. Kim, and J. Lee, “An Efficient
Subsampling Receiver for UWB Radar Systems,”
IEEE Trans. Circuits Syst. II, vol. 67, no. 3, pp. 576—
580, 2020.

2. A. Zielinski, M. Plich, and K. Czarnecki, “Digital
Signal Processing in FPGA for High-Resolution
UWB Radar,” Electronics (MDPI), vol. 10, no. 1,
2021.

3. T. Nguyen, P. Li, and X. Zhao, “Low-Power ADC
Interfaces for Radar on FPGA,” Sensors, vol. 20, pp.
1-12, 2020.

4. A. Jalal, “FPGA-Based Real-Time Radar Data
Acquisition,” J. Defense Technology, vol. 15, no. 2,
pp. 122-130, 2019.

5. G. R. Udupa, “Design and Verification of Radar
Signal Path in FPGA,” in IEEE Int. Radar Conf.,
2021.

6. M. Ghavami, L. B. Michael, and R. Kohno, Ultra
Wideband Signals and Systems in Communication
Engineering, Wiley, 2007.

7. R. Fontana, “Recent System Applications of Short-
Pulse Ultra-Wideband (UWB) Technology,” IEEE
Trans. Microw. Theory Techn., vol. 52, no. 9, pp.
2087-2104, 2004.

8. T. McEwan, “Micropower Impulse Radar,” U.S.
Patent US58383174, 1998.

9. M. Zetik, J. Sachs, and R. Thoma, “UWB Through-
Wall Imaging,” Radioengineering, vol. 15, no. 1, pp.
43-48, 2006.

10. E.  Baranoski, “Digital Radar  Front-End
Architectures,” MIT Lincoln Laboratory Report,
2008.

11. F. Liu, L. Kong, and Y. Li, “UWB Radar with
Compressed Sensing,” IEEE Sensors J., vol. 16, no.
17, pp. 6551-6562, 2016.

12. Z. Deng, L. Bai, and C. He, “Sub-Nyquist UWB
Radar Receivers: Design and Implementation,” in
Proc. IEEE RadarConf, 2017, pp. 1125-1130.

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

ISSN 2347-3657
Volume 14, Issue 1,2026

M. Rasch, P. Knoll, and S. Laine, “Digital Front-End
Design for UWB Radar in Automotive Systems,”
Sensors, vol. 18, no. 12, pp. 1-12,2018.

C. Chien, Y. Shih, and W. Chen, “Real-Time UWB
Radar Implementation Using Zynq FPGA,”
Electronics, vol. 8, no. 2, 2019.

J. Zhang, M. Lin, and K. Yamamoto, “Subsampling
Dual-Pulse UWB Radar for Breathing Detection,”
IET Radar, Sonar & Navigation, vol. 14, no. 5, pp.
791-798, 2020.

A. Krishnan, V. Raman, and S. Bose, “FSM-Based
Control Logic for Radar on FPGA Using Verilog,”
IEEFE Access, vol. 8, pp. 19208-19217, 2020.

S. Ahmed, R. Uddin, and M. Arif, “Data Buffering
and Real-Time Control for UWB Radar on FPGA,”
Microprocessors and Microsystems, vol. 83, pp. 1-9,
2021.

X. Zhao, J. Wang, and T. Chen, “FPGA-Enabled
Deep Learning for UWB Radar Applications,” IEEE
Sensors J., vol. 22, no. 4, pp. 4560-4571, 2022.

J. Kim, D. Lee, and S. Park, “Digital Beamforming
for UWB Radar on Low-Cost FPGA Platforms,”
Electronics, vol. 12, no. 1, 2023.

N. Patel, H. Shah, and R. Mehta, “Dynamic
Subsampling Strategies in Radar Front-End,” IEEE
Trans. Microw. Theory Techn., vol. 72, no. 2, pp.
380-390, 2024.

M. Mishali and Y. C. Eldar, “Sub-Nyquist Sampling:
Theory, Algorithms and Applications,” IEEE Signal
Process. Mag., vol. 28, no. 6, pp. 98—124, 2011.

J.. Xu and B. Zhang, “High-Speed ADC
Synchronization for Radar in FPGA,” in Proc. IEEE
Int. Conf. on Aerospace Electronics and Remote
Sensing, 2020.

A. Mahapatra et al., “Low-Jitter Clocking Techniques
for Subsampled Radar Systems,” [EEE Trans.
Circuits Syst. I, vol. 67, no. 8, pp. 2801-2812, 2020.

L. Yao and M. Tan, “Design of Reconfigurable FIR
Filters for UWB Pulse Processing,” Integration, VLSI
J., vol. 68, pp. 123-130, 2019.

C. Zhang et al., “FPGA-Based Real-Time UWB
Pulse Generator with Adjustable Width,” IEEE
Trans. Instrum. Meas., vol. 70, 2021.

K. S. Tiwari, “A Compact Dual-Channel ADC
Interface for Radar Data Buffering,”
Microelectronics J., vol. 109, pp. 1-6, 2021.

A. R. Bose and S. Kundu, “Implementation of Time-

to-Digital Conversion for TOA Estimation,” /[EEE
Design & Test, vol. 39, no. 3, pp. 70-79, 2022.

222



W , ISSN 2347-3657
( International Journal of

Information Technology & Computer Engineering Volume 14, Issue 1,2026

28. H. Wang et al., “Optimizing UWB Radar Latency on 30. B. Chatterjee and A. Sengupta, “Robust
Xilinx Platforms,” in Proc. IEEE Int. Conf. on Synchronization of UWB Signals Using FPGA-
Embedded Systems, 2022. Controlled Timing Engines,” IEEE Trans. Aerosp.

Electron. Syst., vol. 59, no. 2, pp. 705-716, 2023.
29. P. Singh and D. Reddy, “Subsampled Acquisition for

Low-Power Portable Radars,” IEEE Trans. Biomed.
Circuits Syst., vol. 15, no. 6, pp. 1230-1238, 2021.

223



