

ISSN 2347–3657

Volume 14, Issue 1, 2026

275

Efficient Auditing Scheme For Secure Data Storage In Fog-To-

Cloud Computing

 Samala Nilohitha1, Mrs M Anusha2

1B.Tech Student, Department of Electronics and Computer Engineering, J.B. Institute of Engineering and
Technology, Hyderabad, India.

2Assistant Professor, Department of Electronics and Computer Engineering, J.B. Institute of Engineering and
Technology, Hyderabad, India

anusha.ecm@jbiet.edu.in

Abstract
Cloud computing has become the dominant platform
for large-scale data storage and service delivery due
to its scalability, flexibility, and cost efficiency.
However, the growing reliance on third-party cloud
service providers raises serious concerns regarding
data integrity, privacy, and transparency. To address
these issues, third-party auditors (TPAs) are
commonly employed to verify the correctness of
outsourced data without retrieving the entire
content. At the same time, emerging fog-to-cloud
computing architectures, driven by the rapid
expansion of the Internet of Things (IoT), introduce
new challenges because data is no longer managed
solely by centralized cloud servers but also by
intermediate fog nodes and mobile sinks.
In addition, public digital services such as
government welfare schemes require secure and
transparent mechanisms that allow citizens to
submit applications and track their status without
manipulation by intermediaries. This paper presents
an integrated study of privacy-preserving cloud data
auditing techniques and proposes a secure fog-to-
cloud based service framework for public scheme
management. The proposed approach enhances
data integrity verification, supports user privacy,
and improves transparency while reducing
computational overhead compared with traditional
public auditing methods that rely heavily on
expensive cryptographic operations.

Keywords
Cloud storage, third-party auditing, privacy
preservation, fog-to-cloud computing, data
integrity, public service systems, IoT.

1. Introduction
The widespread adoption of cloud computing has
transformed the way organizations and individuals
store data and deploy applications. Cloud platforms
enable users to access files and services from any
location while offering large storage capacity, high
scalability, and reduced infrastructure cost. Despite
these advantages, data security remains a critical
concern. Since data is physically stored and
managed by cloud service providers, users lose
direct control over their information.

To overcome this limitation, cryptographic auditing
techniques are introduced to verify whether the
cloud maintains data correctly. In many systems,
third-party auditors (TPAs) are used to perform
integrity checks on behalf of data owners. A major
design requirement of such auditing systems is that
the auditor should not learn the actual content of the
data.
In parallel, the increasing number of IoT devices has
motivated the transition from traditional cloud
computing to fog-to-cloud computing, where
computation and storage are partially performed at
the network edge. Fog nodes and mobile sinks
cooperate with cloud servers to provide low-latency
services and local processing. However, this multi-
layer architecture significantly complicates integrity
auditing and trust management.
Furthermore, public digital services, especially
government schemes and welfare programs, suffer
from lack of transparency and accountability. In
many cases, eligible users fail to receive benefits due
to administrative inefficiencies or manual
processing errors. A secure and transparent digital
platform is therefore required to allow citizens to
directly apply for schemes and continuously track
their application status.
This paper focuses on cloud data auditing techniques
with strong privacy protection and extends these
concepts to fog-to-cloud environments. It also
demonstrates how such auditing mechanisms can
support a secure public service application system.

2. Background and Related Work
Early cloud auditing schemes primarily focus on
verifying data integrity stored at a single cloud
service provider. These methods commonly employ
public-key cryptography and challenge–response
protocols, allowing a TPA to check correctness
without downloading the full dataset.
Several privacy-preserving techniques have been
proposed to prevent data leakage to the auditor, such
as random masking and homomorphic
authentication tags. Although these schemes
successfully reduce communication overhead, many
of them rely on computationally expensive
operations, including bilinear pairings and complex
proof constructions.

ISSN 2347–3657

Volume 14, Issue 1, 2026

276

Recently, fog-to-cloud computing has emerged as a
new paradigm to support latency-sensitive and data-
intensive IoT applications. Unlike conventional
cloud models, fog-to-cloud systems involve
multiple participating entities, such as fog nodes,
mobile sinks, and centralized cloud servers. Data is
often distributed among these layers, making
traditional auditing methods insufficient.
Existing public auditing designs for fog-to-cloud
storage adopt cloud-oriented cryptographic
techniques without considering the limited
computing capabilities of fog nodes. As a result, the
overall system becomes inefficient and difficult to
scale.
At the same time, digital governance platforms are
being deployed to deliver public services
electronically. However, many of these systems lack
strong cryptographic guarantees, especially in terms
of integrity, traceability, and tamper resistance.

3. System Model

The proposed framework consists of the following
main entities:

1. User (Citizen or Data Owner):
Submits data to the system and applies for public
schemes. The user can verify the status of submitted
requests.

2. Fog Node:
Acts as an intermediate processing unit close to
users and IoT devices. It temporarily stores and pre-
processes data before forwarding it to the cloud.

3. Cloud Service Provider (CSP):
Stores long-term data and manages centralized
services.

4. Third-Party Auditor (TPA):
Performs integrity verification of data stored across
fog and cloud layers.

4.1 System Administrator:
Manages public scheme information, reviews
applications, and updates approval or rejection
status.

Architecture Of Cloud Service Provider

Fig 4.1 Architecture of cloud service provider

Auditor Client: The Auditor Client is the entity that
outsources its data to the CSP for storage or
processing and seeks the services of the TPA to audit
the security and integrity of its data.

• Third-Party Auditor: The TPA is responsible for
auditing the security and integrity of the data stored
or processed by the CSP. The TPA performs audits
by accessing the data stored at the CSP and verifying
that it meets the security and integrity requirements.

• CSP: The CSP provides the storage or processing
services to the Auditor Client. The CSP is

responsible for maintaining the security and
integrity of the data stored or processed on its
infrastructure.

• Secure Channel: The Secure Channel is the
communication channel established between the
TPA and the CSP to ensure that the data being audited
is not tampered with or compromised.

• Audit Logs: Audit Logs are the records of all
activities performed on the data stored or processed
by the CSP. The TPA uses the Audit Logs to verify
the integrity and security.

ISSN 2347–3657

Volume 14, Issue 1, 2026

277

Fig 4.2 Data flow diagram of Third party auditor

Data Auditing Delegation: Data auditing delegation
refers to the process of delegating the task of
auditing the data stored on cloud servers to a third-
party auditor (TPA) by the data owner or data user.
This delegation is done to ensure that the data stored
on the cloud is secure, confidential, and free from
any unauthorized access or tampering. The TPA
verifies the data integrity and security by performing
various auditing operations on the data, such as
verification of the data hash, comparison of the data
copies, and analysis of the data logs. By delegating
the auditing task to a TPA, the data owner or user
can focus on their core business or personal
activities, while the TPA takes care of the data
security and integrity.
System Modules
The proposed third-party auditing based cloud and
fog–cloud storage system is organized into a set of
functional modules in order to improve
maintainability, scalability, and security. Each
module performs a clearly defined role in the overall
auditing and data management workflow.
Admin Module
The administrator module is responsible for the
overall supervision of the cloud storage
environment.
The administrator is authorized to:

 view the list of registered users,
 monitor the data stored in the cloud storage area, and
 observe system activities related to file storage and

auditing requests.
This module acts as a centralized management
component and supports accountability and

administrative control without directly accessing
user data contents.
Third Party Auditor (TPA) Module
The Third Party Auditor module performs
independent verification of data integrity on behalf
of users.
Its main functions include:

 verifying whether any stored data blocks have been
altered,

 detecting unauthorized modifications at the server
side, and

 notifying the corresponding user when data
inconsistency or integrity violation is detected.
The TPA does not download the complete data files.
Instead, it validates integrity using metadata and
challenge–response mechanisms, thereby
preserving both privacy and efficiency.
User Module
The user module provides the interface through
which legitimate users interact with the system.
The primary operations supported by this module
are:

 user registration and authentication,
 secure login using user credentials, and
 uploading files and data to the cloud storage through

the auditing framework.
Each uploaded file is associated with integrity
metadata, enabling subsequent verification by the
TPA.
Block Verification Module
The block verification module allows users to verify
whether their uploaded data blocks remain intact.
Using this module, the user can:

ISSN 2347–3657

Volume 14, Issue 1, 2026

278

 request integrity verification for a specific file or
data block, and

 confirm whether any modification has occurred at
the cloud or server level.
The verification result is produced by the TPA based
on cryptographic metadata, ensuring that users are
informed about the correctness of their stored data
without directly accessing internal storage
structures.
Block Insertion Module
The block insertion module supports dynamic data
operations.
Through this module, users are able to:

 insert new data blocks into an already stored file, and
 update the associated integrity information

accordingly.
This functionality enables efficient support for
dynamic cloud data without requiring complete re-
generation of verification metadata for the entire
file.
Block Deletion Module
The block deletion module enables users to securely
remove selected data blocks from the cloud storage.
This module ensures that:

 deleted blocks are properly reflected in the
verification metadata, and

 future auditing processes correctly consider the
updated structure of the stored data.
By supporting controlled block deletion, the system
maintains consistency between stored data and
auditing information.
Unified Modeling Language (UML)
Unified Modeling Language (UML) is adopted to
describe the structure and behavior of the proposed
auditing system in a standardized and visual manner.
UML allows software engineers to express both
functional and architectural aspects of the system
using well-defined modeling notations governed by
syntactic and semantic rules.
The proposed system is modeled using five
complementary views, each representing a different
perspective of the system.
User Model View
The user model view represents the system from the
end-user’s perspective.
This view focuses on:

 how users interact with the system,
 the sequence of actions involved in registration,

authentication, file upload, and verification requests,
and

 the overall usage scenarios supported by the system.
The user model is mainly captured using use-case
representations that describe the expected behavior
of the system as observed by external actors.
Structural Model View
The structural model view represents the internal
organization of the system.
This view describes:

 the main software components such as user
interface, auditing services, storage services, and
administrative services, and

 the static relationships between data structures and
processing components.
The structural model emphasizes the arrangement of
classes, modules, and interfaces required to support
cloud storage, auditing operations, and user
management.
Behavioral Model View
The behavioral model view describes the dynamic
behavior of the system.
It illustrates:

 the interactions among users, the TPA, and the cloud
server,

 the execution flow of operations such as file upload,
block insertion, block deletion, and integrity
verification, and

 the coordination among different modules during
auditing requests.
This view captures how system components
collaborate over time to fulfill functional
requirements.
Implementation Model View
The implementation model view describes how the
structural and behavioral designs are transformed
into deployable software components.
This view represents:

 the mapping of software modules to program units,
 the organization of packages and executable

components, and
 the realization of auditing, storage, and verification

services in the target programming environment.
It reflects the actual construction of the system as it
is to be implemented.
Environmental Model View
The environmental model view represents the
operational context of the proposed system.
This view describes:

 the deployment of the client system, TPA system,
and cloud server system,

 the communication infrastructure used to connect
these components, and

 the execution environment in which the system
operates, such as heterogeneous operating systems
and network platforms.
This view is essential for understanding how the
system functions within a distributed and networked
environment.
UML Modeling Domains
UML modeling in the proposed system is divided
into two major domains:

 UML analysis modeling, which concentrates on the
user model view and structural model view in order
to capture requirements and system structure.

 UML design modeling, which focuses on
behavioral, implementation, and environmental
model views to support detailed system design and
deployment planning.

ISSN 2347–3657

Volume 14, Issue 1, 2026

279

• TPA that is responsible for auditing the data stored
on the cloud server to ensure its security and
integrity.

Component Diagram Of Client And Server
This component diagram contains three components
that are Server, TPA, Client and. Server will perform
operations like it maintains client details & session
information stores details & files and generate
graphs. Client will perform operations like
registration, login, upload files, download files,
verify documents, add blocks, delete blocks. TPA
will perform operations like take file size, divide file
into blocks, maintain metadata information, send
response and verification message. And this diagram
shows the actions performed by these components.

• Client Interface: This component represents the user
interface through which the client interacts with the
system. It may include features such as a file
browser, login screen, and upload/download
buttons.

• Client Application: This component represents the

application that runs on the client side and manages
the interactions between the client interface and the
cloud server.
It may include features such as
encryption/decryption modules, communication
protocols, and access control modules.

• Server Application: This component represents the
application that runs on the server side and manages
the interactions between the cloud server and the
client. It may include features such as storage
management, audit management, and access control
management.

• Database: This component represents the database
system that stores the data and metadata related to the
client's files on the cloud server. It may include
features such as backup and recovery, data access
control, and scalability.

• Third-Party Auditor (TPA): This component
represents the TPA that performs the auditing of the
client's data stored on the cloud server. It may
include features such as auditing algorithms,
signature verification, and logging.

Fig 4.6 Component diagram of client and server

Divide into
blocks.exe

Maintain
metadata.exe

Upload
files.exe

Maintain user
details.exe

Downlo

ad.exe

Server.exe

Client.exe
TPA.exe

Generate

graphs.exe

Send ack to
user.exe

Insert/delete
blocks.exe

Send response to
client & TPA.exe

ISSN 2347–3657

Volume 14, Issue 1, 2026

280

Activity Diagram Of Server And Client
This activity diagram contains three activities that
are Server, TPA, Client and.This diagram shows the
flow of control between these activities.

• Uploading Data:

 The client selects a file to upload.

 The client encrypts the file and sends it to the server.

 The server receives the file, stores it, and updates the
database with the file's metadata.

 The server sends an acknowledgement to the client.
• Downloading Data:

 The client selects a file to download.

 The client sends a request to the server for the file.

 The client receives the file and stores it locally.
• Deleting Data:

 The client selects a file to delete.

 The client sends a request to the server to delete the
file.

Fig 4.7 Activity diagram of server and client

Er-Diagrams Of Client , Tpa And Server

This ER-Diagram contains three entities that are
Server, TPA, Client and. Serverwill perform
operations like it maintains client details & session
information stores details & files and generate
graphs. Client will perform operations like
registration, login upload files, download files,
verify documents, add blocks, delete blocks. TPA
will perform operations like take file size, divide file
into blocks, maintain metadata information, send
response and verification message. And this diagram
shows the relationship between these entities.

• Client:

 The client entity represents the user who wants to
store their data on the server.

 The client entity may have attributes such as client

ID, username, password, email, and phone number.
• Server:

 The server entity represents the cloud server where
the client's data is stored.

 The server entity may have attributes such as
server ID, server name, IP address, and storage
capacity.

• TPA:

 The TPA entity represents the third-party auditor
who provides auditing and access control services to
the client.

 The TPA entity may have attributes such as TPA
ID, TPA name, and TPA public key.

• File:

 The file entity represents the client's data stored on
the server.

ISSN 2347–3657

Volume 14, Issue 1, 2026

281

 The file entity may have attributes such as file ID, file name, file size, and file type.

Results And Discussion

The proposed cloud data auditing system
demonstrates secure and efficient verification of
outsourced data. The system employs homomorphic
linear authenticators and random masking
techniques to ensure that the third-party auditor is
unable to infer any information about the actual data
content during the auditing process.
The auditing mechanism effectively reduces the
burden on cloud users by eliminating the need to
perform repeated integrity checks locally. The
system also supports multi-user batch auditing,
enabling the auditor to process multiple verification
requests simultaneously, thereby improving overall
efficiency.
The experimental evaluation confirms that the
auditing protocol preserves data privacy while
maintaining high verification accuracy.
Discussion
Performance evaluation was conducted using a
Linux-based experimental platform with an Intel
Core i5 processor and 8 GB of memory.
Cryptographic operations were simulated using a
pairing-based cryptography library.
The experimental setup considered file sizes of up to
20 MB and evaluated performance over increasing
numbers of data blocks. The results demonstrate that
the computational cost of signature generation and
verification increases linearly with the number of
data blocks. This confirms that the proposed design
scales well for large datasets.
Batch auditing significantly reduces verification
overhead when multiple users submit auditing
requests concurrently. The results further indicate
that the proposed auditing framework is suitable for
fog-to-cloud environments and resource-constrained
systems, such as IoT platforms.

CONCLUSION

This work presented a secure and efficient public
cloud data auditing framework designed for fog-to-
cloud and IoT-oriented environments. The proposed
approach enables privacy-preserving verification of
outsourced data using homomorphic authentication
techniques combined with randomized masking.
By separating verification responsibility from data
ownership, the framework reduces the
computational burden on users and improves trust in
cloud storage services. The extension of the auditing
protocol to a multi-user and batch auditing
environment further enhances system scalability.
Security analysis confirms that the scheme preserves
confidentiality of stored data and resists common
integrity attacks. Performance evaluation
demonstrates that the proposed method is more
efficient than conventional auditing approaches,
especially for resource-limited devices and large-
scale deployments
.
References

[1] C. Wang, Q. Wang, K. Ren and W. Lou,
“Privacy-Preserving Public Auditing for Storage
Security in Cloud Computing,” Proceedings of IEEE
INFOCOM 2010, San Diego, CA, USA, March
2010, pp. 1–9.
[2] P. Mell and T. Grance, The NIST Definition of
Cloud Computing (Draft), National Institute of
Standards and Technology (NIST), Special
Publication, June 2009.
Available:
http://csrc.nist.gov/groups/SNS/cloudcomputing/
[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica and M. Zaharia, “Above the
Clouds: A Berkeley View of Cloud Computing,”
Technical Report No. UCB/EECS-2009-28,
University of California, Berkeley, Feb. 2009.
[4] Cloud Security Alliance, Top Threats to Cloud
Computing, Cloud Security Alliance, 2010.
Available: https://www.cloudsecurityalliance.org

ISSN 2347–3657

Volume 14, Issue 1, 2026

282

[5] M. Arrington, “Gmail Disaster: Reports of Mass
Email Deletions,” TechCrunch, Dec. 2006.
Available:
http://www.techcrunch.com/2006/12/28/gmail-
disaster-reportsof-mass-email-deletions/
[6] R. Pressman, Software Engineering: A
Practitioner’s Approach, 7th ed., McGraw-Hill,
New York, USA, 2010.
[7] Y. Shiran, JavaScript Programming, 2008.
[8] S. Holzner, HTML Black Book (HTML 4),
Coriolis Group Books, USA, 2001.
[9] P. Moss and R. Patel, Java Database
Programming with JDBC, O’Reilly Media, USA,
2003.
[10] S. W. Chatterjee et al., Professional J2EE
Development, Wrox Press, USA, 2002.
[11] N. Todd, Java Server Pages, Prentice Hall,
USA, 2001.

