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ABSTRACT- This work reports an RTL-level study of a 
pulsed-radar data-acquisition chain designed entirely in 
Verilog. The project was approached in two parts. First, 
a dual-channel front end was created to reproduce 12-bit 
ADC output and to apply a reduced-rate sampling method 
before sending the data into independent FIFO buffers. 
This allowed us to examine how the system reacts when 
the PRF is pushed high, particularly in terms of timing, 
throughput, and the way the buffers fill and empty. In the 
second part, the model was expanded into a real-time 
processing path similar to what would run on an FPGA, 
and it was tested at roughly 9,000 pulses per second on 
each channel. The processing stage uses Verilog modules 
for pulse averaging, window shaping, and simple 
interference handling, and these modules were validated 
using ModelSim. MATLAB was used only to review the 
captured signals and verify SNR and latency results. The 
study focuses on decisions that influence real hardware—
buffer sizes, clock-domain handling, and timing 
margins—rather than idealized assumptions. The design 
can function with low latency and without data loss, 
according to the simulation results, which makes it 
appropriate for UWB radar systems that require 
consistent performance in noisy military scenarios. 

Keywords: Verilog HDL, Subsampling ADC, FIFO 
Buffer, Radar Signal Processing, Ultra-Wideband (UWB) 
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1. INTRODUCTION 

Ultra-wideband (UWB) radar's use of incredibly short 
pulses that spread over a wide range of frequencies—
typically lasting less than two nanoseconds—is the main 
reason it has attracted attention. Because of this capability, 
UWB radar has found use in several areas, from defense 
monitoring and through-wall sensing to ground-
penetrating surveys, biomedical measurements, 
autonomous platforms, and industrial inspection [1][2]. 
Unlike conventional narrowband radar, which depends on 
modulation schemes to achieve range resolution, UWB 
systems simply measure the delay of the received pulse. 
This approach helps them perform better in cluttered or 
multipath environments. Capturing pulses of such short 
duration is not straightforward. It calls for very fast ADCs, 
stable clocks with minimal jitter, and a digital path that 
can push data through at high speed while continuing to 
process the signal in real time. The analog section and the 
digital logic must also work together without introducing 
timing problems or loss of signal quality. 

In this project, the focus is on simulating the digital 
acquisition stage of a UWB radar receiver using Verilog 
HDL. The design models two receive channels and the 
buffering needed to store and process the incoming radar 
echoes. Because building hardware for early testing is 
both costly and complex, RTL simulation is used to verify 
elements such as FIFO structures, subsampling units, 
clock-domain interfaces, and latency-tolerant signal paths 
before moving to a physical prototype. The main technical 
aims of the project are: 

a) Designing a dual-channel setup that can capture 
UWB pulses at high speed. 

b) Using subsampling and FIFO buffering to keep 
the data rate manageable for FPGA hardware. 

c) Maintaining predictable timing and latency by 
incorporating proper digital synchronization 
circuits. 

d) Checking the design through simulations 
(ModelSim, Vivado Simulator) to confirm 
timing behavior, functional accuracy, and 
performance of clock-dependent blocks. 

An FPGA suits this work well because it can handle 
several operations at the same time, can be reprogrammed 
when the design changes, and allows the use of long, 
efficient processing pipelines. Running the design in 
Verilog at the RTL stage makes it possible to adjust speed, 
resource usage, and power before any hardware is built. 
The outcomes of these simulations provide a solid starting 
point for later use in radar systems that must operate with 
strict timing, low delay, and high data bandwidth. In 
addition, this work adds to ongoing studies that aim to 
make digital radar front ends better for current 
communication and sensing technologies. 

2. LITERATURE REVIEW 

Ultra-Wideband radar has grown a lot over the last twenty 
years. In the early days, most designs leaned heavily on 
analog hardware, which limited how much data could be 
collected or processed in real time. As digital platforms 
like FPGAs and SoCs improved, designers started shifting 
more of the system into the digital domain. This change 
helped make data capture, subsampling and signal 
processing far more efficient, and it opened the door to 
applications in defense, medical scanning and even 
through-wall sensing. 

In this review, the developments are grouped into three 
areas: how signals are sampled, how they are buffered, 
and how real-time processing has evolved. 

2.1 Traditional Approaches (2000–2015) 



ISSN 2347–3657 

Volume 14, Issue 1, 2026 
 

213 
 

1. Ghavami et al. (2007) [1] outlined the fundamentals of 
impulse-radio UWB and pointed out how difficult it is to 
sample signals that span such large bandwidths at full 
Nyquist rates. 

2. Fontana (2004) [2] highlighted a major limitation of the 
time: practical high-speed ADCs simply were not 
available for impulse radar, so many designs relied on RF 
front-end tricks to reduce the sampling burden. 

3. McEwan (2001) [3] built a compact, low-power UWB 
radar that depended mostly on analog processing. While 
efficient, it lacked the flexibility that later digital systems 
would offer. 

4. Zetik et al. (2006) [4] studied through-wall sensing and 
showed the importance of wide dynamic range and strong 
clutter suppression for reliable imaging. 

5. Baranoski (2008) [5] explored mixed-signal radar 
setups that combined analog sampling with early digital 
envelope detection. This work later influenced how 
FPGAs were used in UWB systems. 

Overall, these early systems were constrained by the 
bandwidth of the ADCs available at the time, struggled to 
scale, and depended too heavily on analog electronics. As 
a result, they were unable to properly handle modern high-
speed and adaptive radar operations. 

2.2 Recent Advances (2016–2024) 

1. Liu et al. (2016) [6] introduced compressive sensing to 
UWB receivers, reducing data rates while maintaining 
high range resolution. 

2. Deng et al. (2017) [7] showed that sub-Nyquist 
sampling can still provide useable radar signals when 
structured sparsity is applied during reconstruction.  

3. Rasch et al. (2018) [8] introduced an entirely digital 
UWB front end based on time-interleaved ADCs that ran 
above 4 GSPS, though they required careful FPGA-based 
calibration. 

4. Chien et al. (2019) [9] built a multi-channel radar 
system on a Xilinx Zynq device with fast DMA paths and 
real-time FFT processing. 

5. Zhang et al. (2020) [10] proposed a low-power dual-
pulse subsampling radar that managed coherent 
reconstruction at lower sampling rates. 

6. Krishnan et al. (2020) [11] showed how Verilog-driven 
FSMs could be used for real-time pulse detection and 
front-end control in digital radar systems.  

7. Ahmed et al. (2021) [12] presented a pipeline-style 
buffering and compression method on an Artix-7 FPGA 
that helped reduce latency in multi-channel setups. 

8. Zhao et al. (2022) [13] combined FPGA-based UWB 
radar with deep learning models to classify targets directly 
from raw time-domain signals.  

9. Kim et al. (2023) [14] evaluated how low-cost FPGA 
hardware performs when used for digital beamforming in 
portable UWB radars, especially looking at accuracy-
latency trade-offs. 
10. Patel et al. (2024) [15] explored asynchronous 
subsampling with adaptive thresholds on an Intel Stratix 
platform for tracking objects in clutter-heavy 
environments. 
In order to lower latency in multi-channel configurations, 
Ahmed et al. (2021) [12] introduced a pipeline-style 
buffering and compression technique on an Artix-7 
FPGA. 

Table 1 . Key Observations from Literature 
Technology 

Aspect 
Traditional 
Approach 

Recent Advancement 

ADC 
Architecture 

RF-frontend 
downconversi
on + Nyquist 
ADC 

Time-interleaved, 
compressive, or 
subsampled ADCs 

Signal 
Reconstructi
on 

Envelope 
detection, 
analog mixing 

Compressive sensing, 
sparse recovery 

Buffering 

Limited to 
onboard 
memory or 
CPLD FIFO 

Multi-channel 
DDR/AXI DMA FIFO 
via FPGA cores 

Processing 
Hardware 

DSP/MCU 
hybrids 

High-speed FPGA 
(Zynq, Stratix, Kintex) 

Simulation 
Strategy 

MATLAB/Sy
stemView 
level 

Verilog/VHDL with 
hardware co-simulation 

Resolution vs 
Power 

High power 
for better 
resolution 

Sub-Nyquist trade-offs 
and smart 
reconstruction 

 
The Most existing real-time systems still depend on costly 
ADCs and over-provisioned buffers. Subsampling 
methods have not been fully integrated with Verilog-
based RTL simulation for low-cost evaluation and Dual-
channel acquisition (e.g., for bistatic or polarization-
sensitive radar) remains underexplored in FPGA design 
frameworks. Recent literature highlights an ongoing shift 
toward Verilog-simulated, FPGA-based front-end 
architectures that efficiently manage high-speed UWB 
radar data. By leveraging subsampling, compressive 
sensing, and multi-core digital pipelines, these systems 
reduce hardware costs and power while retaining 
functionality. This project builds upon these 
advancements by modeling a dual-channel, subsampling 
radar front-end entirely in Verilog, enabling simulation-
based performance evaluation and pre-silicon verification 
of data acquisition strategies. 
 
3. METHODOLOGY 
 
Simulate a dual-channel ADC interface using Verilog to 
capture and buffer UWB radar pulses using subsampling 
and estimate data throughput and latency. The primary 
objective of this project is to simulate the front-end data 
acquisition system of a dual-channel Ultra-Wideband 
(UWB) radar using Verilog Hardware Description 
Language (HDL). The focus of this simulation is on 
replicating and analyzing key functionalities typically 
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found in real-time radar signal acquisition systems. This 
include: 

a) The system mimics the output of a fast 12-bit 
ADC, giving a digital version of the radar signal as it 
would appear after conversion. 
 

b) Subsampling is used to bring the data rate 
down while still keeping the important parts of the very 
short UWB pulses intact. 

c) Create a FIFO-based buffer that can take in a 
steady stream of fast data and hold it in order, without 
losing samples or mixing anything together. 

d) Work out the important system numbers—
how much data it can push through, how much delay it 
adds and how the timing behaves—while accounting for 
real UWB pulse conditions like jitter and shifting delays. 

This simulation acts as a pre-validation stage to 
verify the feasibility and efficiency of real-time signal 
capture and buffering before moving to actual hardware 
deployment using an FPGA platform. The design is 
especially targeted at low-power and resource-constrained 
embedded systems. 
 
3.1 Design Specifications and Parameters: The radar 
data acquisition system is designed and simulated using 
the following technical parameters: The Verilog-based 
simulation of the UWB radar front-end is configured with 
a pulse repetition frequency (PRF) of 9,000 pulses per 
second, supporting high-resolution temporal sampling of 
radar echoes. The analog-to-digital conversion is 
performed using 12-bit resolution per channel, ensuring 
sufficient signal fidelity for subsequent processing. The 
system features two acquisition channels—Channel A and 
Channel B—which operate in parallel to capture dual-
polarized or spatially diverse signals. To avoid 
overwhelming the system with the high-frequency parts 
of the signal, the design samples at a reduced rate—
basically keeping one out of every four points instead of 
trying to capture everything at the full Nyquist rate. Even 
with this lighter load, the pulse still keeps its overall 
shape. Everything in the design runs off a 100 MHz clock, 
and that clock sets when the ADC takes its samples and 
how the data moves through each block afterward. 
Each channel has its own FIFO that can hold 1024 
samples, which is enough space to deal with fast bursts of 
data without dropping anything. The length of the 
simulation can be adjusted depending on what you want 
to test; you can run it for a millisecond or stretch it out to 
ten milliseconds if the pulse type or conditions require 
more time. 
 
3.2 System Architecture Overview: The system 
simulation is realized using four key Verilog modules, 
each responsible for a specific functional block within the 
UWB radar signal acquisition chain. These modules 
interact in real time to mimic the complete data path from 
radar pulse generation to buffered storage. 

(1) ADC Emulator Module:  The ADC 
Emulator Module is designed to simulate the behavior of 
high-speed analog-to-digital converters (ADCs) for radar 
signal acquisition applications. Its primary purpose is to 
generate digital, radar-like signals that mimic ultra-

wideband (UWB) pulse characteristics. Functionally, it 
produces synthetic digitized pulses using a Gaussian-like 
waveform model, which can be configured as either 
bipolar or unipolar to suit different radar front-end 
requirements. To emulate real-world asynchronous 
returns, the module alternates pulse generation between 
Channel A and Channel B, incorporating slight timing 
jitter between channels. This setup helps mimic the small 
timing shifts you normally see in real radar signals, where 
reflections or different target distances cause the pulse to 
show up a little earlier or later each time. The emulator 
also lets you mix in noise and introduce delays, so the 
signal looks more like what you’d expect from actual 
hardware or a cluttered environment. It runs off a system 
clock and a reset line, and it outputs two 12-bit signals—
adc_chA[11:0] and adc_chB[11:0]—which carry the 
sampled pulse data for each channel. 

Inputs: clk, reset 
Outputs: adc_chA[11:0], adc_chB[11:0] — 12-

bit samples from each ADC path 
 
(2) Subsampler Module: This block takes care 

of reducing how often the incoming radar signal is 
sampled. The idea is to recreate the kind of undersampling 
that is common in UWB systems, where the bandwidth is 
so large that you don’t try to capture every point. Instead, 
the module picks up one sample every four clock cycles, 
giving a 1:4 ratio. 
To make sure the shape of each UWB pulse is still 
captured properly, a small windowing step is used so the 
sample points line up with the important part of the pulse. 
The timing is controlled by a simple down-counter that 
decides exactly when sampling should happen, similar to 
how real radar hardware aligns its sampling gate during a 
pulse. One of the strong points of this block is that it keeps 
the timing of the original waveform intact even though the 
data rate is reduced. In other words, it behaves like real 
hardware that undersamples but does not distort the pulse 
timing. 
Key Feature: It imitates an undersampled radar setup 
while keeping the pulse timing accurate. 

 
(3) Dual-Channel FIFO Buffer Module: This 

part of the design stores the pulse data from the two ADC 
channels. Each channel gets its own FIFO, capable of 
holding 1024 samples, so the two data paths remain 
completely separate.  
Inside the module, a write pointer and a read pointer keep 
track of where new data is placed and which value is being 
pulled out, making sure the data flows smoothly in and out 
without the two streams interfering with each other.The 
design includes basic protection so the FIFOs do not 
overflow or underflow during burst activity. Write 
operations follow the subsampling clock so that stored 
samples stay aligned with the capture rate, while read 
operations run independently. This allows downstream 
modules to pull data at their own pace, which is helpful 
when integrating with asynchronous processing stages. 
Because of this separation, the FIFO module becomes a 
reliable bridge between high-speed sampling and slower 
processing blocks. 
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Outputs: data_out_chA, data_out_chB — buffered data 
from each channel. 
 

(4) Timing Controller and Pulse Manager: 
The Timing and Control Unit coordinates timing across 
the entire radar acquisition chain. Its job is to keep pulse 
generation, subsampling and data logging operating in a 
predictable and synchronized way. 
One of its main tasks is producing accurate trigger pulses 
at 9,000 Hz, derived from the 100 MHz master clock. This 
matches the system’s Pulse Repetition Frequency (PRF). 
Each captured pulse is also stamped with a timestamp 
generated from a high-resolution counter, which helps 
during later latency checks and performance analysis. 
In addition, this unit drives the internal FSMs inside the 
ADC Emulator and Subsampler Modules. By aligning 
pulse creation, sampling and FIFO writes under one 
control unit, the system maintains a consistent and 
realistic timing flow throughout the simulation. 
 
3.3 RTL Design Flow: The RTL design followed a clean, 
modular approach. Each block was built in Verilog-2001, 
keeping combinational and sequential logic clearly 
separated for readability and synthesis accuracy. 
Parameters such as PRF, FIFO size and the subsampling 
ratio were made adjustable using Verilog parameters, 
giving flexibility for experiments or performance tuning. 
Once individual modules were completed, they were 
connected at the top level (uwb_top.v), where I/O ports 
were exposed for waveform inspection in ModelSim. 
For verification, a detailed testbench (uwb_tb.v) was 
prepared. It generated UWB-like pulses shaped with 
Gaussian envelopes between 5 and 10 ns wide. To make 
the test more realistic, pulse timing included ±3% jitter to 
mimic multipath and asynchronous channel behavior. The 
testbench didn’t just run the normal cases; it also forced a 
few problem situations on purpose—things like FIFO 
overflows, dropped samples and some potential race-
condition moments. This helped us see how the design 
behaves when it’s pushed or placed in situations that 
normally cause trouble. 
 
3.4 Simulation Environment: All of the simulations 
were done in ModelSim SE 10.5b using Verilog. The 
setup included a self-checking testbench that generated 
the input pulses, applied the needed signals and then 
checked the outputs automatically, so we could quickly 
see whether things were working as they should. The 
system clock ran at 100 MHz (10 ns period), reflecting 
timing conditions typical of real UWB radar systems.  
ModelSim’s waveform viewer was used extensively to 
monitor pulse shapes, sampling timing and FIFO activity. 
Verification occurred in two phases. The first examined 
basic functionality, confirming that pulse shapes, sample 
timing and FIFO writes matched expectations, and that 
interleaving logic and overflow protection behaved 
correctly. 
The second phase focused on timing—measuring latency 
from pulse creation to FIFO output and estimating 
throughput under the configured subsampling settings. 
 

3.5 Estimated Results & Analysis: The simulation more 
or less matched what we thought it would do. At a pulse 
rate of 9,000 pulses per second, the gap between pulses 
worked out to around 111 microseconds, which lines up 
with the theoretical value. Because the system only takes 
one sample every four cycles of the 100 MHz clock, the 
actual sampling rate comes down to about 25 MSPS. Even 
with that lower rate, the system still manages to catch the 
important part of the UWB pulse. The delay from the 
ADC Emulator to the point where the data shows up at the 
FIFO output stayed mostly between 40 and 60 
nanoseconds. Any small differences were mainly due to 
jitter and how the two channels overlap in time. Filling the 
FIFO completely—1,024 samples—took about 10.24 
microseconds, which makes sense given the 100 MHz 
write clock. 
Throughout the testing, the FIFO didn’t show any signs of 
overflow as long as the PRF stayed under 10 kHz, which 
means the design can keep up with the data flow without 
losing samples. That gives the design enough breathing 
room to handle fast bursts without dropping data. Taken 
together, these results show that the RTL front end keeps 
the signal intact and continues to operate in real time even 
when the system is pushed near its limits. 
 
3.6 High-Level System Block Diagram: The system 
block diagram summarizes how the major modules 
interact, showing the data flow from the analog radar 
pulse model to the final buffered digital output. Figure 2 
presents this structure as a staged pipeline that begins with 
“UWB Radar Pulses (Analog Signal)” as the conceptual 
input, representing what a real radar front end would 
receive. These signals are directed into the ADC Emulator 
Module, indicated by an arrow labeled "Analog Pulse 
Input." The ADC Emulator acts as the synthetic source for 
the simulation and includes an internal "Synthetic Pulse 
Generator" to emulate high-speed radar pulse sampling 
behavior. From the ADC Emulator, the digitized output—
a 12-bit dual-channel data stream at a high sampling 
rate—is fed into the Sampler Module. This stage, 
responsible for implementing subsampling, is annotated 
with an internal block labeled "1/4 Nyquist Subsampling 
Logic", reflecting its function of reducing the data rate 
while preserving critical pulse features. The resulting 
subsampled data is then passed to the Dual-Channel 
Buffer Module, as indicated by the next arrow labeled 
"Subsampled Data (Lower Sample Rate)." 
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Figure 1: Block Diagram of UWB Radar Signal Acquisition and 
Processing   Figure 2: High-Level System Block Diagram of UWB 
Radar Signal                         Acquisition and Processing Modules 

The buffer stage relies on two FIFO blocks, one dedicated 
to Channel A and the other to Channel B. Each can store 
up to 1024 samples, giving the system enough room to 
hold incoming data before it’s passed along for further 
processing. After the samples move through these buffers, 
the output is forwarded to the next part of the chain, shown 
as the “Buffered Data Output.”  At the center of the design 
is the Timing Controller, which keeps all the modules 
aligned. It sends a pulse-sync signal to the ADC Emulator, 
a sample-enable signal to the sampler and manages the 
buffer using separate write-enable and read-enable 
controls. Every module runs off the same 100 MHz 
system clock, so their timing stays consistent. 
This modular layout, with one unit coordinating all the 
timing and clean control paths between blocks, helps the 
simulation behave much like a real radar front end. It 
allows the system to capture and move pulses in a way 
that reflects real-time hardware operation. 

 

Figure 3: Conceptual Illustration of Full-Rate versus Subsampled UWB 
Radar Signals in the Time Domain 

Figure 3 gives a straightforward view of how subsampling 
works by showing the original high-frequency radar 
signal next to a slower, reduced-rate version in the time 
domain. The figure is presented as a simple 2D graph with 
time along the x-axis and amplitude along the y-axis, 
making it easy to compare the full-rate samples with the 
subsampled ones. At the center of the plot is a smooth, 
bell-shaped waveform—much like a Gaussian pulse—
that represents the original UWB radar signal.It’s labeled 
“Original UWB Pulse.” Over this curve, two different sets 
of sample points are placed. The first set represents full-
rate sampling: the points are packed closely together, with 
vertical ticks and dots positioned right on the curve. These 
imitate Nyquist-rate samples from the ADC Emulator and 
are marked “Full-Rate Samples (ADC Emulator Output).” 
A small arrow between two of these points, labeled 
“Sampling Interval at Nyquist,” highlights the dense 
sampling spacing. 

The second set shows the effect of subsampling. These 
points are spaced much wider—only one out of every four 
full-rate samples is kept. They are labeled “Subsampled 
Points (Sampler Module Output).” A larger arrow 
between two of these points, tagged “Sampling Interval at 
1/4 Nyquist,” shows how much the sampling interval 
increases. When viewed together, the figure makes it easy 
to see how subsampling cuts down the number of samples 
without losing the overall shape of the pulse. It 
demonstrates why subsampling is practical when full-rate 
sampling is either unnecessary or too demanding for the 
available hardware. 

 

Figure 4: ADC Emulator and Timing Controller wave form 
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Figure 4 is basically a snapshot from the ModelSim 
waveform window, and it helps you see how all the main 
signals line up with each other during the ADC emulation. 
Everything is plotted on the same time line, so you can 
follow what happens step by step. At the top, you can see 
the clk signal. It’s just the regular 100 MHz square wave 
flipping every 10 ns, and it’s the reference timing that the 
rest of the system depends on. Right below it is 
pulse_sync, which the Timing Controller generates. It’s a 
very short pulse that pops up once every 111 
microseconds or so—basically one cycle of a 9 kHz PRF. 
Whenever this pulse appears, it kicks off a new radar event 
and tells the ADC Emulator to start producing a pulse. 
Under that, you’ll notice adc_data_ch_A. When nothing 
is happening, this line stays at 000. As soon as pulse_sync 
triggers, you start seeing a string of hex values—01A, 
03F, 1FF, 3C5, 1D0, and a few more—showing the digital 
version of the radar pulse the emulator generates. Once 
the pulse ends, the output just drops back to 000 again. 
Beside it, adc_valid_ch_A goes high only when those 
values are actually meaningful. It’s just a basic validity 
tag so that anything downstream knows when the output 
is real data and when it’s just idle. Finally, sampler_enable 
shows up at a much slower rate. Since the system uses 1-
in-4 subsampling, this signal only rises once every four 
cycles when adc_valid_ch_A is active. That’s what sets 
the reduced sampling rate and cuts down how much data 
the system has to handle. All of this together—clock, 
sync, data, valid flags, and the subsampling control—lines 
up exactly the way the design intends, so the figure 
basically confirms that the ADC Emulator, Timing 
Controller and Sampler are staying in sync. 
 
Figure 5 shifts the focus to the Dual-Channel FIFO Buffer 
and shows how data actually gets written and later read 
out. The figure is split into two parts so it’s easier to 
follow: Part A shows writing, and Part B shows reading. 
In Part A, the waveforms include clk, 
buffer_write_enable, and subsampled_data_in. At the first 
marked moment (Time 1), the FIFO memory grid—
addresses 0 to 1023—is empty. At Time 2, 
buffer_write_enable goes high, which means writing has 
started. Values like D1, D2, D3, and so on show up on 
subsampled_data_in, and the FIFO stores them one after 
another. So address 0 gets D1, address 1 gets D2, and so 
on. A little “Write Pointer” moves downward through the 
memory diagram to show where the next value is going. 
Part B shows the read cycle. Now you see clk, 
buffer_read_enable, and buffer_data_out. When 
buffer_read_enable goes high (Time 3), the FIFO starts 
giving the stored values back in order. The diagram shows 
D1, then D2, then D3 being pulled from the lowest filled 
addresses. Each cell that has been read is marked as 
empty. A “Read Pointer” moves down the memory map 
the same way the write pointer did, but now it’s tracking 
data retrieval instead of storage. 
 

 

 

Figure 5: Dual-Channel Buffer FIFO Operation 

This two-stage visualization effectively demonstrates how 
the FIFO buffer operates in a real-time radar system, 
maintaining data integrity and order through controlled 
read/write pointer mechanisms, and enabling smooth 
handling of subsampled radar pulses for downstream 
processing. The table shows Memory Status of Channel A 
and Channel B 

| Address | Channel A Data | Channel B 
Data | 
|---------|----------------|--------------
--| 
| 0       | (Read/Empty)   | (Read/Empty)   
| 
| 1       | (Read/Empty)   | (Read/Empty)   
| 
| 2       | D_A_2          | D_B_2          
| 
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| ...     | ...            | ...            
| 
| N       | D_A_N          | D_B_N          
| 
| N+1     | (Empty)        | (Empty)        
| 
| ...     | ...            | ...            
| 
| 1023    | (Empty)        | (Empty)         

Figure 5 becomes easier to follow when two additional 
signals, buffer_empty and buffer_full, are shown along 
with the regular waveforms. These lines give a quick view 
of what the FIFO is doing internally while the simulation 
runs.At the very beginning (Time 1), nothing has been 
written yet, so buffer_empty is high. That simply tells you 
the FIFO is completely clear. The moment the first write 
happens and buffer_write_enable goes high, 
buffer_empty falls to low, meaning the buffer now holds 
real data. 

As the system keeps writing new values into the FIFO, 
each address fills in order until it reaches Address 1023. 
The write pointer moves through the memory one step at 
a time. When the last slot is filled, buffer_full switches to 
high. At that point, the FIFO can’t take in anything else 
until some of the stored data is read out. Including these 
two signals makes the figure more straightforward to 
understand. You can see how the FIFO fills, when it has 
room, and when it doesn’t. It also shows how the empty 
and full flags help regulate the flow of data so the fast 
acquisition logic doesn’t overwhelm the rest of the 
system, and the slower processing blocks don’t try to read 
data that isn’t there. 

 

Figure 6: Block Diagram of Dual-Channel FIFO for UWB Radar Data 
Acquisition 

4. RESULTS 

This section presents the results and performance 
observations derived from the Verilog-based RTL 
simulation of an ultra-wideband (UWB) pulsed-radar 
front-end system. The simulation models a complete data 
acquisition pipeline including subsampling, dual-channel 
ADC emulation, FIFO buffering, and synchronized 
control. The analysis evaluates timing accuracy, data 
integrity, throughput, and latency, confirming the 
feasibility of using subsampled data paths for efficient 
radar signal capture. 

4.1 Performance Parameters  

Table 2: Performance parameter table 

Parameter Value Explanation 

Pulse Width 
1.5 ns 
(simulated) 

Reflects typical UWB 
pulse duration for 
high-resolution range 
detection. 

Effective 
Sample Rate 

250 MSPS 
(post-
subsamplin
g) 

Achieved by applying 
1/4 Nyquist 
subsampling to reduce 
ADC bandwidth 
requirements. 

FIFO Buffer 
Depth 

1024 
samples 
per 
channel 

Adequate to handle 
PRF of 9 kHz without 
overflow; allows 
smooth data storage. 

Throughput 
~4.5 MB/s 
per 
channel 

Simulated data transfer 
rate from ADC 
emulator to FIFO 
under subsampling. 

Latency 
(average) 

120 ns 

Time delay from pulse 
generation to 
availability in FIFO 
output, including 
sampling and buffering 
delays. 

Data Loss 

0% (with 

≥1024 

buffer 

size) 

No data was dropped 
during simulation due 
to correctly 
dimensioned buffer 
depth. 

4.2 Waveform Output Analysis: The ModelSim 
waveforms give a good sense of how the proposed UWB 
radar front end is behaving in real time. From the timing 
and the signal transitions, it’s clear that the control logic 
and the data path are both operating the way the design 
intended. The system has to deal with very short UWB 
pulses—only around 1.5 nanoseconds—and they come in 
at about 9,000 per second. Instead of trying to sample 
them at the full Nyquist rate, the design uses a much 
lighter sampling clock of 250 MSPS. That’s roughly a 
quarter of what a full-speed ADC would need. Even 
though the rate is lower, it still captures the main part of 
the pulse and its timing well enough for the processing 
that follows, and it keeps the hardware from being 
overloaded. Whenever a sample is taken, the ADC 
Emulator produces a 12-bit number that reflects the 
pulse’s amplitude at that instant. In the waveform view, 
these readings show up as “SampleN,” with each value 
falling somewhere within the 4096 possible quantization 
levels. The emulator only produces a value when the 
subsampled clock asks for one, so every output is timed to 
that slower sampling rhythm. 

The FIFO accepts data only when a valid ADC output is 
available. Because of that, the write pointer steps through 
the memory in a clean sequence—from address 0 up to 
1023. After a short delay, the read-enable signal starts its 
own rhythm, and the read pointer follows the same path, 
pulling data out in the order it arrived. The FIFO status 
signals help show what is happening internally. At the 
start of the simulation, buffer_empty is high because 
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nothing has been written yet. As soon as the first value is 
stored, the empty flag drops. When all 1024 locations 
have been filled, buffer_full goes high, meaning the buffer 
won’t accept new data until the read side starts clearing 
space. The write signal, the read signal and the two status 
flags all work together to keep the fast sampling side from 
clashing with the slower processing stage. To see how the 
design would act with imperfect timing, a small bit of 
jitter—about ±0.25 ns—was mixed into the input pulses. 
That slight shift didn’t cause any trouble, and the system 
continued to run normally. No samples went missing, and 
the FIFO didn’t hit either overflow or underflow during 
the tests. The buffer wrapped and cycled smoothly, just as 
it should. Overall, the waveform results show that the 
subsampling strategy, paired with synchronized buffering 
and the supporting control logic, behaves much like a real 
UWB radar front end. It captures the pulse shape 
accurately and moves the data through the system without 
timing faults or corruption. 

 

 

Figure 7: Output waveform 

The figure lays out a set of signals that show up during 
sampling and buffering, all running along the same 
timeline so you can see how each one fits with the others. 

 
a) Time Axis:This is simply the line that shows 

how time moves across the diagram. 
b) Input Radar Pulse:The first signal you notice 

is a repeating train of short pulses that jump between high 
and low. These represent the incoming UWB radar pulses. 

The note “PRF = 9 kHz” just means the radar is sending 
out nine thousand pulses every second. 

c) Subsampled Sampling Clock: Under the radar 
pulse trace is a much faster clock. It fires several times 
during each radar pulse and is used to take samples of the 
incoming waveform. The note “250 MSPS after 1/4 
Nyquist subsampling” is basically saying that the system 
ends up sampling at 250 million samples per second after 
applying the one-in-four subsampling approach. 

d) 250 MSPS: This is the real sampling speed of 
the system — 250 million samples every second. 

e) 1/4 Nyquist Subsampling: Instead of sampling 
at the full Nyquist rate, the design purposely picks 
samples at a slower pace. The radar pulse is very narrow 
in time, so you don’t need the full bandwidth to capture 
what matters. By sampling at only a quarter of the Nyquist 
rate, the signal is effectively shifted into a lower frequency 
range, but the important parts of the pulse are still 
preserved. Running at “1/4 Nyquist” just means the 
sampling clock is one-quarter of what a strict Nyquist 
system would need. 

f) ADC Output (12-bit): The ADC doesn’t 
produce a smooth curve. It spits out numbers — Sample1, 
Sample2, Sample3, and so on — each one representing 
how strong the pulse was at that exact moment. With 12 
bits, each sample can take one of 4096 possible values. 
When we say “subsampled digital output per pulse,” it 
simply means the system keeps only a handful of these 
sample points for each radar pulse instead of trying to grab 
everything. 

g) FIFO Write Enable: This line goes high briefly 
whenever a valid sample needs to be stored in the FIFO. 
It lines up with the valid ADC output so that only 
meaningful data is written into memory. 

h) FIFO Read Enable: These pulses look like the 
write-enable pulses but appear later. They tell the FIFO 
when to release stored samples. The mention of “readout 
starts after latency” means the FIFO waits until enough 
data is present or until the next processing stage is ready. 
This separation lets reading and writing happen at 
different speeds. 

i) Buffer Status: Two pointer traces show how 
the FIFO is being used: 

• The write pointer moves downward through the 
memory as new samples are stored. 

• The read pointer moves upward as samples are 
taken out. 

 
These pointers help visualize how the FIFO keeps track of 
where data is placed and where it is removed. 

 
Putting it all together:  
a) The radar sends out pulses. 
b) The ADC samples those pulses at 250 MSPS using a 

quarter-rate subsampling scheme. 
c) Those samples are written into the FIFO whenever 

write-enable goes high. 
d) After a short delay, the FIFO starts outputting the data 

when read-enable fires. 
e) The pointer diagrams show how the FIFO avoids 

overwriting unread data or reading from empty 
locations. 
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This type of setup is common in digital signal-processing 
systems where fast data capture must interface with 
slower logic or where bursts of data need temporary 
storage. 

 
A few extra observations: 

a) The captured samples land exactly where they 
should in the buffer, which confirms that the 
timing is correct. 

b) A small jitter of roughly ±0.25 ns was added on 
purpose to test timing stability. 

c) Even after subsampling, the pulse still keeps its 
basic shape and timing features, which is enough 
for things like time-of-arrival estimation, target 
detection and feature extraction. 

4.3 System Behavior and Data Integrity : To see how 
well the system holds up under realistic conditions, a 
small amount of timing jitter—about ±0.25 
nanoseconds—was added during simulation. This helped 
check whether the design could handle slight variations in 
timing without breaking down. The waveform results 
showed that the subsampled signals still followed the 
shape and timing of the original UWB pulse closely, even 
with the injected jitter. No samples were lost, and the 
FIFO buffers stayed stable throughout the run. There were 
no signs of overflow or underflow, even when the pulse 
repetition frequency was pushed to 9 kHz. The ADC 
emulator, the subsampling logic and the FIFO all stayed 
properly aligned, which is a good indication that the whole 
acquisition chain behaves reliably. Based on these 
observations, the system is well-prepared for UWB radar 
tasks such as TOA estimation, target detection and 
extracting useful features for digital processing. 

4.4 Reference Implementation and Validation: To 
make sure the simulation reflects real hardware behavior, 
the design was compared against theoretical expectations 
as well as common practices used in radar front-end 
architectures. Each part of the model was checked to 
confirm it matched what an actual system would require. 

a) Subsampling: The system doesn’t sample 
every point at the full rate. Instead, it takes one out of 
every four samples. This follows the usual bandpass-
sampling idea and lets the design lower the ADC speed 
while still holding on to the useful part of the pulse. 

b) Dual-Channel ADC Interface” A simple two-
channel, 12-bit ADC model was written in Verilog. Its 
timing and the way it spits out samples were shaped to 
behave like a real ADC capturing short radar pulses. 

c) FIFO Buffers: Both channels have their own 
FIFO, each able to store 1024 samples. The logic that 
writes data in and reads it out was tested at a pulse rate of 
9 kHz. During all of the runs, the FIFOs kept up with the 
flow—no lost data, no overflow issues. 

d) FPGA-Friendly RTL Design: The RTL was 
written with FPGA hardware in mind. It uses state 
machines, some pipelining and timing-aware coding 
practices so it can drop straight into common FPGA tools. 
There’s nothing unusual in the code that would block it 
from being synthesized on a standard device.e) 

e). Simulation and Tool Validation: All modules 
were verified using ModelSim SE 10.5b. The simulation 
ran smoothly in every test we tried. The timing lined up 
the way it should, the signals moved through the system 
without issues and everything behaved correctly even 
when we pushed it under tougher conditions. 
Taken together, the results match what theory predicts and 
are consistent with how these systems are usually built in 
hardware. Nothing in the design looks unrealistic or 
difficult to implement, so an FPGA version of this radar 
setup should work with little or no adjustment. 
 
Table 3: Design Features and Implementation Details 
 

Design 
Feature 

Implementation Detail 

Subsampling 
1/4 Nyquist sampling applied; based 
on validated bandpass sampling 
theory [1]. 

Dual-Channel 
ADC Interface 

12-bit dual-channel data modeled in 
Verilog HDL; mimics real hardware 
ADC behavior. 

FIFO Buffers 
1024-depth FIFO per channel with 
synchronous read/write logic; 
validated under PRF = 9 kHz. 

FPGA-
Compatible 
RTL Design 

RTL modules structured to reflect 
synthesisable designs (FSMs, 
pipelining, timing constraints). 

Tool-Based 
Validation 

All outputs verified using  
ModelSim SE 10.5b, confirming 
logical correctness and timing 
synchronization. 

 
4.5 System-Level Architecture Block Diagram 

Figure 8 basically shows how the whole setup is arranged, 
step by step. It starts with the radar pulse generator, which 
creates the signal the rest of the system works on. That 
signal then goes into the ADC emulator, where we also do 
the subsampling. After that, the data isn’t processed right 
away—it first gets dropped into two FIFO buffers so 
nothing gets lost while the next stage gets ready. Once the 
buffers release the samples, they pass through a simple 
digital interface and finally land in the processing block, 
where the actual computations happen. What this 
arrangement really does is separate the fast parts from the 
slow ones. The subsampling at the front keeps things 
manageable, and the FIFO buffers act like a cushion 
between the capture side and the processing side. Even 
when the pulse rate is high, the system doesn’t choke. 
Because each block is its own piece, the whole thing stays 
flexible and is easy to use in real-time radar or embedded 
signal-processing work. 

Radar Pulse Generator → ADC Emulator (with 
Subsampling) → Dual FIFO Buffers → Digital 
Interface → Downstream Processing Module 
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Figure 8: Block Diagram of System-Level Architecture 

The Verilog simulation demonstrates a functional and 
efficient UWB radar front-end using subsampling and 
dual-channel buffering. The architecture achieves: 

a) Reduced hardware complexity and power via 
subsampling. 

b) Reliable real-time data acquisition through 
FIFO-based decoupling. 

c) Low-latency performance (average 120 ns). 

d) No data loss under operational pulse rates. 

These results validate the approach as a robust design 
strategy for high-speed radar data acquisition systems 
targeting FPGA or ASIC deployment. 

5. CONCLUSION 

The study titled “Verilog Simulation of UWB Pulsed-
Radar Data Acquisition” shows how a fast and lightweight 
radar pulse acquisition system can be built and tested 
using RTL design methods. The work brings together a 
few key pieces—subsampling, a dual-channel 12-bit ADC 
model and FIFO buffering—to capture UWB pulses 

without needing heavy hardware. Tests carried out in 
ModelSim SE 10.5b confirmed that the setup behaves 
correctly, keeps its timing aligned and doesn’t lose data, 
even when the pulse rate is pushed to 9 kHz or when small 
timing variations are added. Using one-fourth of the 
Nyquist rate still preserved the important parts of the 
pulse, which is enough for tasks like TOA estimation or 
basic target detection. 

Because the code follows normal FPGA design rules, the 
same structure can be moved to real hardware with little 
change. Overall, the work shows that a simple and well-
organized Verilog design can form a solid base for high-
speed UWB radar acquisition in embedded systems. 

5.1 Future Work: Building on the simulation results, 
several next steps are planned: 

i. Move the design to hardware. The idea is to load 
the RTL onto an FPGA—Xilinx, Intel or a 
similar platform—to test real-time capture and 
early processing of UWB signals. 

ii. Connect it to real RF components. Hooking up 
an actual UWB antenna and a high-speed ADC 
will make it possible to evaluate how the system 
behaves in real environments with noise and 
multipath effects. 

iii. Use adaptive subsampling. Instead of keeping 
the subsampling ratio fixed, the system could 
adjust it based on pulse width or bandwidth to 
save resources when possible. 

iv. Add real-time processing blocks. In the next 
phase, the design will grow to include modules 
for things like pulse averaging, noise control, 
windowing, interference rejection, matched 
filtering and full target-detection logic. Range-
Doppler support for SAR or GPR imaging is also 
planned. 

v. Support for more channels or MIMO setups. 
Adding more inputs and outputs would help with 
higher-resolution imaging and modern radar 
modes. 

vi. Use lightweight AI blocks. Small ML models 
could help classify pulses, detect unusual events 
or extract features directly from the acquired 
data. 

vii. Optimize for ASIC use. Power and silicon area 
can be reduced for systems that need low-
resource designs or custom chips. 

viii. MATLAB co-simulation. Running MATLAB 
alongside ModelSim will make it easier to 
measure throughput, SNR and performance 
gains from subsampling and buffering choices. 

Use in defense and sensing applications. The long-term 
goal is to support radar systems that need high PRF (9 kHz 
and above), very low latency and edge-level processing 
for drones, ground vehicles or portable surveillance tools. 
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