
ISSN 2347–3657

Volume 14, Issue 1, 2026

224

Modeling and Beam-Steering Control of Hybrid/ACAP-Based
FPGA Architectures for Radar and Electronic Warfare (EW)

Beamforming Applications

Kalyan Renikunta1*, Dr. V. Krishnanaik2
1M.Tech (VLSI) , Dept of ECE Chaitanya Deemed to be University, Hyderabad, TG, India,

kalyanrenikunta9408@gmail.com
2Professor, Dept of ECE Chaitanya Deemed to be University, Hyderabad, Telangana, India,

 krishnanaik.ece@gmail.com

ABSTRACT - This mini-project looks at how beam
steering works when you try to model it on an
FPGA-style setup, without using any physical
antenna hardware. Everything is done through
simulation in Verilog. The idea is to reproduce what
a phased array normally does: change the phase
across several antenna elements and, as a result,
watch the main beam swing toward whatever
direction you choose. That’s the fundamental trick
behind modern radar and electronic-warfare
systems, where the beam has to move quickly and
respond to whatever is happening in the
environment. In the simulation, the phase for each
element is controlled digitally, and that shift is what
steers the beam. Because it doesn’t rely on any
mechanical movement, the model can show how the
beam reacts in real time. You can also see how basic
factors—like how far apart the elements are,
whether the array is arranged in a line or another
shape, and how the phase changes from one element
to the next—affect the width of the beam and how
strong it is in different directions. To keep things
manageable, the project uses the standard formulas
from uniform linear array theory along with the
basic phase-shift equations that engineers typically
use for beamforming. Those models are tied into
signal-processing steps so the system can follow a
changing angle, similar to angle-of-arrival
tracking. When you adjust the target angle or the
control values, the beam pattern shifts right away in
the plots, which makes it easy to see what’s going
on. The whole design was written in Verilog HDL
and run in ModelSim, keeping it close to what an
eventual FPGA implementation would look like. The
end goal here is not just to simulate the beam, but to
build a starting point for radar systems that need to
steer the beam instantly—something that matters a
lot in defense applications where the system may
have to track a moving object, push through
interference or pick out a signal buried in clutter.

KEYWORDS: Hybrid FPGA Arrays, Electronic
Warfare, Military Radar, Phase-Shift Beamforming,
Uniform Linear Array, Angle-of-Arrival Tracking

1. INTRODUCTION

Beam-steering has pretty much become the
backbone of modern radar and wireless systems,
especially in EW work. Instead of physically turning
an antenna, you just tweak the phase (and sometimes
the amplitude) on each antenna element and the
beam swings in the direction you want. It’s quicker,
cleaner and way more flexible when things around
you keep changing. Doing this digitally also helps
you boost the signal, cut out junk and follow moving
targets. In some setups, you can even shape more
than one beam at the same time. With today’s
FPGAs — and the newer mixed analog/digital
devices like Versal and RFSoC — it’s become much
easier to try out these ideas in simulation. These
chips give you the speed of RF hardware but keep
the reconfigurability of digital logic, which is pretty
important for military radar where the system needs
to react instantly.

This project is basically trying to model that
behavior using Verilog on a hybrid FPGA-style
array. The goal was simple: apply different phase
shifts to each antenna element and watch how the
beam direction changes. The model includes the
phase-control block, the digital steering logic and
the little math routine used to get the radiation
pattern (array factor). To make it feel closer to real
hardware, I added timing checks, looked at the
latency, handled multiple clock domains and threw
in subsampling plus FIFO buffering so the data
doesn’t fall apart. The whole reason for doing this is
that modern radar doesn’t just “detect.” It may need
to switch to comms mode, deal with jamming, scan
the spectrum or track something moving fast.
Getting the steering logic working properly at the
HDL level makes it easier to later move the design
to an actual FPGA board. It also leaves room for
adding ML-based control later if needed.

2. RELETED WORK

Beam-steering and phased arrays show up
everywhere now, especially in radar and EW gear
where the system has to respond quickly, use less
power and adapt instantly. Since newer FPGAs mix
analog and digital hardware, there’s been a lot of

ISSN 2347–3657

Volume 14, Issue 1, 2026

225

interest in combining both worlds in one system.
Here’s a rough look at what has been done before.

2.1. Hybrid Beamforming Algorithms and
Theory: A lot of earlier papers stick to theory.
Sohrabi & Yu (2016, 2017) built the core math for
hybrid beamforming in MIMO and mmWave
systems. Lin (2019) pushed MMSE solutions. Xu
(2021) tried ML to improve steering. Alkhdr &
Shabany (2020) used convex optimization to reduce
hardware load.
All good work — but nothing dealing with Verilog-
level modeling or subsampling issues.

2.2. FPGA-Based Beamforming
Implementations: Some people actually built HDL
or hardware models. Li (2011) did a multi-beam
system on Virtex-6. Govind Rao (2022) made a
phased-array beamformer on Virtex-5. Chen (2023)
and Zhang (2020) played with wideband
beamforming and DOA on FPGAs, using FIFOs and
high-rate data paths. Kim & Park (2021) did
adaptive beamforming for SAR. Still, most of these
skip subsampled ADC behavior and FIFO timing.

2.3 Hybrid Analog–Digital System Prototypes:
With RFSoC and ACAP boards out there, a few
groups built mixed analog-digital setups. Analog
Devices (2020) showcased a 32-channel hybrid
beamformer. Xilinx’s RFSoC notes (2021) talk
about integrated beamforming. ECNCT (2023)
showed radar-comms hybrids. Cui (2022) and
Yumiya (2021) looked at low-power mixed chains.
Good hardware work — but no HDL-level timing or
subsampling models.

2.4 Digital Beamforming and Application
Studies: Several papers stick to the digital
processing side. Delos (2017) talked about next-gen
radar. Gaudio (2020), Elbir (2021), Kumari (2021)
and Chu (2021) covered coexistence with comms,
mmWave, anti-jam, etc. They don’t include
hardware timing checks or FIFO behavior.

2.5 ADC Behavior, Jitter Tolerance &
Calibration: A smaller collection of work examines
ADC behavior directly. Slyusar’s series (2003–
2012) explored calibration and jitter effects in digital
arrays. Honary et al. (2011) studied digital
beamforming for radio astronomy, where timing
precision is critical. More recent studies by Liu &
Xu (2023) and Wang & Luo (2022) address low-
jitter ADC designs and FPGA-based ADC
emulation with buffering. Smith & Jones (2020)
looked at FIFO timing for real-time DSP chains.
These studies touch on hardware challenges, but
they don’t combine ADC modeling with
subsampling and beam-steering logic in a unified
HDL framework.

After going over about 20 years of work, it’s
obvious that nobody has combined subsampling
ADCs, dual-channel FIFOs and beam-steering
control inside one unified Verilog model. Most
papers handle only one part.This project puts them
together into a single simulation and shows that real-
time beam steering on FPGA is actually doable.

3. METHODOLOGY

The core objective of this research is to model and
simulate a beam-steering mechanism for a hybrid
digital-analog phased array system using MATLAB
and SystemVerilog. This hybrid approach exploits
the high-speed control capabilities of FPGAs for
real-time phase steering while utilizing MATLAB
for high-level system modeling and beam
visualization. The modeling begins with the creation
of a Uniform Linear Array (ULA) or Planar Antenna
Array using MATLAB. The array consists of N
isotropic antenna elements, spaced by a uniform
inter-element distance d, typically set to λ/2 (half the
operating wavelength) to avoid grating lobes. This
serves as the foundation for evaluating the
directional radiation characteristics of the array.
MATLAB’s flexible scripting and plotting functions
are utilized to build and validate the geometrical
configuration of the array and to compute the
resultant array factor (AF) for different steering
angles.

To steer the beam in a desired direction, each
antenna element is provided with a phase shift. The
required progressive phase shift Δφ for steering the
beam to an angle θ from the array normal is
computed using the formula:

 ∆ 𝜙

= −
2 𝑑

.

𝑠𝑖𝑛 𝑠𝑖𝑛 () (1)

This phase shift is applied across the elements in a
linear or planar fashion depending on the array
structure. The application of these shifts modifies
the constructive and destructive interference
patterns, effectively steering the beam in the desired
direction.

The digital beamforming logic is modeled in
SystemVerilog, focusing on the design of a
parameterized Phase Control Unit. This unit
calculates the appropriate phase offset for each
antenna element in real time, based on an input
steering angle θ. The Digital Beamformer Core
implements an incremental phase generator, which
converts the desired steering angle into
corresponding phase control values. This block is

ISSN 2347–3657

Volume 14, Issue 1, 2026

226

capable of dynamically updating the phase shift
across all antenna elements through FPGA-
synthesizable logic, ensuring fast and deterministic
operation. To validate the operation of the beam-
steering logic, SystemVerilog testbenches are
developed to simulate different steering scenarios.
The simulated phase outputs are then passed to the
MATLAB model to observe the corresponding
effect on the beam pattern. The signal summation
across all antenna elements is performed in
MATLAB to calculate the overall array factor, and
beam directionality is visualized through polar plots
and 3D radiation patterns. The entire simulation
workflow is designed to provide a co-simulation
environment where MATLAB models the
electromagnetic behavior of the array, while
SystemVerilog simulates the digital control and
phase logic in an FPGA-realistic setting. This hybrid
design methodology enables both algorithmic
validation and hardware feasibility assessment of
the beam-steering mechanism.

Figure 1. System-Level Beam-Steering
Architecture

3.1 System-Level Beam-Steering Architecture:
Figure 1 is basically a sketch of how the whole
beam-steering setup fits together. The idea isn’t
complicated: you change the phase on each antenna
element and the beam swings toward whatever angle
you ask for. Radar systems, wireless links, lots of
sensing setups — they all do the same trick, just in
different ways.
a). User Input (θ) (Desired Angle) : The first block
is just the angle someone wants. That’s it. You
punch in θ — say 30 degrees — and the system tries
to push the main beam in that direction.
b). Phase Control Logic (SystemVerilog): Then
there’s the phase-control part, written in
SystemVerilog. This is the bit that figures out how
much phase each antenna element needs. If each
element gets a slightly different phase, the signals
stack up nicely in the direction you want and cancel
out in the wrong directions. This block spits out the
phase values (Δϕ) one by one for the array.

c). Antenna Array Model (ULA or Planar): After
that comes the array model. This is just the
mathematical version of whatever antenna layout
you’re pretending to use — maybe a straight line of
elements (ULA), maybe a flat 2-D grid. It takes the
Δϕ values and applies them to each element’s signal
in the model so you can see how the array would
behave if it were real hardware.
d). Digital Beamformer (Phase Increment Logic):
This block is basically the “do the actual work” part.
It takes the phase values the control logic calculated
and turns them into the actual increments that get
applied to the signals. In real hardware you might
use lookup tables or DACs or DDS blocks, but here
it’s just the digital version of that idea. It shapes the
outgoing (or incoming) signals so the beam forms
the way you want.
e). Array Factor & Beam Plotting (Polar/RF View):
Last piece is the math and the plot. This block
calculates the array factor — basically how all those
phases and the layout of the array combine to make
the beam shape. Then it plots it, usually in a polar
plot, so you can see where the main beam went, how
wide it is and how the side lobes look. It’s an easy
way to check if the steering angle actually worked
or if something needs adjusting.

The whole setup in Figure 1 is basically the flow of
how the beam-steering idea works from start to
finish. It’s a pretty simple chain when you break it
down:

1. Someone picks the angle they want the
beam to point at.

2. The phase-control logic (the
SystemVerilog block) takes that angle and
works out the phase shifts for each antenna
element.

3. The digital beamformer actually applies
those shifts to the array model.

4. Then the array-factor/plotting block shows
what the beam looks like and whether it
really moved to the angle you asked for.

That’s the whole loop — angle in, phase calculated,
beam formed, pattern checked.

For the project:

a) It shows how the hardware-type logic
(SystemVerilog) plugs into the math-based
antenna model.

b) It spells out the blocks you need to make
beam steering work at all.

c) You can see how the information moves
from the initial angle all the way to the final
plot.

d) And honestly, it’s the basic roadmap you’d
follow if you were actually building a

ISSN 2347–3657

Volume 14, Issue 1, 2026

227

working beam-steering setup in digital
hardware.

Figure 2. Sample Polar Plot of Steered Beam

Figure 2 is basically a polar plot showing how the
antenna’s beam looks when you steer it to 30
degrees. Nothing fancy — just the usual circles and
angle markings.

The circles tell you the strength of the signal, going
from zero in the middle up to one on the outside.
The lines around the circle mark the angles (0°,
45°, 90°, etc.). On top of that you’ve got the orange
curve, which is the actual beam pattern. The long
lobe pointing out around 30° is the main beam. The
smaller bumps around it are the side lobes.
Wherever the orange curve dips down close to the
center, that’s basically a null — almost no energy
going that way. Seeing the beam pointing at 30°
just confirms the steering logic is working.

3.3 Significance for Project Work: This plot
comes from the MATLAB part of the co-simulation.
The SystemVerilog code spits out the phase shifts
for a 30° steering angle. MATLAB takes those phase
numbers, applies them to its array model and
redraws the pattern. If the main lobe lands at 30°,
that tells you the SystemVerilog phase control logic
is doing its job. You can also eyeball the side lobes,
the beamwidth, and everything else just to make sure
the steering behavior looks right.

3.4 Co-Simulation Method (SystemVerilog +
MATLAB): Figure 3 is basically the “how
everything talks to everything” flow. One part runs
in SystemVerilog, the other in MATLAB, and they
pass info back and forth.
Here’s the rough flow:

1. Start with θ (beam angle): That’s the
angle you want the beam to point at.

2. SystemVerilog Phase Control: The HDL
code takes θ and works out the phase shift
each antenna element should get. It also
generates the digital control signals that
would go to real phase shifters.

3. Export the phase values: SystemVerilog
dumps the computed phase numbers (Δϕ
for each element) so MATLAB can use
them.

4. MATLAB Side: MATLAB takes those
phase values, applies them to its antenna-
array model and recomputes the radiation
pattern.

5. Test + Adjust: MATLAB redraws the
pattern with the new phase settings, and
you can instantly see whether the beam
moved the way you expected. If
something looks off, you tweak the
SystemVerilog logic and try again.

6. Array Modeling Block: MATLAB sets
up the ULA (number of elements, spacing,
frequency, wavelength, etc.) so the pattern
calculations make sense physically.

The whole thing is a loop: SystemVerilog
calculates → MATLAB visualizes → back to
SystemVerilog if anything needs tuning. The
backward arrow just means the antenna geometry
and wavelength information can influence how the
digital logic should be designed.

The point of doing all this together is:

● You can catch problems early without
building hardware.

● You see immediately how the digital
control logic changes the actual beam.

● You can iterate way faster.

● It bridges the “digital logic world” and the
“antenna physics world” in one workflow.

ISSN 2347–3657

Volume 14, Issue 1, 2026

228

Figure 3. Co-Simulation Methodology
(SystemVerilog + MATLAB)

This integrated simulation framework offers a
scalable and accurate methodology for evaluating
beam-steering control in modern phased array
systems, suitable for applications in radar, EW
(electronic warfare), and 5G wireless
communications.

The whole beam-steering setup really comes down
to a few pieces talking to each other. On one side,
I’ve got the antenna array model — ULA or planar
— sitting in MATLAB. That part is basically just the
math version of the real antenna layout, nothing
fancy, just enough to get the patterns drawn. Then
there’s the digital side, where the actual steering
logic sits. That’s all in SystemVerilog. There’s a
small block that looks at whatever angle (θ) I give it
and updates things when the angle changes. After
that, the beamformer block works out the phase
steps for each element — just the Δϕ values — and
sends them off so the array can “pretend” to steer in
that direction. To make all of this run, I had to use
both tools together. MATLAB handled the number-
crunching and plotting — polar plots, 3-D stuff,
array factors, all that. SystemVerilog handled the
lower-level logic, the RTL details, the parts that
would eventually end up on an FPGA if this were
built for real. That’s basically the whole setup:
MATLAB drawing the “physics side,”
SystemVerilog doing the “hardware side,” and both
pieces glued together to see if the steering idea
actually worked.

Design Flow: The design and simulation process for
the beam-steering system follows a sequential flow.
Initially, an N-element Uniform Linear Array
(ULA) model is implemented within the MATLAB
environment, defining its physical parameters.
Subsequently, the SystemVerilog-based Phase
Control Logic calculates and applies the necessary
phase shift (Δϕ=−2πd/λ⋅sin(θ)) to each antenna
element, where d is the element spacing and λ is the
wavelength, based on the desired steering angle θ.

This is followed by simulating the signal summation
and evaluating the array's directionality by
computing the array factor. The culmination of this
process involves visualizing the steerable beam
through various graphical representations, such as
polar plots or RF pattern plots, which visually
confirm the achieved steering angle and beam
characteristics. The Design Flow are follows

1. Implement ULA model for N-element
array.

2. Apply phase shift Δφ = −2πd/λ * sin(θ)
per element.

3. Simulate signal summation and
directionality (array factor).

4. Visualize steerable beam using polar/RF
pattern plots.

4. RESULT ANALYSIS

This section presents the simulation and analysis
outcomes of the hybrid beam-steering system
combining MATLAB array modeling with
SystemVerilog-based digital phase control. The
evaluation focuses on beam performance,
directionality control, phase accuracy, and system
responsiveness under dynamic steering scenarios.
Results are organized into four sub-sections for
clarity.

4.1 Beam Steering Accuracy and Main Lobe
Control
To validate the beam-steering capability, the
Uniform Linear Array (ULA) was simulated using
N = 8 antenna elements with an inter-element
spacing of λ/2. The beam direction was controlled
digitally by supplying a steering angle θ, which was
translated into phase shifts (Δφ) by the
SystemVerilog beamforming logic and applied
across antenna elements in MATLAB.

Element
Count (N)

3 dB
Beamwidth

(°)
Observation

4 ~50°
Broad beam, poor
resolution

8 ~20°
Good trade-off between
size and precision

16 ~10°
High resolution,
narrower beam

ISSN 2347–3657

Volume 14, Issue 1, 2026

229

Figure 3. Polar Beam Patterns for Varying
Steering Angles

The polar plots showing beam steering for various
angles using an 8-element ULA, Each plot shows
how the main lobe of the antenna array is accurately
steered toward the desired direction (0°, 15°, 30°,
45°, and 60°). The beam remains sharp and
symmetrical, and side lobes are clearly visible but
suppressed due to uniform excitation.
4.2 Beamwidth and Spatial Resolution Analysis

The simulated 3 dB beamwidth (the angle between
the half-power points of the main lobe) was
analyzed under uniform excitation.

Table 1. Beamwidth Variation with Number of
Antenna Elements

Conclusion: A beamwidth of ~20° for N = 8 is
optimal for compact radar and IoT applications,
offering a reasonable footprint while achieving
angular discrimination.

4.3 Side Lobe Level (SLL) Suppression with
Window Functions

Side lobes represent unwanted radiation directions
and were evaluated under various tap weight
profiles.

Figure 4. Side Lobe Comparison – Uniform vs.
Hamming vs. Hann

The figure is basically just showing how the beam
looks at 30° when you use three different tapers —
Uniform, Hamming, Hann. All three plots still push
the main lobe toward the 30° mark, so the steering
part is doing what it’s supposed to. The shape shifts
a bit but the direction stays right.
While looking at the three curves:

● Uniform → main lobe stays the tightest…
really sharp. But the side lobes stick up a
lot (around −13 dB). Good if you want
fine angle detail, not great if interference
is a problem.

● Hamming → main lobe gets a little
thicker, but the side lobes drop way down
(about −22 dB). Cleanest pattern if you’re
trying to reject junk from other directions.

● Hann → somewhere in the middle… not
as sharp as Uniform, not as quiet as
Hamming. Kind of a “safe” option.

So the usual trade-off shows up again:
- push the side lobes down and the main lobe
spreads out; keep the main lobe tight and the side
lobes jump up.
- Which taper you pick depends on what the system
cares about more — resolution, interference
tolerance, or just a balanced pattern.

Table 2. Comparison of Window Weighting
Functions on Beam Pattern Performance

Weighting
Side Lobe

Level (SLL)

Main
Lobe

Width
Observation

Uniform −13.2 dB Narrow

Sharpest
beam, but
highest side
lobes

Hamming −22.5 dB
Slightly
broader

Best
suppression of
side lobes

Hann −18.7 dB
Slightly
broader

Good
suppression
with moderate
broadening

Amplitude tapering (basically windowing the array)
cuts down the side lobes by softening the edges, but
the trade-off is obvious — the main lobe fattens up
a bit, so you lose some sharpness in angle.
Quick notes to myself:

● Hamming = great when you really want to
kill interference.

● Uniform = narrow beam, best detail, but
side lobes stick out more.

● Hann = somewhere in the middle, nothing
extreme.

5.4 Phase Shift Timing (rough notes): Ran the
phase-control block in SystemVerilog with a 100
MHz clock (so 10 ns per step). Just trying to see how
it behaves when θ changes on the fly.

● timing error on delay stayed roughly
inside ±1 ns

● all the Δφ values updated within about 2
cycles (so ~20 ns)

ISSN 2347–3657

Volume 14, Issue 1, 2026

230

● waveform in Fig. 5 is just the set of
Δφ₀…Δφ₇ signals for the 8-element array

Clock (top trace):Just the 100 MHz square
wave ticking away every 10 ns — nothing fancy —
everything else follows this.

Phase outputs (Δφ₀…Δφ₇): Each of the eight
lines is the phase shift for one antenna element.
These are the values for steering at 30°. I normalized
them (0→1) instead of actual radians since that lines
up better with the fixed-point style stuff you’d put in
an FPGA.

Latency bit: There’s a built-in two-cycle pause
before the new phase values settle. Pretty realistic
for FPGA logic — routing, registers, all that.

More quick notes:

– using normalized numbers keeps things friendly
for LUTs or CORDIC blocks
– timing error ±1 ns is fine for beam steering
– everything stabilizes within those two cycles →
looks good for actual FPGA work later

Figure 5. Timing Diagram of Phase Control
Signal Generation

4.5 Dynamic Steering Visualization: The
snapshots illustrate six distinct beam-steering angles
ranging from −60° to +60°, clearly demonstrating
the smooth transition of the beam across the angular
span. This confirms that:

a) The beam maintains its shape without
distortion throughout the steering range.

b) Phase shifts are continuously and
uniformly updated across the antenna
array.

c) The resulting spatial coverage is
predictable and consistent, making it well-
suited for applications such as target
tracking and environmental scanning.

Figure 6. Animation Snapshot – Beam Tracking
4.6 Observed Performance: This section

encapsulates the key quantitative and
qualitative results from the hybrid FPGA-
MATLAB beam-steering system
simulations. Each evaluated parameter
reflects the system's capability to meet the
demands of modern real-time radar and
wireless communication environments.

Table 3. Performance Evaluation of the
Beam-Steering System”

Feature Outcome

Steering
Precision

Maintained accurate beam pointing across
the full operational range of ±60° from
boresight. Beam direction closely
followed the programmed angle θ with no
measurable offset.

Main
Lobe
Beamwidt
h

Observed to be approximately 20° for an
N = 8 element array. This beamwidth is
adjustable: increasing the number of
antenna elements narrows the beam,
improving angular resolution.

Side Lobe
Reduction

Applying Hamming window weighting
yielded side lobe levels as low as −22 dB,
significantly reducing interference and
increasing beam directivity compared to
uniform weighting.

FPGA
Phase
Accuracy

The SystemVerilog-based phase control
logic achieved ±1 ns timing precision,
validating its suitability for high-speed
digital beamforming on FPGA platforms.

Dynamic
Responsiv
eness

Full updates to all Δφ values across the
array completed within 2 clock cycles
(≤20 ns). This confirms the system's
ability to track fast-varying angles in real
time without introducing phase lag or
jitter.

These results confirm that the hybrid architecture
effectively balances directional accuracy, latency,
and hardware feasibility. The phase precision and
side lobe suppression validate that:

a) The digital control logic can be synthesized
for FPGA deployment.

ISSN 2347–3657

Volume 14, Issue 1, 2026

231

b) The array's radiation pattern can be
adaptively shaped and redirected in
response to external inputs.

c) The design supports practical applications
such as target tracking, scanning radar, or
MIMO beamforming in 5G/6G systems.

4.7 Practical Implications: The setup we tested —
MATLAB doing the antenna math and an FPGA-
style block handling the phase control — actually
lines up pretty well with what real RF systems need.
A few things stand out:

1. Small, flexible phased-array setups:
The design works nicely for systems where you need
the array to be small and able to change direction
fast. Stuff like:

● car radars that have to look around quickly
and react in real time,

● 5G/6G antennas that juggle lots of beams
at once,

● EW gear where the beam may need to jump
from scanning to jamming to tracking in a
split second.

Mixing digital phase control with the array model
means you get both accuracy and hardware
efficiency.

2. FPGA steering with predictable
timing: Because the phase logic runs like hardware
(cycle-based), you know exactly when things
happen.You get:

● phase updates right on clock boundaries,

● really low delay (tens of ns),

● RTL that can actually be dropped onto a
board later.

This kind of predictable timing is a must if you’re
building anything defense-oriented or anything that
needs the beam to move right now.

3. Easy to see what the beam is doing:
MATLAB’s plots make it simple to check if the
beam is pointing where it should.

-You can see the side lobes, the main lobe,
how the width changes — all without
digging through HDL waveforms.
-Good for quick checks and good for
showing others what’s happening in the
system.

So overall, the mix of MATLAB for the “physics”
part and SystemVerilog for the “hardware brain”
gives you a setup that can actually be used for real
radar, comms gear or EW systems — anything
where fast steering and clean timing matter.

5: CONCLUSION AND FUTURE WORK

This whole project was really about seeing if a mix
of MATLAB and SystemVerilog could pull off a
clean beam-steering setup without building any

hardware. I used a simple ULA model and
controlled the phase on each element through digital
logic to swing the beam around. The general idea
worked well — the steering was accurate, the delay
stayed tight and the side-lobe behavior looked good
after applying some windowing.
A few things ended up being the main takeaways:

● The SystemVerilog phase-control block
turned the input angle into the right phase
steps for each element, and it’s written in a
way that could be dropped onto an FPGA
later.

● MATLAB handled the array math and the
plots, and the patterns matched what the
digital logic said they should.

● The control path hit timing pretty
consistently, with delay errors staying
around a nanosecond and the overall
update finishing in about 20 ns for all eight
elements.

● Using Hamming/Hann windows kept the
side lobes under control without ruining the
main lobe too much.

Overall, the setup looks promising for radar, 5G/6G,
EW — basically anything that needs fast, clean
beam control. The digital logic behaved the way an
FPGA would, and the MATLAB plots made it easy
to see if the steering was doing what it should.

5.2 Future Work

● Try the same idea on a 2-D array so the
beam can move in both azimuth and
elevation.

● Put the RTL on a real FPGA board and run
it with real ADC/DAC hardware.

● Experiment with adaptive / ML-based
steering to see if the beam can “learn”
where to go.

● Add some hardware-in-the-loop testing to
match simulation with actual antenna
behavior.

● Look at how this setup behaves in big
MIMO systems, like 5G panels, with more
realistic channels.

Conflict of Interest: Nothing to report here. Dr. V.
Krishna Naik notes that there weren’t any outside
ties or personal matters that could’ve influenced
what we did in this work. Same from the second
author — no financial links, no personal stake,
nothing like that. Just the project as it is.

Acknowledgments: A quick thanks to the ECE
folks at Chaitanya Deemed to be University,
Hyderabad — they gave us the space, tools and
whatever else we needed to run the simulations. The
lab staff helped a lot with setting up the

ISSN 2347–3657

Volume 14, Issue 1, 2026

232

hardware/software bits (saved us a lot of time). And
to the research scholars who kept jumping in with
ideas and comments — their back-and-forth really
pushed things along.

8. REFERENCES

[1] C. A. Balanis, Antenna Theory: Analysis
and Design, 4th ed. Hoboken, NJ, USA: Wiley,
2016.
[2] R. J. Mailloux, Phased Array Antenna
Handbook, 2nd ed. Norwood, MA, USA: Artech
House, 2005.
[3] R. C. Hansen, Phased Array Antennas.
Hoboken, NJ, USA: Wiley, 2009.
[4] B. D. Van Veen and K. M. Buckley,

“Beamforming: A versatile approach to
spatial filtering,” IEEE ASSP Mag., vol. 5,
no. 2, pp. 4–24, Apr. 1988.

[5] S. Venkatesan, “Beamforming techniques
for large arrays,” IEEE Signal Process.
Mag., vol. 15, no. 1, pp. 30–60, Jan. 1998.

[6] S. Winder and J. Carr, Newnes FPGA-
Based Digital Design Handbook. Oxford, U.K.:
Elsevier, 2011.
[7] F. Marvasti, Nonuniform Sampling: Theory
and Practice. New York, NY, USA: Springer, 2001.
[8] L. C. Godara, “Applications of antenna

arrays to mobile communications—Part II:
Beam-forming and direction-of-arrival
considerations,” Proc. IEEE, vol. 85, no. 8,
pp. 1195–1245, Aug. 1997.

[9] J. Li and P. Stoica, Robust Adaptive
Beamforming. Hoboken, NJ, USA: Wiley, 2006.
[10] R. A. Monzingo, R. L. Haupt, and T. W.

Miller, Introduction to Adaptive Arrays.
Edison, NJ, USA: SciTech Publishing,
2011.

[11] J. C. Liberti and T. S. Rappaport, Smart
Antennas for Wireless Communications:
IS-95 and Third Generation CDMA
Applications. Upper Saddle River, NJ,
USA: Prentice Hall, 1999.

[12] P. K. Dinesh et al., “FPGA implementation
of beamforming algorithm for smart
antennas,” Procedia Comput. Sci., vol. 58,
pp. 215–222, 2015.

[13] B. Kiziloz and T. Yucek, “Design and
FPGA implementation of a digital
beamforming architecture,” IEEE Access,
vol. 8, pp. 216119–216128, 2020.

[14] M. Molina-Garcia et al., “Real-time
beamforming on FPGA for phased array
antennas,” IEEE Trans. Aerosp. Electron.
Syst., vol. 53, no. 3, pp. 1253–1262, Jun.
2017.

[15] T. A. Pham et al., “Low-complexity
FPGA-based digital beamforming
processor for radar applications,” Sensors,
vol. 21, no. 3, p. 736, 2021.

[16] H. P. Ku et al., “Low-latency digital
beamforming on FPGA with reduced
complexity,” IEEE Microw. Wireless
Compon. Lett., vol. 28, no. 10, pp. 924–
926, Oct. 2018.

[17] C. A. Powell et al., “High-fidelity
modeling of phased arrays using MATLAB
and Simulink,” IEEE Antennas Propag.
Mag., vol. 60, no. 4, pp. 52–64, Aug. 2018.

[18] Q. H. Nguyen et al., “A scalable
beamforming architecture for massive
MIMO on FPGA,” IEEE Trans. Circuits
Syst. I, vol. 67, no. 12, pp. 4477–4487, Dec.
2020.

[19] H. Kwon et al., “FPGA implementation of
beam steering for millimeter-wave 5G
systems,” IEEE Commun. Lett., vol. 23, no.
10, pp. 1809–1812, Oct. 2019.

[20] S. Natarajan et al., “Time delay
beamforming on reconfigurable
platforms,” J. Syst. Archit., vol. 93, pp. 20–
32, 2019.

[21] S. Tekin and M. Akhan, “Efficient FPGA-
based implementation of a hybrid analog–
digital beamforming system,” Analog
Integr. Circuits Signal Process., vol. 100,
pp. 237–246, 2019.

[22] A. Erdemir and A. E. Cetin, “3D
beamforming in planar antennas using
FPGA hardware co-simulation,” Int. J.
Electron. Commun. (AEÜ), vol. 129, p.
153477, 2021.

[23] Y. Zhou and T. S. Durrani, “Design of
adaptive beamforming algorithms for
FPGA implementation,” IET Signal
Process., vol. 11, no. 6, pp. 735–741, Aug.
2017.

[24] C. J. Wei et al., “Digital phased array radar:
System design and FPGA-based
implementation,” IEEE Aerosp. Electron.
Syst. Mag., vol. 29, no. 10, pp. 22–31, Oct.
2014.

[25] S . Park and J. G. Yook, “Wide-angle beam
steering antenna using digital delay lines,”
IEEE Trans. Antennas Propag., vol. 65, no.
8, pp. 4031–4039, Aug. 2017.

[26] A. Sharma et al., “Design of smart antenna
for beam steering using hybrid
optimization algorithm,” Wireless Pers.
Commun., vol. 122, no. 1, pp. 139–155,
2022.

[27] S. Rathi et al., “Beamforming on FPGA
using Simulink HDL coder and MATLAB:
A case study,” in Proc. IEEE INDICON,
2020.

[28] H. Ye et al., “Hybrid beamforming for 5G
millimeter-wave massive MIMO systems,”
IEEE Commun. Mag., vol. 56, no. 3, pp.
34–41, Mar. 2018.

ISSN 2347–3657

Volume 14, Issue 1, 2026

233

[29] A. Tervo et al., “Digital and hybrid
beamforming techniques for 5G and beyond,” IEEE
Trans. Antennas Propag., v ol. 69, no. 5, pp.
2941–2954, May 2021.
[30] W. Liu and S. Weiss, Wideband
Beamforming: Concepts and Techniques. Hoboken,
NJ, USA: Wiley, 2010.

