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ABSTRACT - This mini-project looks at how beam 
steering works when you try to model it on an 
FPGA-style setup, without using any physical 
antenna hardware. Everything is done through 
simulation in Verilog. The idea is to reproduce what 
a phased array normally does: change the phase 
across several antenna elements and, as a result, 
watch the main beam swing toward whatever 
direction you choose. That’s the fundamental trick 
behind modern radar and electronic-warfare 
systems, where the beam has to move quickly and 
respond to whatever is happening in the 
environment. In the simulation, the phase for each 
element is controlled digitally, and that shift is what 
steers the beam. Because it doesn’t rely on any 
mechanical movement, the model can show how the 
beam reacts in real time. You can also see how basic 
factors—like how far apart the elements are, 
whether the array is arranged in a line or another 
shape, and how the phase changes from one element 
to the next—affect the width of the beam and how 
strong it is in different directions. To keep things 
manageable, the project uses the standard formulas 
from uniform linear array theory along with the 
basic phase-shift equations that engineers typically 
use for beamforming. Those models are tied into 
signal-processing steps so the system can follow a 
changing angle, similar to angle-of-arrival 
tracking. When you adjust the target angle or the 
control values, the beam pattern shifts right away in 
the plots, which makes it easy to see what’s going 
on. The whole design was written in Verilog HDL 
and run in ModelSim, keeping it close to what an 
eventual FPGA implementation would look like. The 
end goal here is not just to simulate the beam, but to 
build a starting point for radar systems that need to 
steer the beam instantly—something that matters a 
lot in defense applications where the system may 
have to track a moving object, push through 
interference or pick out a signal buried in clutter. 

KEYWORDS: Hybrid FPGA Arrays, Electronic 
Warfare, Military Radar, Phase-Shift Beamforming, 
Uniform Linear Array, Angle-of-Arrival Tracking 

1. INTRODUCTION 

Beam-steering has pretty much become the 
backbone of modern radar and wireless systems, 
especially in EW work. Instead of physically turning 
an antenna, you just tweak the phase (and sometimes 
the amplitude) on each antenna element and the 
beam swings in the direction you want. It’s quicker, 
cleaner and way more flexible when things around 
you keep changing. Doing this digitally also helps 
you boost the signal, cut out junk and follow moving 
targets. In some setups, you can even shape more 
than one beam at the same time. With today’s 
FPGAs — and the newer mixed analog/digital 
devices like Versal and RFSoC — it’s become much 
easier to try out these ideas in simulation. These 
chips give you the speed of RF hardware but keep 
the reconfigurability of digital logic, which is pretty 
important for military radar where the system needs 
to react instantly. 

This project is basically trying to model that 
behavior using Verilog on a hybrid FPGA-style 
array. The goal was simple: apply different phase 
shifts to each antenna element and watch how the 
beam direction changes. The model includes the 
phase-control block, the digital steering logic and 
the little math routine used to get the radiation 
pattern (array factor). To make it feel closer to real 
hardware, I added timing checks, looked at the 
latency, handled multiple clock domains and threw 
in subsampling plus FIFO buffering so the data 
doesn’t fall apart. The whole reason for doing this is 
that modern radar doesn’t just “detect.” It may need 
to switch to comms mode, deal with jamming, scan 
the spectrum or track something moving fast. 
Getting the steering logic working properly at the 
HDL level makes it easier to later move the design 
to an actual FPGA board. It also leaves room for 
adding ML-based control later if needed. 

2. RELETED WORK 

Beam-steering and phased arrays show up 
everywhere now, especially in radar and EW gear 
where the system has to respond quickly, use less 
power and adapt instantly. Since newer FPGAs mix 
analog and digital hardware, there’s been a lot of 
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interest in combining both worlds in one system. 
Here’s a rough look at what has been done before. 
 
2.1. Hybrid Beamforming Algorithms and 
Theory: A lot of earlier papers stick to theory. 
Sohrabi & Yu (2016, 2017) built the core math for 
hybrid beamforming in MIMO and mmWave 
systems. Lin (2019) pushed MMSE solutions. Xu 
(2021) tried ML to improve steering. Alkhdr & 
Shabany (2020) used convex optimization to reduce 
hardware load. 
All good work — but nothing dealing with Verilog-
level modeling or subsampling issues. 
 
2.2. FPGA-Based Beamforming 
Implementations: Some people actually built HDL 
or hardware models. Li (2011) did a multi-beam 
system on Virtex-6. Govind Rao (2022) made a 
phased-array beamformer on Virtex-5. Chen (2023) 
and Zhang (2020) played with wideband 
beamforming and DOA on FPGAs, using FIFOs and 
high-rate data paths. Kim & Park (2021) did 
adaptive beamforming for SAR. Still, most of these 
skip subsampled ADC behavior and FIFO timing. 
 
2.3 Hybrid Analog–Digital System Prototypes: 
With RFSoC and ACAP boards out there, a few 
groups built mixed analog-digital setups. Analog 
Devices (2020) showcased a 32-channel hybrid 
beamformer. Xilinx’s RFSoC notes (2021) talk 
about integrated beamforming. ECNCT (2023) 
showed radar-comms hybrids. Cui (2022) and 
Yumiya (2021) looked at low-power mixed chains. 
Good hardware work — but no HDL-level timing or 
subsampling models. 
 
2.4 Digital Beamforming and Application 
Studies: Several papers stick to the digital 
processing side. Delos (2017) talked about next-gen 
radar. Gaudio (2020), Elbir (2021), Kumari (2021) 
and Chu (2021) covered coexistence with comms, 
mmWave, anti-jam, etc. They don’t include 
hardware timing checks or FIFO behavior. 
 
2.5 ADC Behavior, Jitter Tolerance & 
Calibration: A smaller collection of work examines 
ADC behavior directly. Slyusar’s series (2003–
2012) explored calibration and jitter effects in digital 
arrays. Honary et al. (2011) studied digital 
beamforming for radio astronomy, where timing 
precision is critical. More recent studies by Liu & 
Xu (2023) and Wang & Luo (2022) address low-
jitter ADC designs and FPGA-based ADC 
emulation with buffering. Smith & Jones (2020) 
looked at FIFO timing for real-time DSP chains. 
These studies touch on hardware challenges, but 
they don’t combine ADC modeling with 
subsampling and beam-steering logic in a unified 
HDL framework. 

After going over about 20 years of work, it’s 
obvious that nobody has combined subsampling 
ADCs, dual-channel FIFOs and beam-steering 
control inside one unified Verilog model. Most 
papers handle only one part.This project puts them 
together into a single simulation and shows that real-
time beam steering on FPGA is actually doable. 

3. METHODOLOGY 

The core objective of this research is to model and 
simulate a beam-steering mechanism for a hybrid 
digital-analog phased array system using MATLAB 
and SystemVerilog. This hybrid approach exploits 
the high-speed control capabilities of FPGAs for 
real-time phase steering while utilizing MATLAB 
for high-level system modeling and beam 
visualization. The modeling begins with the creation 
of a Uniform Linear Array (ULA) or Planar Antenna 
Array using MATLAB. The array consists of N 
isotropic antenna elements, spaced by a uniform 
inter-element distance d, typically set to λ/2 (half the 
operating wavelength) to avoid grating lobes. This 
serves as the foundation for evaluating the 
directional radiation characteristics of the array. 
MATLAB’s flexible scripting and plotting functions 
are utilized to build and validate the geometrical 
configuration of the array and to compute the 
resultant array factor (AF) for different steering 
angles. 

To steer the beam in a desired direction, each 
antenna element is provided with a phase shift. The 
required progressive phase shift Δφ for steering the 
beam to an angle θ from the array normal is 
computed using the formula: 

 ∆ 𝜙 

=  −
2  𝑑

.

𝑠𝑖𝑛 𝑠𝑖𝑛 (  )                                                                      (1) 

This phase shift is applied across the elements in a 
linear or planar fashion depending on the array 
structure. The application of these shifts modifies 
the constructive and destructive interference 
patterns, effectively steering the beam in the desired 
direction. 

The digital beamforming logic is modeled in 
SystemVerilog, focusing on the design of a 
parameterized Phase Control Unit. This unit 
calculates the appropriate phase offset for each 
antenna element in real time, based on an input 
steering angle θ. The Digital Beamformer Core 
implements an incremental phase generator, which 
converts the desired steering angle into 
corresponding phase control values. This block is 
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capable of dynamically updating the phase shift 
across all antenna elements through FPGA-
synthesizable logic, ensuring fast and deterministic 
operation. To validate the operation of the beam-
steering logic, SystemVerilog testbenches are 
developed to simulate different steering scenarios. 
The simulated phase outputs are then passed to the 
MATLAB model to observe the corresponding 
effect on the beam pattern. The signal summation 
across all antenna elements is performed in 
MATLAB to calculate the overall array factor, and 
beam directionality is visualized through polar plots 
and 3D radiation patterns. The entire simulation 
workflow is designed to provide a co-simulation 
environment where MATLAB models the 
electromagnetic behavior of the array, while 
SystemVerilog simulates the digital control and 
phase logic in an FPGA-realistic setting. This hybrid 
design methodology enables both algorithmic 
validation and hardware feasibility assessment of 
the beam-steering mechanism. 

 

Figure 1.  System-Level Beam-Steering 
Architecture 

3.1 System-Level Beam-Steering Architecture: 
Figure 1 is basically a sketch of how the whole 
beam-steering setup fits together. The idea isn’t 
complicated: you change the phase on each antenna 
element and the beam swings toward whatever angle 
you ask for. Radar systems, wireless links, lots of 
sensing setups — they all do the same trick, just in 
different ways. 
a). User Input (θ) (Desired Angle) : The first block 
is just the angle someone wants. That’s it. You 
punch in θ — say 30 degrees — and the system tries 
to push the main beam in that direction. 
b). Phase Control Logic (SystemVerilog): Then 
there’s the phase-control part, written in 
SystemVerilog. This is the bit that figures out how 
much phase each antenna element needs. If each 
element gets a slightly different phase, the signals 
stack up nicely in the direction you want and cancel 
out in the wrong directions. This block spits out the 
phase values (Δϕ) one by one for the array. 

c). Antenna Array Model (ULA or Planar): After 
that comes the array model. This is just the 
mathematical version of whatever antenna layout 
you’re pretending to use — maybe a straight line of 
elements (ULA), maybe a flat 2-D grid. It takes the 
Δϕ values and applies them to each element’s signal 
in the model so you can see how the array would 
behave if it were real hardware. 
d). Digital Beamformer (Phase Increment Logic): 
This block is basically the “do the actual work” part. 
It takes the phase values the control logic calculated 
and turns them into the actual increments that get 
applied to the signals. In real hardware you might 
use lookup tables or DACs or DDS blocks, but here 
it’s just the digital version of that idea. It shapes the 
outgoing (or incoming) signals so the beam forms 
the way you want. 
e). Array Factor & Beam Plotting (Polar/RF View):  
Last piece is the math and the plot. This block 
calculates the array factor — basically how all those 
phases and the layout of the array combine to make 
the beam shape. Then it plots it, usually in a polar 
plot, so you can see where the main beam went, how 
wide it is and how the side lobes look. It’s an easy 
way to check if the steering angle actually worked 
or if something needs adjusting. 

The whole setup in Figure 1 is basically the flow of 
how the beam-steering idea works from start to 
finish. It’s a pretty simple chain when you break it 
down: 

1. Someone picks the angle they want the 
beam to point at. 

2. The phase-control logic (the 
SystemVerilog block) takes that angle and 
works out the phase shifts for each antenna 
element. 

3. The digital beamformer actually applies 
those shifts to the array model. 

4. Then the array-factor/plotting block shows 
what the beam looks like and whether it 
really moved to the angle you asked for. 

That’s the whole loop — angle in, phase calculated, 
beam formed, pattern checked. 

For the project: 

a) It shows how the hardware-type logic 
(SystemVerilog) plugs into the math-based 
antenna model. 

b) It spells out the blocks you need to make 
beam steering work at all. 

c) You can see how the information moves 
from the initial angle all the way to the final 
plot. 

d) And honestly, it’s the basic roadmap you’d 
follow if you were actually building a 



ISSN 2347–3657 

Volume 14, Issue 1, 2026 
  

227 
 

working beam-steering setup in digital 
hardware. 

 

Figure 2. Sample Polar Plot of Steered Beam 

Figure 2 is basically a polar plot showing how the 
antenna’s beam looks when you steer it to 30 
degrees. Nothing fancy — just the usual circles and 
angle markings. 

The circles tell you the strength of the signal, going 
from zero in the middle up to one on the outside. 
The lines around the circle mark the angles (0°, 
45°, 90°, etc.). On top of that you’ve got the orange 
curve, which is the actual beam pattern. The long 
lobe pointing out around 30° is the main beam. The 
smaller bumps around it are the side lobes. 
Wherever the orange curve dips down close to the 
center, that’s basically a null — almost no energy 
going that way.  Seeing the beam pointing at 30° 
just confirms the steering logic is working. 

3.3 Significance for Project Work: This plot 
comes from the MATLAB part of the co-simulation. 
The SystemVerilog code spits out the phase shifts 
for a 30° steering angle. MATLAB takes those phase 
numbers, applies them to its array model and 
redraws the pattern. If the main lobe lands at 30°, 
that tells you the SystemVerilog phase control logic 
is doing its job. You can also eyeball the side lobes, 
the beamwidth, and everything else just to make sure 
the steering behavior looks right. 

3.4 Co-Simulation Method (SystemVerilog + 
MATLAB): Figure 3 is basically the “how 
everything talks to everything” flow. One part runs 
in SystemVerilog, the other in MATLAB, and they 
pass info back and forth. 
Here’s the rough flow: 

1. Start with θ (beam angle): That’s the 
angle you want the beam to point at. 

2. SystemVerilog Phase Control: The HDL 
code takes θ and works out the phase shift 
each antenna element should get. It also 
generates the digital control signals that 
would go to real phase shifters. 

3. Export the phase values: SystemVerilog 
dumps the computed phase numbers (Δϕ 
for each element) so MATLAB can use 
them. 

4. MATLAB Side: MATLAB takes those 
phase values, applies them to its antenna-
array model and recomputes the radiation 
pattern. 

5. Test + Adjust: MATLAB redraws the 
pattern with the new phase settings, and 
you can instantly see whether the beam 
moved the way you expected. If 
something looks off, you tweak the 
SystemVerilog logic and try again. 

6. Array Modeling Block: MATLAB sets 
up the ULA (number of elements, spacing, 
frequency, wavelength, etc.) so the pattern 
calculations make sense physically. 

The whole thing is a loop: SystemVerilog 
calculates → MATLAB visualizes → back to 
SystemVerilog if anything needs tuning. The 
backward arrow just means the antenna geometry 
and wavelength information can influence how the 
digital logic should be designed. 

The point of doing all this together is: 

● You can catch problems early without 
building hardware. 

● You see immediately how the digital 
control logic changes the actual beam. 

● You can iterate way faster. 

● It bridges the “digital logic world” and the 
“antenna physics world” in one workflow. 
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Figure 3. Co-Simulation Methodology 
(SystemVerilog + MATLAB) 

This integrated simulation framework offers a 
scalable and accurate methodology for evaluating 
beam-steering control in modern phased array 
systems, suitable for applications in radar, EW 
(electronic warfare), and 5G wireless 
communications. 

The whole beam-steering setup really comes down 
to a few pieces talking to each other. On one side, 
I’ve got the antenna array model — ULA or planar 
— sitting in MATLAB. That part is basically just the 
math version of the real antenna layout, nothing 
fancy, just enough to get the patterns drawn. Then 
there’s the digital side, where the actual steering 
logic sits. That’s all in SystemVerilog. There’s a 
small block that looks at whatever angle (θ) I give it 
and updates things when the angle changes. After 
that, the beamformer block works out the phase 
steps for each element — just the Δϕ values — and 
sends them off so the array can “pretend” to steer in 
that direction. To make all of this run, I had to use 
both tools together. MATLAB handled the number-
crunching and plotting — polar plots, 3-D stuff, 
array factors, all that. SystemVerilog handled the 
lower-level logic, the RTL details, the parts that 
would eventually end up on an FPGA if this were 
built for real. That’s basically the whole setup: 
MATLAB drawing the “physics side,” 
SystemVerilog doing the “hardware side,” and both 
pieces glued together to see if the steering idea 
actually worked. 

Design Flow: The design and simulation process for 
the beam-steering system follows a sequential flow. 
Initially, an N-element Uniform Linear Array 
(ULA) model is implemented within the MATLAB 
environment, defining its physical parameters. 
Subsequently, the SystemVerilog-based Phase 
Control Logic calculates and applies the necessary 
phase shift (Δϕ=−2πd/λ⋅sin(θ)) to each antenna 
element, where d is the element spacing and λ is the 
wavelength, based on the desired steering angle θ. 

This is followed by simulating the signal summation 
and evaluating the array's directionality by 
computing the array factor. The culmination of this 
process involves visualizing the steerable beam 
through various graphical representations, such as 
polar plots or RF pattern plots, which visually 
confirm the achieved steering angle and beam 
characteristics. The Design Flow are follows  

1. Implement ULA model for N-element 
array. 

2. Apply phase shift Δφ = −2πd/λ * sin(θ) 
per element. 

3. Simulate signal summation and 
directionality (array factor). 

4. Visualize steerable beam using polar/RF 
pattern plots. 

4. RESULT ANALYSIS  

This section presents the simulation and analysis 
outcomes of the hybrid beam-steering system 
combining MATLAB array modeling with 
SystemVerilog-based digital phase control. The 
evaluation focuses on beam performance, 
directionality control, phase accuracy, and system 
responsiveness under dynamic steering scenarios. 
Results are organized into four sub-sections for 
clarity. 
 
4.1 Beam Steering Accuracy and Main Lobe 
Control 
To validate the beam-steering capability, the 
Uniform Linear Array (ULA) was simulated using 
N = 8 antenna elements with an inter-element 
spacing of λ/2. The beam direction was controlled 
digitally by supplying a steering angle θ, which was 
translated into phase shifts (Δφ) by the 
SystemVerilog beamforming logic and applied 
across antenna elements in MATLAB. 

Element 
Count (N) 

3 dB 
Beamwidth 

(°) 
Observation 

4 ~50° 
Broad beam, poor 
resolution 

8 ~20° 
Good trade-off between 
size and precision 

16 ~10° 
High resolution, 
narrower beam 
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Figure 3. Polar Beam Patterns for Varying 
Steering Angles 

The polar plots showing beam steering for various 
angles using an 8-element ULA, Each plot shows 
how the main lobe of the antenna array is accurately 
steered toward the desired direction (0°, 15°, 30°, 
45°, and 60°). The beam remains sharp and 
symmetrical, and side lobes are clearly visible but 
suppressed due to uniform excitation. 
4.2 Beamwidth and Spatial Resolution Analysis 

The simulated 3 dB beamwidth (the angle between 
the half-power points of the main lobe) was 
analyzed under uniform excitation. 

Table 1. Beamwidth Variation with Number of 
Antenna Elements 

Conclusion: A beamwidth of ~20° for N = 8 is 
optimal for compact radar and IoT applications, 
offering a reasonable footprint while achieving 
angular discrimination. 

4.3 Side Lobe Level (SLL) Suppression with 
Window Functions 

Side lobes represent unwanted radiation directions 
and were evaluated under various tap weight 
profiles. 

 

Figure 4. Side Lobe Comparison – Uniform vs. 
Hamming vs. Hann 

The figure is basically just showing how the beam 
looks at 30° when you use three different tapers — 
Uniform, Hamming, Hann. All three plots still push 
the main lobe toward the 30° mark, so the steering 
part is doing what it’s supposed to. The shape shifts 
a bit but the direction stays right. 
While looking at the three curves: 

● Uniform → main lobe stays the tightest… 
really sharp. But the side lobes stick up a 
lot (around −13 dB). Good if you want 
fine angle detail, not great if interference 
is a problem. 

● Hamming → main lobe gets a little 
thicker, but the side lobes drop way down 
(about −22 dB). Cleanest pattern if you’re 
trying to reject junk from other directions. 

● Hann → somewhere in the middle… not 
as sharp as Uniform, not as quiet as 
Hamming. Kind of a “safe” option. 

 
So the usual trade-off shows up again:  
- push the side lobes down and the main lobe 
spreads out; keep the main lobe tight and the side 
lobes jump up. 
- Which taper you pick depends on what the system 
cares about more — resolution, interference 
tolerance, or just a balanced pattern. 

Table 2.  Comparison of Window Weighting 
Functions on Beam Pattern Performance 

Weighting 
Side Lobe 

Level (SLL) 

Main 
Lobe 

Width 
Observation 

Uniform −13.2 dB Narrow 

Sharpest 
beam, but 
highest side 
lobes 

Hamming −22.5 dB 
Slightly 
broader 

Best 
suppression of 
side lobes 

Hann −18.7 dB 
Slightly 
broader 

Good 
suppression 
with moderate 
broadening 

Amplitude tapering (basically windowing the array) 
cuts down the side lobes by softening the edges, but 
the trade-off is obvious — the main lobe fattens up 
a bit, so you lose some sharpness in angle. 
Quick notes to myself: 

● Hamming = great when you really want to 
kill interference. 

● Uniform = narrow beam, best detail, but 
side lobes stick out more. 

● Hann = somewhere in the middle, nothing 
extreme. 

 
5.4 Phase Shift Timing (rough notes): Ran the 
phase-control block in SystemVerilog with a 100 
MHz clock (so 10 ns per step). Just trying to see how 
it behaves when θ changes on the fly. 

● timing error on delay stayed roughly 
inside ±1 ns 

● all the Δφ values updated within about 2 
cycles (so ~20 ns) 
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● waveform in Fig. 5 is just the set of 
Δφ₀…Δφ₇ signals for the 8-element array 

Clock (top trace):Just the 100 MHz square 
wave ticking away every 10 ns — nothing fancy — 
everything else follows this. 

Phase outputs (Δφ₀…Δφ₇): Each of the eight 
lines is the phase shift for one antenna element. 
These are the values for steering at 30°. I normalized 
them (0→1) instead of actual radians since that lines 
up better with the fixed-point style stuff you’d put in 
an FPGA. 

Latency bit: There’s a built-in two-cycle pause 
before the new phase values settle. Pretty realistic 
for FPGA logic — routing, registers, all that. 

 
More quick notes: 

– using normalized numbers keeps things friendly 
for LUTs or CORDIC blocks 
– timing error ±1 ns is fine for beam steering 
– everything stabilizes within those two cycles → 
looks good for actual FPGA work later 

 

Figure 5. Timing Diagram of Phase Control 
Signal Generation 

4.5 Dynamic Steering Visualization: The 
snapshots illustrate six distinct beam-steering angles 
ranging from −60° to +60°, clearly demonstrating 
the smooth transition of the beam across the angular 
span. This confirms that: 

a) The beam maintains its shape without 
distortion throughout the steering range. 

b) Phase shifts are continuously and 
uniformly updated across the antenna 
array. 

c) The resulting spatial coverage is 
predictable and consistent, making it well-
suited for applications such as target 
tracking and environmental scanning. 

 

Figure 6. Animation Snapshot – Beam Tracking 
4.6 Observed Performance: This section 

encapsulates the key quantitative and 
qualitative results from the hybrid FPGA-
MATLAB beam-steering system 
simulations. Each evaluated parameter 
reflects the system's capability to meet the 
demands of modern real-time radar and 
wireless communication environments. 

Table 3. Performance Evaluation of the 
Beam-Steering System” 

Feature Outcome 

Steering 
Precision 

Maintained accurate beam pointing across 
the full operational range of ±60° from 
boresight. Beam direction closely 
followed the programmed angle θ with no 
measurable offset. 

Main 
Lobe 
Beamwidt
h 

Observed to be approximately 20° for an 
N = 8 element array. This beamwidth is 
adjustable: increasing the number of 
antenna elements narrows the beam, 
improving angular resolution. 

Side Lobe 
Reduction 

Applying Hamming window weighting 
yielded side lobe levels as low as −22 dB, 
significantly reducing interference and 
increasing beam directivity compared to 
uniform weighting. 

FPGA 
Phase 
Accuracy 

The SystemVerilog-based phase control 
logic achieved ±1 ns timing precision, 
validating its suitability for high-speed 
digital beamforming on FPGA platforms. 

Dynamic 
Responsiv
eness 

Full updates to all Δφ values across the 
array completed within 2 clock cycles 
(≤20 ns). This confirms the system's 
ability to track fast-varying angles in real 
time without introducing phase lag or 
jitter. 

These results confirm that the hybrid architecture 
effectively balances directional accuracy, latency, 
and hardware feasibility. The phase precision and 
side lobe suppression validate that: 

a) The digital control logic can be synthesized 
for FPGA deployment. 
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b) The array's radiation pattern can be 
adaptively shaped and redirected in 
response to external inputs. 

c) The design supports practical applications 
such as target tracking, scanning radar, or 
MIMO beamforming in 5G/6G systems. 

4.7 Practical Implications: The setup we tested — 
MATLAB doing the antenna math and an FPGA-
style block handling the phase control — actually 
lines up pretty well with what real RF systems need. 
A few things stand out: 

1. Small, flexible phased-array setups: 
The design works nicely for systems where you need 
the array to be small and able to change direction 
fast. Stuff like: 

● car radars that have to look around quickly 
and react in real time, 

● 5G/6G antennas that juggle lots of beams 
at once, 

● EW gear where the beam may need to jump 
from scanning to jamming to tracking in a 
split second. 

Mixing digital phase control with the array model 
means you get both accuracy and hardware 
efficiency. 

2. FPGA steering with predictable 
timing: Because the phase logic runs like hardware 
(cycle-based), you know exactly when things 
happen.You get: 

● phase updates right on clock boundaries, 

● really low delay (tens of ns), 

● RTL that can actually be dropped onto a 
board later. 

This kind of predictable timing is a must if you’re 
building anything defense-oriented or anything that 
needs the beam to move right now. 

3. Easy to see what the beam is doing: 
MATLAB’s plots make it simple to check if the 
beam is pointing where it should. 

-You can see the side lobes, the main lobe, 
how the width changes — all without 
digging through HDL waveforms. 
-Good for quick checks and good for 
showing others what’s happening in the 
system. 

So overall, the mix of MATLAB for the “physics” 
part and SystemVerilog for the “hardware brain” 
gives you a setup that can actually be used for real 
radar, comms gear or EW systems — anything 
where fast steering and clean timing matter. 
 
5: CONCLUSION AND FUTURE WORK 
 
This whole project was really about seeing if a mix 
of MATLAB and SystemVerilog could pull off a 
clean beam-steering setup without building any 

hardware. I used a simple ULA model and 
controlled the phase on each element through digital 
logic to swing the beam around. The general idea 
worked well — the steering was accurate, the delay 
stayed tight and the side-lobe behavior looked good 
after applying some windowing. 
A few things ended up being the main takeaways: 

● The SystemVerilog phase-control block 
turned the input angle into the right phase 
steps for each element, and it’s written in a 
way that could be dropped onto an FPGA 
later. 

● MATLAB handled the array math and the 
plots, and the patterns matched what the 
digital logic said they should. 

● The control path hit timing pretty 
consistently, with delay errors staying 
around a nanosecond and the overall 
update finishing in about 20 ns for all eight 
elements. 

● Using Hamming/Hann windows kept the 
side lobes under control without ruining the 
main lobe too much. 

Overall, the setup looks promising for radar, 5G/6G, 
EW — basically anything that needs fast, clean 
beam control. The digital logic behaved the way an 
FPGA would, and the MATLAB plots made it easy 
to see if the steering was doing what it should. 
 
5.2 Future Work 

● Try the same idea on a 2-D array so the 
beam can move in both azimuth and 
elevation. 

● Put the RTL on a real FPGA board and run 
it with real ADC/DAC hardware. 

● Experiment with adaptive / ML-based 
steering to see if the beam can “learn” 
where to go. 

● Add some hardware-in-the-loop testing to 
match simulation with actual antenna 
behavior. 

● Look at how this setup behaves in big 
MIMO systems, like 5G panels, with more 
realistic channels. 
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