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ABSTRACT- This work is basically about trying to 
simulate the range-Doppler part of a SAR processor 
on an FPGA. The idea is to see how the core blocks 
of a SAR imaging chain behave when pushed toward 
real-time speeds. I split the whole thing into two 
parts so it’s easier to build and test step by step. In 
Phase 1, a Verilog-based simulation of the phase 
estimation and FFT blocks is developed, which are 
essential components of the SAR range-Doppler 
algorithm. The objective is to model the frequency-
domain transformation and accurately estimate the 
phase information of received echoes, enabling the 
analysis of phase accuracy and resolution 
performance critical to high-precision SAR 
imaging. In Phase 2, the full range-Doppler 
processing pipeline is constructed in Register 
Transfer Level (RTL), including modules for range 
compression (convolution), Doppler FFT, and 
matched filtering. The RTL designs are validated 
using standard SAR raw datasets in MATLAB, with 
performance metrics such as image resolution, peak 
sidelobe ratio (PSLR), and integrated sidelobe ratio 
(ISLR) being evaluated. The project builds upon 
recent advancements in FPGA-accelerated SAR 
imaging architectures that aim to meet the low-
latency, high-throughput demands of airborne and 
spaceborne radar platforms. The integration of 
Verilog simulation with MATLAB-based image 
reconstruction ensures functional correctness while 
enabling resolution benchmarking. This work 
demonstrates the feasibility and effectiveness of 
real-time SAR range-Doppler implementation on 
FPGA platforms for defense, remote sensing, and 
surveillance applications. 
 
KEYWORDS: Synthetic Aperture Radar (SAR), 
FPGA Implementation, Doppler FFT, PSLR and 
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1. INTRODUCTION 

SAR is one of those radar tricks that can pull off 
detailed images even when the weather is bad or it's 
completely dark. It does this by taking a bunch of 
radar returns over time and stitching them together 
as if you had a huge antenna. The range-Doppler 
method is one of the classic ways to process all that 
data. You run matched filtering, some FFTs and  

 
phase checks, and you end up turning raw echoes 
into a clean 2D image. The problem is that modern 
SAR systems need to do all this in real time—
airborne platforms, surveillance, disaster 
monitoring, defense, all of them expect fast, 
predictable processing. Software alone can’t always 
keep up. That’s where FPGAs start to make sense: 
they run things in parallel, keep latency low, and 
behave in a much more “hard real-time” way. Two 
blocks matter a lot in this whole chain: the FFT and 
the phase-estimation logic. The FFT gets the data 
out of the time domain and into the frequency 
domain, and the phase block tells you how the 
target’s motion is affecting the signal. Put together 
across many pulses, those phase shifts tell you the 
Doppler information you need for azimuth 
compression and motion correction. This project is 
split into two stages. Phase 1 (what this write-up 
covers) is mainly about building and simulating 
these core blocks in Verilog. The goal is to see how 
well the phase calculations hold up, whether the FFT 
behaves properly with fixed-point math, and if the 
whole setup looks usable for a real FPGA build later. 
The idea is to lay down a clean, hardware-friendly 
version of the range-Doppler path before moving to 
anything more complicated. If Phase 1 works as 
expected, it becomes a good base for a full real-time 
SAR pipeline later. 

For this first phase, the focus is simple: get the 
phase-estimation logic and the FFT running 
accurately in Verilog. The goals are: 

• pull out Doppler-related phase shifts cleanly from 
the radar returns 
• run an FFT that gives reliable frequency-domain 
data 
• check how precise the phase and frequency 
outputs really are 
• make sure the fixed-point math doesn’t ruin the 
signal 
• measure timing, resolution and overall 
performance so we know if the design is FPGA-
friendly 

2. LITERATURE REVIEW 
 

A lot of the work on SAR over the years has pushed 
toward better resolution and faster imaging, which 



ISSN 2347–3657 

Volume 14, Issue 1, 2026 
  

235 
 

naturally puts pressure on the signal-processing 
blocks that sit inside the range-Doppler chain—
mainly the FFT and the phase-estimation part. As 
people started wanting SAR on small platforms 
(drones, compact airborne units, even satellites), the 
focus shifted toward hardware-friendly designs, 
especially using FPGAs and straight Verilog, where 
you can control timing, parallelism and dataflow 
much more tightly. 
 
2.1. Foundational and Algorithmic SAR Studies: 
The older, classic SAR books by Curlander & 
McDonough and the extended treatments by 
Soumekh basically built the theoretical world we 
still work in today—Doppler history, azimuth 
compression, how the imaging geometry behaves, 
etc. These works are great for understanding the 
math, but they don’t talk much about hardware or 
real-time issues. 
2.2. FFT and Range-Doppler Hardware 
Implementations: Since range-Doppler relies 
heavily on FFTs, a lot of people tried to make that 
part faster or smaller on hardware. Some 
implemented FFT engines on FPGAs using 
pipelining and high-level tools, others explored 
radix-4 structures or parallel streaming designs to 
get more throughput. These approaches helped with 
speed, but many of them didn’t dive into how 
precision behaves when you actually write the 
modules in Verilog and simulate them cycle by 
cycle. 
 
2.3. Phase Estimation and Doppler Processing: 
Getting the phase right is important, because even 
small errors change the Doppler shift and ruin 
azimuth compression. Many early works used 
MATLAB just to test the idea, but that doesn’t tell 
you how it behaves on hardware. Later groups tried 
CORDIC-based phase extractors or PLL-style 
tracking, but again the Verilog-level validation was 
either limited or incomplete. Some work used LUT-
based phase estimators, though they didn’t really 
report phase error or show how it affected the final 
SAR image. 
 
2.4. FPGA/Verilog-Based SAR Simulations: 
There have been several attempts to put pieces of 
SAR onto FPGAs. Some teams modeled range 
compression with fixed-point math, others built 
partial reconstruction chains but skipped Doppler 
handling. A few works implemented azimuth filters 
or backprojection engines at RTL. These were 
valuable steps, but none of them tied together both 
the FFT and the phase-estimation path in a full 
range-Doppler workflow. 
 
2.5. Real-Time and Embedded SAR 
Architectures: As SAR started moving onto drones 
and smaller platforms, the need for real-time 
hardware increased. Some groups built complete 

SAR pipelines on Zynq and similar SoCs. Others 
explored memory-saving FFT methods or 
reconfigurable architectures for multi-mode radar. 
These systems got close to something deployable, 
but again the Doppler/phase block wasn’t always 
treated with hardware-level detail. 
 
2.6. Supporting Research: Error, Resolution & 
Trade-Offs: More recent papers looked into what 
happens to SAR quality when you quantize 
everything. Some analyzed phase distortion from 
fixed-point arithmetic. Others measured how 
Doppler resolution drops when phase estimation is 
coarse. A few tried hybrid arithmetic units to 
balance speed and accuracy inside FFT and phase 
blocks. These studies highlight the trade-off 
between hardware cost and imaging fidelity. 

 
3. METHODOLOGY  

3.1. System Architecture: The setup basically tries 
to mimic what happens in the range-Doppler stage 
of a SAR processor, but inside a Verilog testbench. 
Think of it as a small assembly line: echoes go in, a 
few processing blocks work on them one after 
another, and at the end you check whether the output 
makes sense. Four main modules do the work. 
1. Input Radar Echoes: This first block just creates 
the I/Q data you’d expect from a SAR system. It’s 
all synthetic—fixed-point numbers that look like 
returns from ground targets or moving objects. The 
phase offsets and Doppler shifts are baked in so the 
rest of the chain gets something that looks “real 
enough” to stress the logic. 
2. Windowing Module: Before pushing the data 
into an FFT, the samples go through a window 
(Hamming or Hann). The idea is simple: smooth the 
edges so the FFT doesn’t blow up with leakage. The 
module multiplies each I/Q sample with a stored 
coefficient from a LUT. Nothing fancy—just 
enough taper to keep sidelobes under control so the 
Doppler bins look clean later. 

 
Figure 1. System Block Diagram 

 
3. Phase Estimation Block: Here’s where the phase 
of each complex sample gets pulled out. The block 
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uses a CORDIC engine coded in Verilog to compute 
arctan(Q/I). Since CORDIC only uses shifts and 
adds, it maps nicely into FPGA-style logic. The 
phase comes out in a fixed-point format. In the sims, 
the accuracy stayed within about a degree, which is 
good enough for Doppler estimation and the later 
image-forming steps. 
4. FFT Block: This is the main conversion from 
time domain to frequency domain. It’s a plain radix-
2 DIT FFT, with a selectable size (64/128/256 
points). Once the transform is done, you get a set of 
Doppler bins—each one telling you where the 
energy is sitting in the frequency axis. These bins are 
what you use later to infer target motion. 
5. Phase Error / Resolution Output: This final 
block only checks whether everything behaved 
properly. It compares the CORDIC-generated 
phases to known “correct” values (from MATLAB 
or hand-generated data). From that it computes the 
RMSE. It also looks at FFT resolution: where the 
peaks land, how well the bins separate two close 
Doppler shifts, etc. Basically, it tells you whether the 
Verilog chain is giving believable results. 
Overall Flow 
Everything starts with synthetic I/Q echoes. 
They get windowed, then sent to the CORDIC 
phase unit. 
After that, the FFT spreads the signal into Doppler 
bins. 
Finally, the last block checks the phase accuracy 
and frequency resolution against reference data. 

This full pass through the chain lets you confirm 
whether the Verilog architecture is behaving close to 
what a real SAR front-end would do—and whether 
it’s ready to move onto an FPGA for real-time work. 

3.2 Modules Implemented 

A. Phase Estimation Block: The Phase Estimation 
Block plays a pivotal role in the SAR range-Doppler 
processing pipeline by computing the instantaneous 
phase angle of received radar echoes represented in 
complex I/Q format. This phase angle is 
fundamental for identifying Doppler frequency 
shifts, which indicate the relative motion and range 
rate of targets in synthetic aperture radar (SAR) 
imaging. The phase is derived using the classical 
arctangent relation, θ=tan− 1(Q/I)\, which transforms 
the I (in-phase) and Q (quadrature) Cartesian 
components into polar coordinates, facilitating 
accurate Doppler detection in the frequency domain. 

The Verilog-based implementation accepts 16-bit 
fixed-point I and Q inputs, typically encoded with 1 
sign bit, 3 integer bits, and 12 fractional bits. The 
output, also in fixed-point format, represents the 
computed phase θ\thetaθ in radians and is suitable 
for direct input into the FFT stage of Doppler 
analysis. The core of this module is built around the 

CORDIC (COordinate Rotation DIgital Computer) 
algorithm, operating in vectoring mode. CORDIC 
enables hardware-efficient phase computation by 
iteratively rotating the I/Q vector toward the x-axis 
through a series of micro-rotations using only shift 
and add operations. Each iteration decides the 
rotation direction (clockwise or counterclockwise), 
updates the vector through arithmetic operations, 
and accumulates an angle based on a lookup table of 
precomputed values arctan(2− i). After completing a 
fixed number of iterations, the sum of these 
incremental angles gives the final phase estimate. To 
ensure accuracy and reliability, the Verilog 
implementation was validated against MATLAB’s 
atan2(Q, I) function using synthetic test vectors. 
Comparative analysis evaluated root mean square 
error (RMSE), angular drift due to fixed-point 
quantization, and sign consistency across all four 
quadrants. The Verilog model demonstrated 
excellent agreement with MATLAB results, 
maintaining a phase estimation error within ±1°, 
confirming both numerical stability and functional 
correctness. 

 
Figure 2. CORDIC-Based Phase 

Estimation 
 

Figure 2 illustrates the internal structure of the 
CORDIC-based Phase Estimation Block. It shows 
how the I/Q input vector is processed through 
pipelined shift-add stages controlled by direction 
bits that determine rotation polarity. A lookup table 
provides incremental angles arctan(2− i), which are 
accumulated to form the final phase output. The 
fixed-point arithmetic units—comprising shifters, 
adders, and control logic—efficiently manage all 
computations within hardware resource constraints.  
The output register stores the final accumulated 
angle θ\thetaθ, representing the estimated phase. 
The diagram also depicts the convergence behavior, 
where the input vector gradually aligns with the x-
axis, and the residual rotation yields the final 
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arctangent value. In conclusion, this CORDIC-
based Phase Estimation Block delivers accurate, 
low-latency, and FPGA-efficient phase extraction, 
essential for real-time Doppler processing in SAR 
systems. Its modular design, high precision, and 
successful validation against MATLAB make it a 
reliable building block for embedded radar systems 
and other digital signal processing applications 
involving phase-sensitive computations. 
 
B. Windowing Module: This block isn’t flashy, but 
it makes a big difference in how clean the Doppler 
output looks. When you cut a chunk of radar data 
and throw it straight into an FFT, the sharp edges at 
the beginning and end create all kinds of leakage. 
Strong tones smear into nearby bins, and suddenly 
weaker targets get buried. So the windowing stage is 
basically there to “soften the edges” before the FFT 
gets its hands on the data. 
a). Supported Window Types 
        i). Hamming Window: A bit of a middle-
ground window. Keeps the main lobe tight enough, 
while pushing the sidelobes down to a usable level. 
        ii). Hanning Window: Tapers more gently, 
kills sidelobes better than Hamming, but spreads the 
main lobe a little wider. Handy when two Doppler 
peaks sit close together. 

1. Both window shapes are calculated in 
advance and stored in a tiny ROM, since 
there's no point recomputing the same 
coefficients every run.   

If x[n] is the input I/Q sample and w[n] is the 
window coefficient, then:   xwindowed[n] = 
x[n]×w[n]  
 

2. It does this sample-by-sample in a small 
pipelined multiplier so the throughput stays 
high enough for the rest of the chain. 

The windowing operation ensures that the energy in 
each frequency bin (after FFT) is concentrated and 
clean, enhancing Doppler peak detection and 
reducing noise. 
 
b). Implementation in Verilog HD: The setup is 
straightforward: 
       

a) a ROM full of fixed-point window 
coefficients, 

b) a multiplier that handles the I and Q 
channels, 

c) and enough pipelining to keep timing 
clean at the chosen clock rate. 

 
Everything stays in 16-bit fixed-point, which is 
enough precision for tapering without wasting 
FPGA resources. 
 

 
Figure 3. Windowing Operation Example 

The plot just compares two cases: 

1. Without windowing: the I/Q samples 
jump sharply at both ends → FFT shows 
smeared energy and nasty sidelobes. 

2. With windowing: the edges are 
smoothed → Doppler peaks stand out 
clearly and the leakage almost 
disappears. 

So even though the window module feels like a 
“small” block, it does a lot of heavy lifting in 
keeping the Doppler spectrum clean. Cleaner bins 
mean clearer target separation and better SAR 
images, especially when different reflectors sit close 
together in frequency. 

C. FFT Block: The FFT block is where the whole 
SAR range-Doppler chain really comes alive. Up to 
this point, we’re just dealing with raw time-domain 
I/Q samples. Once they hit the FFT, the Doppler 
information finally shows itself. That’s how we 
figure out which targets are moving and how fast 
they’re sliding across the aperture. In this setup, the 
FFT takes in complex samples (I and Q), usually 
already windowed so they don’t smear all over the 
place, and spits out a row of frequency bins. Each 
bin lines up with a Doppler shift, which basically 
tells you, “this scatterer is moving at this relative 
speed.” From those bins you get velocity clues, 
cross-range position info and, in the bigger picture, 
the ingredients needed to shape the SAR image. 
Inputs: Complex I/Q samples (fixed-point, 16-bit 
each), after windowing. 
Outputs: 
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• A row of bins, each with: 
     
  ∠X(k)| 
Those bins are the Doppler spectrum. That’s the 
whole point of doing this transform. 
 
1. Design Features: The FFT block can be built in 
a few different sizes depending on what you want to 
trade—resolution or hardware footprint. In this 
model, it can run as: 

• 64-point 
• 128-point 
• 256-point 

Bigger N gives tighter Doppler spacing but eats 
more cycles and logic. 
 
The actual FFT engine uses a simple Radix-2, 
decimation-in-time structure. Nothing fancy—just 
the classic butterfly pipeline. Each stage cuts the 
problem in half until everything is broken down into 
the basic add/sub operations plus a twiddle multiply. 
The butterfly unit itself only needs to do: 

• •••••e• •dd 

• •••••e• subtr••t 

• •u•ti••• b• the twidd•e 

f••t•r (th•t (e•••• 

e j− 2••••• thi••) 
It’s the sort of structure that maps nicely to 
hardware—straightforward, repeatable and easy to 
pipeline if you want to push the clock frequency. 
 

 
Figure 4: Radix-2 FFT Butterfly Structure 

 
In this figure the two complex input samples are 
shown entering the butterfly unit and One branch 
directly passes through the adder/subtractor, 
computing: 
 

X1=A+B,      X2•(• B− )⋅WN
k                                                    

(1) 
 

The other branch includes a twiddle factor 
multiplier, which uses pre-stored values from a 
ROM LUT to perform complex rotation, The 
outputs feed into the next FFT stage in a pipelined 
structure, enabling high throughput. Each butterfly 
unit operates in a synchronized fashion with stage 
counters and twiddle factor selectors. 
2. Precision and Arithmetic: The FFT is 
implemented in 16-bit fixed-point format (Q1.15 
or Q3.12), balancing: 

o Numeric accuracy 
o FPGA area consumption 
o Speed 

Special care is taken to manage scaling and overflow 
across stages using shift registers or rounding 
blocks. 
The FFT Block converts time-domain SAR data into 
a frequency-domain Doppler profile using a 
pipelined, radix-2 DIT butterfly structure. By 
enabling different FFT sizes and maintaining high-
precision fixed-point arithmetic, the design supports 
accurate Doppler estimation essential for SAR 
image synthesis. The modular Verilog 
implementation allows reuse across radar imaging 
and other DSP applications. 
 
D. Testbench and Stimuli: The Testbench and 
Stimuli module forms the final validation stage of 
the Phase 1 simulation for SAR signal processing. It 
emulates radar echo conditions to test the 
correctness, resolution, and robustness of the 
Verilog-modeled system. This test environment 
allows comprehensive verification of the Phase 
Estimation, Windowing, and FFT blocks by 
applying synthetic radar signals that resemble real-
world SAR backscatter scenarios. 
 
a). Purpose of the Testbench: The core objective 
of this testbench is to validate the functional 
correctness and performance precision of the 
implemented hardware models under realistic signal 
conditions. By using controlled synthetic inputs, it 
becomes possible to measure how well the 
simulation performs in detecting Doppler shifts, 
computing phase, and managing signal distortion 
due to quantization or noise. 
 
b).Test Features and Scenarios: The testbench 
includes the following major features: 
Synthetic Echo Signal Generation 

● Generates time-domain radar echoes using 
known sine and cosine functions. 

● The I/Q signals are generated with specific 
frequencies and controlled phase offsets to 
simulate echoes from moving targets. 
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Injected Doppler Shifts 

● A range of Doppler frequencies between 
100 Hz to 2 kHz is embedded in the I/Q 
signal. 

● This mimics target motion across azimuth, 
critical for SAR Doppler imaging. 
 

c). Controlled Phase Offsets 

● Phase shifts between 15° and 60° are 
deliberately introduced to test how 
accurately the CORDIC-based Phase 
Estimation Block computes the angle. 

● The system is evaluated to detect ±1° 
phase error margins. 

d). Noise Injection 

● Additive White Gaussian Noise 
(AWGN) is superimposed onto the radar 
echo data. 

● This tests the noise immunity and stability 
of FFT peak detection and phase angle 
computation. 

e).Validation Metrics: The output from the 
simulation is analyzed based on: 

● Angular Accuracy: Comparing Verilog 
output angles with MATLAB's atan2 
output. 

● Doppler Resolution: Measured by the 
ability to resolve two nearby frequency 
components using FFT bin width. 

● Noise Robustness: Evaluated through 
output signal-to-noise ratio (SNR) and 
detection consistency. 

 
These metrics are critical for confirming that the 
hardware implementation meets the precision 
demands of SAR imaging systems. 
 

 
Figure 5: Testbench Signal Flow 

 
The whole setup runs in a pretty simple chain. First, 
there’s a little generator that makes the I/Q radar 
echoes — all fake, but with whatever frequency, 
phase, and noise level we choose. If we want cleaner 
FFT results, we run those samples through a window 

block to smooth the edges with a Hamming or 
Hanning curve. Then the phase unit steps in and 
pulls out the phase from each I/Q pair. Once that’s 
done, the FFT block kicks in and drags the whole 
thing into the frequency domain so the Doppler 
peaks stand out. 

At the end, there’s a monitor that basically 
double-checks everything. It looks at: 

 
• How close the phase estimate is to the 
true value 
• Whether the FFT peak showed up in the 
right bin 
• Whether noise or fixed-point rounding 
messed anything up 

The nice thing about this flow is that you can check 
each stage separately. If something breaks, it’s easy 
to spot where it happened. By sweeping through 
different phases, frequencies and noise levels, you 
get a pretty good feel for how stable the design is 
before you even try it on an FPGA. 

3.3 System Setup: The implemented architecture 
effectively models a realistic Synthetic Aperture 
Radar (SAR) signal processing chain through a 
hardware-level simulation approach. By using 
Verilog HDL, the design replicates key functional 
blocks—namely the Phase Estimation, Windowing, 
and FFT modules—that are fundamental to SAR 
range-Doppler processing. This simulation not only 
mimics the signal flow encountered in operational 
radar systems but also allows for early validation of 
algorithmic correctness before actual FPGA 
deployment. Through rigorous testbench stimuli and 
phase-accurate I/Q modeling, the setup facilitates 
precise analysis of phase estimation errors, Doppler 
frequency resolution, and quantization effects in 
fixed-point arithmetic. As a result, the system setup 
lays a solid and scalable foundation for advancing to 
Phase 2, where these components will be 
synthesized and integrated for real-time SAR image 
formation on FPGA platforms. 
 

● Models a realistic SAR signal chain in 
hardware-level simulation 

● Uses Verilog HDL to simulate critical 
blocks that will later be synthesized for 
FPGA 

● Enables precise analysis of phase 
estimation error, frequency resolution, and 
hardware behavior 

● Lays the foundation for real-time SAR 
image formation in Phase 2 
 

3.4 Simulation Tools and Environment: The 
simulation framework for the SAR range-Doppler 
processing system was established using industry-
standard tools to ensure robust verification and 
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compatibility with hardware synthesis. The Verilog 
modules were developed and simulated using 
ModelSim 10.5b, with compatibility also validated 
in QuestaSim, providing waveform-level 
inspection and signal tracing capabilities. For 
algorithmic reference and result validation, 
MATLAB was extensively used to generate 
synthetic I/Q radar echoes, apply controlled Doppler 
shifts, and compute the expected phase outputs via 
its atan2 and fft functions. This dual-environment 
approach enabled accurate cross-verification of 
HDL outputs. The simulation operated at a test 
clock frequency of 50 MHz, a typical baseline for 
FPGA-level SAR prototypes, ensuring that timing 
constraints were realistic. All data and signal 
computations were performed in Q1.15 fixed-point 
format, allowing efficient representation of signed 
fractional values for both I/Q samples and phase 
outputs while preserving numerical precision during 
arithmetic operations. 

4. RESULT ANALYSIS 
 

The Verilog-based simulation of SAR range-
Doppler processing was extensively tested using 
synthetic radar echo data under varying conditions 
of phase, Doppler frequency, and noise. The system 
performance was evaluated based on five core 
parameters: phase estimation accuracy, FFT 
frequency resolution, data throughput, Doppler 
linearity, and windowing effectiveness. 

1. Phase Estimation Accuracy: The CORDIC-
based Phase Estimation Block demonstrated 
high numerical precision in computing the 
instantaneous angle of the I/Q signals. 
Compared against MATLAB’s atan2 output, 
the Verilog module yielded a Root Mean 
Square (RMS) error of less than 0.5° across 
all test cases, including those with injected 
noise and varying phase offsets. This low 
angular error confirms the correctness and 
fixed-point efficiency of the hardware model, 
making it suitable for Doppler-resolved SAR 
imaging where phase sensitivity is critical. 

2. FFT Frequency Resolution: The FFT block, 
built with a basic radix-2 DIT setup, did a 
solid job turning the time-domain radar 
echoes into clean frequency-domain data. 
With a 256-point FFT and a PRF of 500 kHz 
in the test runs, the spacing between 
frequency bins — basically the resolution — 
works out to: 

 

  𝛥𝑓  =  
𝑃𝑅𝐹

𝑁
=  

500,000

256
  

≈ 1.95 𝑘𝐻𝑧                                                                           (2)  

This resolution is sufficient to distinguish 
Doppler shifts in fast-moving targets and 
validates the system’s suitability for mid-
range SAR imaging applications. Output 

FFT spectra showed clean Doppler peaks, 
confirming proper bin alignment. 

3. Throughput and Simulation Performance: 
The Verilog simulation was clocked at 50 
MHz with pipeline-optimized logic. The 
system successfully processed up to 10,000 
radar pulses per second under ideal 
testbench conditions, reflecting the theoretical 
throughput of the design. This confirms the 
architecture’s potential for real-time 
performance when synthesized onto mid-
range FPGAs such as Xilinx Artix-7 or Intel 
Cyclone-V. 

4. Phase Drift and Doppler Linearity: 
Controlled Doppler shifts (100 Hz to 2 kHz) 
were injected into the radar echo generator to 
simulate target motion. The FFT block 
consistently located frequency peaks 
corresponding to these shifts, and the 
estimated phase from the CORDIC unit 
exhibited linear drift, as expected from 
uniform motion. This confirmed the proper 
functional chaining of the phase and 
frequency processing blocks, and ensured that 
the system preserved temporal coherence—a 
vital feature in coherent imaging radar 
systems. 

 
4.1 Effectiveness of Windowing: To assess the 
benefits of windowing, both Hamming and Hanning 
functions were applied prior to FFT computation. As 
shown in comparative test plots, the application of 
a Hamming window reduced FFT sidelobe levels 
by approximately 25 dB, significantly improving 
spectral clarity. This reduction in sidelobes prevents 
the masking of weak targets by strong neighboring 
reflections and is essential for enhancing dynamic 
range in SAR image formation. 

4.2 Performance Metrics 
Table 2: Performance Metrics 

 
Parameter Value/Result 

Phase 
Estimation 
Error 

< 0.5° RMS error (compared to 
MATLAB) 

FFT Resolution 
Δf = PRF/N; (e.g., 1.95 kHz for 
N=256) 

Max 
Throughput 

10,000 pulses/sec (simulation 
tested) 

Doppler 
Linearity 

Verified via FFT peak shifts and 
phase drift 

Windowing 
Effect 

Sidelobe levels reduced by ~25 dB 
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Figure 7: Simulated I/Q Signal Phase Pattern for 

Doppler Shift Validation, Figure 8: FFT Magnitude 
Spectrum with Hamming Window 

 
This figure 7 represents a simulated sinusoidal 
waveform used in testing the Phase Estimation 
Block of the SAR Range-Doppler processing 
pipeline. The graph plots the I/Q signal pattern—
specifically, a single-channel representation of an 
in-phase or quadrature component of a synthetic 
radar echo.  This waveform illustrates the sinusoidal 
nature of the radar echo's I/Q components, which is 
crucial for phase and Doppler extraction. In the 
context of your simulation: 

a) This waveform was injected into the Phase 
Estimation Block as a known input. 

b) The phase of the signal at each time step is 
calculated using the CORDIC engine. 

c) When a Doppler shift is applied (e.g., 100 
Hz to 2 kHz), this sine wave’s frequency 
changes. The system detects those shifts 
via FFT, confirming Doppler resolution. 

d) By comparing the actual signal phase (seen 
here in the sine shape) to the estimated 
phase, the simulation validates that the 
phase RMS error remains below 0.5°. 

 
This waveform directly supports the claim made in 
your results section regarding: 

a) Phase Estimation Accuracy 
b) Doppler Linearity 
c) Signal Integrity in Verilog 

It confirms that the testbench generated valid 
analog-like I/Q signals with smooth transitions 
suitable for frequency and phase evaluation by your 
hardware design. 

This figure 8 illustrates the FFT magnitude spectrum 
of a simulated radar signal after applying a 
Hamming window, one of the key signal 
conditioning steps in SAR range-Doppler 
processing. The plot basically shows how the 
signal’s energy spreads out across the FFT bins once 
everything’s in the Doppler domain.  
 
1. Central Doppler Peak (~12.5 kHz): The big 
spike in the middle — around 12.5 kHz — is the 
main Doppler hit. That’s the target’s motion 
showing up exactly where we expected, so the FFT 
clearly picked up the shift we injected. 
2. Sidelobes: The little bumps on the sides are the 
sidelobes. They’re there because of leakage, but the 
Hamming window knocks them down pretty hard — 
roughly 25 dB below the main peak. So the 
windowing is doing its job and keeping the spectrum 
nice and clean.  
3. Symmetry: The frequency spectrum is symmetric 
as expected for real-valued radar signals processed 
in the FFT. This symmetry supports validation of the 
FFT implementation. 
 
   This FFT plot demonstrates that: 

a) The Verilog FFT block preserves 
frequency-domain resolution (as shown by 
the sharp main peak). 

b) The windowing module is highly effective 
in minimizing sidelobe energy, preserving 
target distinction. 

c) The system successfully distinguishes 
Doppler frequencies in the simulated echo, 
validating Doppler linearity and spectral 
clarity. 
 

 
Figure 9.  Comparison of FFT Magnitude 

Spectrum Before and After Applying Hamming 
Window 

 
This side-by-side plot visually compares the FFT 
output of a radar echo signal: 

a) Left Panel: FFT without any windowing 
applied. 

b) Right Panel: FFT after applying a 
Hamming window. 

Both plots use the same synthetic Doppler signal 
with a dominant peak near 12.5 kHz, allowing direct 
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comparison of spectral quality and sidelobe 
suppression. 
Left Plot – Before Windowing: 

● The main frequency peak appears clearly 
at ~12.5 kHz. 

● However, sidelobes are prominent and 
spread across the entire frequency band. 

● These sidelobes are a result of spectral 
leakage, which can mask weak targets in 
practical SAR imaging scenarios. 

Right Plot – After Hamming Window: 

● The same main peak is preserved with 
minimal distortion. 

● Sidelobe levels drop significantly (~25 
dB lower), demonstrating the efficacy of 
windowing. 

● The overall spectral shape becomes 
smoother and more suitable for precise 
Doppler detection. 

Technical Insight: This comparison confirms that 
applying a Hamming window in the preprocessing 
stage: 

● Reduces spectral leakage 

● Enhances dynamic range 

● Improves the accuracy of Doppler 
estimation by preventing false detections 
due to sidelobes 

The Figure 9 strongly supports the claim in your 
"Results and Observations" section regarding 
windowing effectiveness. It validates that the 
Verilog-implemented windowing module functions 
as intended and contributes significantly to the 
clarity of the FFT output for high-resolution SAR 
applications. 
The results pretty much show that this setup can 
actually work as the front end of an FPGA-based 
SAR system. The fixed-point math stayed tight, the 
phase estimates didn’t drift, and the FFT block 
pushed data through cleanly. When we stacked the 
Verilog outputs against the MATLAB references, 
the waveforms matched almost exactly, so the whole 
chain seems to be behaving the way the theory says 
it should. With this level of agreement, it’s ready to 
move into Phase 2, where it’ll go onto real hardware 
and start dealing with live SAR echoes. The design 
also proved that the big pieces—CORDIC-based 
phase tracking and the FFT core—are solid enough 
for hardware. The CORDIC block hit accurate 
arctan values without chewing up many resources, 
and the FFT module let us switch between 64, 128, 
and 256 points depending on how much resolution 
we want. Everything fits together neatly and is 
basically waiting for the range-compression and 
azimuth-compression stages that will come next. 
Getting here wasn’t perfect. The phase path was 
slow at first, so the CORDIC had to be pipelined to 

keep up. A few overflow problems showed up in the 
fixed-point sections, but bumping the bit widths and 
adding saturation cleaned that up. The FFT 
butterflies were getting messy until the radix-2 DIT 
approach simplified things enough to build and 
debug. After ironing these out, the whole system 
runs smoothly and is in good shape for real-time 
FPGA use. 
 

5. CONCLUSION 
 

The whole setup proved that this Verilog design can 
actually serve as the front end for an FPGA-based 
SAR range-Doppler processor. The fixed-point 
math held up, the phase estimates stayed steady, and 
the FFT output lined up almost perfectly with the 
MATLAB checks. Nothing wandered off or 
behaved unpredictably, so the chain looks solid 
enough to push into the next phase where it runs on 
real hardware and handles live radar returns. The 
CORDIC unit ended up being one of the strongest 
pieces. It kept the phase error well under a degree, 
even when the inputs were noisy or slightly offset. 
The FFT core also worked smoothly, and being able 
to switch between 64, 128 or 256 points made it easy 
to test different resolutions without rewriting half 
the design. With everything fitting together nicely, 
it looks ready for the full SAR pipeline once range 
and azimuth compression get added. Getting it to 
this point took a few fixes. The phase path was slow 
in the early stages, so the CORDIC had to be 
pipelined to keep up. A couple of overflow problems 
showed up when pushing the fixed-point ranges, but 
widening the bit widths and adding simple saturation 
logic cleaned that up. The FFT butterflies were 
getting messy until the radix-2 DIT structure 
simplified the whole thing. After sorting out these 
issues, the design runs smoothly and behaves like 
something that can be dropped onto an FPGA 
without surprises. 
 
Future Work: Building on the promising results of 
the Verilog-based SAR/Radar Range-Doppler 
processing system, several key directions for future 
work are proposed to further enhance system 
capability, scalability, and real-world applicability: 

1. Plug in the rest of the SAR chain—range 
compression, azimuth focusing and the 
usual filters—to get full image formation 
running in hardware. 

2. Move everything to a real FPGA board and 
test with actual ADC data to see how it 
handles real-time load and noise. 

3. Try smarter windowing and flexible FFT 
sizes that can be switched at runtime. 
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4. Work toward a full radar-on-chip setup by 
tying the Doppler processor directly to the 
front-end hardware. 

5. Add hardware blocks for basic image 
cleanup—speckle filters, contrast tweaks, 
maybe some simple feature extraction. 

6. Expand the system for multi-antenna or 
multi-channel radar so it can handle wider-
area scans or bistatic setups. 

7. Experiment with ML models for automatic 
detection or quick classification, maybe 
using small CNNs accelerated in hardware. 

8. Adapt the design for space-grade reliability 
if the goal shifts toward satellite SAR. 

9. Trim power and area so the design can run 
on drones or small embedded radar units. 

10. Add clean interfaces—AXI, DMA, SPI—
so the whole system plugs into other radar 
subsystems without custom wiring every 
time. 
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