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Abstract 
The rapid growth of large-scale surveillance 
infrastructures has created an urgent requirement 
for automated techniques capable of analysing 
continuous video streams in real time. Conventional 
surveillance systems depend almost entirely on 
prolonged human observation, which is inherently 
inefficient and vulnerable to fatigue, delayed 
response, and missed critical incidents. This paper 
presents an intelligent video surveillance framework 
based on an unsupervised deep learning approach 
for detecting abnormal activities in video streams. 
The proposed system employs a Convolutional Long 
Short-Term Memory (Conv-LSTM) autoencoder to 
model normal spatio-temporal patterns in 
surveillance videos and to identify deviations 
through reconstruction error analysis. The network 
is trained exclusively on normal activity sequences, 
enabling the detection of unforeseen abnormal 
events without requiring explicit anomaly labels. 
The complete framework includes a real-time 
preprocessing pipeline, sequence buffering 
mechanism, threshold-based decision logic, and 
visual alert generation. Experimental evaluation 
conducted on a standard benchmark dataset 
demonstrates that the system can effectively identify 
abnormal behaviours such as running and object 
throwing while maintaining a low false-alarm rate. 
The results confirm the suitability of the proposed 
framework for practical real-time intelligent 
surveillance applications. 
Keywords: Intelligent video surveillance, anomaly 
detection, Conv-LSTM, autoencoder, unsupervised 
learning, spatio-temporal modelling. 
 
1. Introduction 
 
The increasing deployment of cameras in public 
spaces, transportation hubs, educational campuses 
and industrial environments has led to a dramatic 
rise in the volume of video data generated every day. 
Monitoring such large volumes of video content 
using traditional Closed-Circuit Television (CCTV) 
systems remains a labour-intensive and error-prone 
process. Although conventional CCTV 
infrastructures are effective for post-incident 
investigation and evidence collection, they are not 

designed to proactively prevent incidents or assist 
security personnel in real time. 
Human operators are required to observe multiple 
camera feeds for long durations. Several studies 
have shown that continuous visual monitoring 
significantly reduces operator vigilance after short 
periods of time, resulting in delayed reactions and 
overlooked events. Furthermore, as the scale of 
surveillance networks grows, the cost of employing 
sufficient personnel becomes unsustainable. 
Recent advances in artificial intelligence, computer 
vision and deep learning have enabled the 
development of intelligent video surveillance 
systems capable of automatically interpreting visual 
information. These systems aim to shift surveillance 
from a reactive paradigm to a proactive and 
predictive one by detecting suspicious or abnormal 
activities as they occur. Modern video analytics 
platforms can automatically identify objects, track 
individuals and recognise behaviour patterns in 
complex environments. 
Despite these advancements, anomaly detection 
remains a particularly challenging task. Unlike 
object recognition or action classification, abnormal 
events are inherently rare, context-dependent and 
often poorly defined. Collecting comprehensive 
labelled datasets containing all possible abnormal 
activities is unrealistic in real-world environments. 
This work proposes an intelligent anomaly detection 
framework that learns normal motion and 
appearance patterns from video data and 
automatically identifies unusual events without 
relying on explicit anomaly labels. The system is 
designed to operate in real time and can be integrated 
with modern cloud- and edge-based infrastructures, 
making it suitable for large-scale and distributed 
deployment scenarios. 
 
2. Problem Definition 
 
Conventional surveillance infrastructures suffer 
from several fundamental limitations: 

 Continuous manual monitoring is cognitively 
demanding and highly susceptible to fatigue and 
attention loss. 

 Operational costs increase significantly as the 
number of deployed cameras grows. 
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 A substantial portion of recorded video is never 
reviewed. 

 Incident response is usually delayed, as abnormal 
events are often discovered after they have already 
occurred. 
The central challenge is to design a surveillance 
system capable of automatically distinguishing 
between normal and abnormal activities without 
constant human supervision. Furthermore, due to the 
rarity and unpredictability of abnormal events, the 
system should not rely on exhaustive manual 
annotation of anomaly categories. 
An effective anomaly detection system must 
therefore: 

1. learn normal spatio-temporal patterns directly from 
video data, 

2. generalise to previously unseen abnormal 
behaviours, 

3. operate with low latency for real-time monitoring, 
and 

4. maintain robustness under varying lighting, crowd 
density and background conditions. 
 
3. Related Work 
 
Early approaches to video surveillance relied 
primarily on background subtraction, optical flow 
analysis and handcrafted motion descriptors. While 
computationally efficient, such techniques are 
highly sensitive to illumination changes, camera 
jitter, shadows and environmental noise, and 
perform poorly in crowded or cluttered scenes

. 

 
 
With the rise of deep learning, convolutional neural 
networks have become the dominant paradigm for 
visual feature extraction. Supervised learning 
approaches have demonstrated impressive 
performance in action recognition and behaviour 
classification. However, their reliance on large 
labelled datasets limits their applicability in anomaly 
detection, where abnormal events are rare and highly 
diverse. 
Unsupervised and self-supervised learning 
techniques have therefore gained considerable 
attention. Autoencoder-based architectures learn 
compact latent representations by reconstructing 
input data. When trained exclusively on normal data, 
reconstruction errors can be exploited as an anomaly 
score. 
Several studies have extended conventional 
autoencoders to video analysis by incorporating 

temporal modelling. Recurrent neural networks and 
long short-term memory units have been used to 
capture motion dynamics and temporal regularity in 
video sequences. Hybrid architectures combining 
convolutional layers with recurrent units have 
shown strong performance in modelling complex 
spatio-temporal patterns. 
More recently, adversarial learning and predictive 
modelling frameworks have also been explored for 
video anomaly detection. However, many of these 
approaches introduce increased training complexity 
and instability. 
In this work, a Conv-LSTM autoencoder 
architecture is adopted due to its ability to jointly 
model spatial appearance and temporal evolution 
within a unified network structure.

4. Proposed Methodology 
 
4.1  System Overview 
 

The proposed system follows a two-stage processing 
architecture: 

 Offline training stage, in which the deep learning 
model is trained using only normal video sequences. 
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 Online detection stage, in which the trained model 
is deployed to analyse incoming video streams and 
detect abnormal events in real time. 
A sliding window of consecutive frames is used to 
preserve temporal continuity, allowing the model to 
analyse short video clips rather than isolated frames. 
This design ensures that both motion patterns and 
appearance variations are captured. 
 
4.2 Data Preparation 
 
Video frames are extracted from training videos at a 
fixed sampling rate. Each frame is resized to a 
uniform spatial resolution and converted to 
grayscale in order to reduce computational 
complexity and to focus on structural and motion-
related information rather than colour variations. 
Pixel intensities are normalised to a fixed range to 
stabilise network training and to avoid scale-related 
bias. The processed frames are grouped into fixed-
length sequences of ten frames, forming spatio-
temporal input samples. 
This preprocessing pipeline ensures consistency 
between the training and inference stages and 
reduces the influence of irrelevant variations such as 
minor illumination changes. 
 
4.3 Conv-LSTM Autoencoder Architecture 
 
The core of the proposed system is a convolutional 
LSTM autoencoder. The encoder component 
consists of three-dimensional convolutional layers 
followed by Conv-LSTM layers. The three-
dimensional convolutional layers extract spatial 
features while preserving temporal structure, and the 
Conv-LSTM layers model temporal dependencies 
across successive frames. 
This architecture enables the network to 
simultaneously learn: 

 spatial representations of objects and scene 
structure, and 

 temporal relationships associated with motion 
patterns and behavioural dynamics. 
The decoder reconstructs the original input sequence 
using transposed convolutional layers. During 
training, the network minimises the mean squared 
error between the input sequence and its 
reconstructed output. 
Let 𝑋denote the input sequence and 𝑋෠the 
reconstructed sequence. The reconstruction loss is 
defined as 

𝐿 =
1

𝑁
෍(

ே

௜ୀଵ

𝑋௜ − 𝑋෠௜)
ଶ 

 
where 𝑁denotes the total number of pixels in the 
sequence. 
 
4.4 Anomaly Detection Strategy 
 
The model is trained exclusively with normal video 
data. As a result, it becomes highly specialised in 
reconstructing regular motion patterns and visual 
structures. 
During deployment, each incoming video sequence 
is reconstructed by the trained model. Sequences 
that differ significantly from learned normal patterns 
produce higher reconstruction errors. 
An anomaly score is computed using the 
reconstruction loss. If this score exceeds a 
predefined threshold, the corresponding video 
segment is classified as abnormal and an alert is 
generated. 
This reconstruction-based formulation allows the 
system to detect previously unseen abnormal events 
without requiring explicit modelling of each 
anomaly category. 
 
4.5 Threshold Selection 
 
The anomaly threshold is determined empirically 
using a validation set containing both normal and 
abnormal sequences. The threshold is selected to 
balance detection sensitivity and false-alarm rate. 
In the reported experiments, a threshold value of 
0.00068 provided a suitable trade-off between 
missed detections and spurious alarms. The 
threshold was chosen by analysing the distribution 
of reconstruction errors and selecting a value that 
maximised separation between normal and 
abnormal samples. 
 
4.6 Computational Complexity and Real-Time 
Suitability 
 
The computational complexity of the proposed 
framework is dominated by the convolutional and 
Conv-LSTM layers during inference. To enable real-
time operation, the system processes short frame 
sequences and employs lightweight preprocessing 
operations. 
A sliding buffer mechanism is used to avoid 
redundant recomputation and to maintain 
continuous processing of incoming frames. The 
inference pipeline can be further accelerated using 
GPU hardware or optimised deployment 
frameworks. 
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5. System Implementation 
 
The system is implemented using Python and widely 
adopted deep learning and computer vision libraries. 
The training module performs dataset preparation, 
sequence generation, network construction and 
optimisation using the Adam optimiser with mean 
squared error loss. 
Model checkpoints are stored during training to 
preserve the best performing network. Early 
stopping is employed to prevent overfitting and 
unnecessary training iterations. 
The real-time detection module loads the trained 
model and processes incoming video streams using 
a sliding window of ten frames. Each window is 
reconstructed by the model and its reconstruction 
error is computed. When the error exceeds the 
threshold, a visual alert is overlaid on the output 
video stream. 
The implementation incorporates: 

 real-time frame buffering, 
 consistent preprocessing, 
 error handling mechanisms for corrupted or missing 

frames, 
 frame-rate synchronisation, and 
 logging facilities for offline analysis. 

This modular design facilitates maintenance and 
future system extension. 
 
6. Experimental Evaluation 
6.1 Dataset and Experimental Setup 

The system is evaluated using a public benchmark 
dataset designed for video anomaly detection. The 
training set contains only normal pedestrian 
activities, while the testing set includes a variety of 
staged abnormal events such as running, loitering 
and object throwing. 
All training sequences consist exclusively of normal 
behaviour. No anomaly samples are used during 
training. Testing is performed on previously unseen 
video clips. 
The model is trained for several epochs with a batch 
size of one sequence. Input frames are resized to a 
uniform resolution and normalised before being 
passed to the network. 
 
6.2 Evaluation Protocol 
 
The system is evaluated qualitatively and 
behaviourally by analysing detection responses 
across all testing videos. Reconstruction losses are 
recorded frame-sequence wise and compared 
against the selected threshold. 
The evaluation focuses on: 

 ability to detect prominent abnormal events, 
 consistency of alert generation, 
 robustness under varying crowd density, and 
 stability during long video streams. 

 
6.3 Results 
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The proposed system successfully detects the 
majority of prominent abnormal events in the test 
sequences. Sudden changes in motion patterns, such 
as abrupt running or object throwing, generate 
noticeably higher reconstruction errors and are 
consistently identified. 
A small number of false alarms are observed, mainly 
in scenes with unusually dense crowds and complex 
interactions. These scenarios introduce motion 
patterns that are under-represented in the training 
data. 
A limited number of subtle anomalies, such as 
slightly faster walking, remain difficult to detect 
because they do not strongly deviate from learned 
normal patterns. 
 
6.4 Discussion 
 
The experimental results demonstrate that 
reconstruction-based anomaly detection using a 
Conv-LSTM autoencoder is an effective strategy for 
surveillance video analysis. 
The principal strength of the proposed approach lies 
in its independence from manually labelled anomaly 
categories. The system is capable of identifying 
previously unseen abnormal behaviours by learning 
only from normal data. 
However, the definition of normality is entirely 
driven by the training distribution. Environments 
exhibiting highly dynamic or unpredictable 
behaviour patterns may require more diverse 
training data to achieve stable performance. 
 
7. System Testing and Validation 
 
The software implementation is validated through 
unit, integration, functional and scenario-based 
testing. 
Individual preprocessing and loss calculation 
modules are tested independently. Integration testing 
confirms compatibility between the training and 
detection modules. 
End-to-end testing verifies correct alert generation 
during abnormal events and stable behaviour during 
prolonged video processing. Additional experiments 
involving low-light conditions and video noise 
confirm reasonable robustness under moderate 
environmental variations. 
Stress testing with long video sequences 
demonstrates that the system maintains consistent 
memory usage and inference stability. 
 
8. Limitations 
 
Despite its effectiveness, the proposed system 
exhibits several limitations. The learned notion of 
normality is strongly dependent on the training 
environment. Deploying the model in a different 
setting generally requires retraining. 

The use of a fixed anomaly threshold restricts 
adaptability to gradual environmental changes such 
as lighting transitions or seasonal variations. 
Moreover, the system currently provides only binary 
anomaly decisions without localising the abnormal 
region or classifying the event type. 
The framework also does not explicitly address 
adversarial perturbations or deliberate camera 
obstructions. 
 
9. Conclusion 
 
This paper presented an intelligent video 
surveillance framework for unsupervised anomaly 
detection based on a Conv-LSTM autoencoder. By 
learning spatio-temporal representations of normal 
activities, the proposed system is capable of 
identifying abnormal events in real time without 
requiring labelled anomaly samples. 
Experimental evaluation demonstrates reliable 
detection performance and a low false-alarm rate on 
benchmark surveillance videos. The proposed 
approach provides a practical and scalable 
foundation for proactive surveillance systems 
capable of reducing human monitoring workload 
and improving situational awareness. 
 
10. Future Work 
 
Future extensions of this work will focus on several 
directions. 
First, more advanced spatio-temporal architectures 
such as three-dimensional convolutional networks 
and transformer-based models can be explored to 
improve representation capacity and long-range 
temporal modelling. 
Second, dynamic thresholding strategies based on 
online statistical analysis of reconstruction error can 
be introduced to adapt to changing environmental 
conditions. 
Third, a secondary classification and localisation 
stage can be integrated to identify the type and 
spatial location of detected anomalies, enabling 
richer situational awareness and decision support. 
Finally, optimised deployment on edge devices 
combined with cloud-based monitoring and 
management platforms would enable large-scale, 
low-latency and privacy-aware intelligent 
surveillance infrastructures. 
 
References 
 
[1] Y. S. Chong and M. S. Ryoo, “Abnormal event 
detection in videos using spatiotemporal 
autoencoder,” Proc. ICCV Workshops, 2017.  
[2] X. Shi et al., “Convolutional LSTM network: A 
machine learning approach for precipitation 
nowcasting,” Advances in Neural Information 
Processing Systems, 2015.  
[3] M. Hasan et al., “Learning temporal regularity in 



ISSN 2347–3657 

Volume 14, Issue 1, 2026 
  

288 
 

video sequences,” Proc. IEEE Conference on 
Computer Vision and Pattern Recognition, 2016.
  
[4] B. R. Kiran, D. M. Thomas, and R. Parakkal, “An 
overview of deep learning-based methods for video 
anomaly detection,” International Journal of 
Computer Science and Engineering, 2018.  
[5] A. Krizhevsky, I. Sutskever, and G. Hinton, 
“ImageNet classification with deep convolutional 
neural networks,” Advances in Neural Information 
Processing Systems, 2012.  
[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep 
learning,” Nature, 2015. 
[7] W. Sultani, C. Chen, and M. Shah, “Real-world 
anomaly detection in surveillance videos,” Proc. 
IEEE Conference on Computer Vision and Pattern 
Recognition, 201 
 


