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ABSTRACT 
 
This paper proposes a unified and mathematically 
grounded hybrid framework for disease prediction by 
integrating machine learning, applied mathematics, and 
fuzzy logic. The study focuses on predictive modeling of 
infectious and non-communicable diseases, including 
COVID-19, lung cancer, swine flu, and dengue, using 
structured clinical, epidemiological, and climatic 
datasets. Data preprocessing techniques such as 
cleaning, normalization, and train–test splitting are 
employed to ensure reliability and consistency. Multiple 
supervised learning algorithms Support Vector Machine, 
Random Forest, k- Nearest Neighbors, Decision Tree, 
and Artificial Neural Network are implemented and 
comparatively evaluated using accuracy, precision, 
recall, F1-score, mean squared error, and confusion 
matrices. To address uncertainty in epidemiological 
parameters, fuzzy mathematical modeling and 
bifurcation analysis are incorporated, enabling 
uncertainty-aware interpretation of disease dynamics 
through the fuzzy basic reproduction number. 
Experimental results indicate that Random Forest 
achieves the most stable and reliable performance, while 
SVM and ANN show competitive outcomes. Overall, the 
proposed hybrid analytical–ML framework enhances 
interpretability, robustness, and scalability, making it 
suitable for epidemiological studies and clinical decision 
support systems. 
 
Keywords: Machine Learning, Fuzzy Logic, Disease 
Prediction, Epidemiological Modeling, Clinical Decision 
Support. 
 

I. Introduction 
The rapid expansion of digital technologies has 

transformed modern healthcare, making Machine 
Learning (ML) one of the most influential tools in 
medical science. ML enables computer systems to 
analyze large and complex medical datasets, detect 
patterns, and generate reliable diagnostic predictions 
with minimal human intervention. With the growth of 
electronic health records, medical 
 
imaging, laboratory reports, genomic data, and 
wearable sensor outputs, traditional diagnostic 
approaches often struggle to manage data complexity 
and scale. ML overcomes these limitations by 

identifying hidden relationships that may not be 
evident to clinicians, thus supporting early disease 
detection, risk assessment, and accurate prognosis. 
Beyond diagnosis, ML contributes significantly to 
treatment planning and personalized medicine by 
predicting treatment responses and optimizing clinical 
decisions. However, the increasing use of ML also 
raises issues related to data quality, interpretability, 
ethics, and clinical trust, requiring careful evaluation to 
ensure safe and effective implementation in healthcare. 
Emergence of Machine Learning in Healthcare 
Machine Learning marks a shift from experience-based 
to evidence-based medicine. With the digitization of 
healthcare data—from EHRs and diagnostic images to 
laboratory and genomic records—ML has become 
essential for processing high-dimensional information 
and generating clinically meaningful insights. Early 
ML applications relied on simple rule-based models, 
but advancements in computational power and deep 
learning have enabled sophisticated applications such 
as disease prediction, medical image analysis, and 
clinical decision-support systems. ML now enhances 
diagnostic accuracy, reduces human error, and 
facilitates preventive healthcare, making it a core 
component of modern medical systems. 
Growth of Medical Data and Need for Intelligent 
Analysis 
The volume of medical data has increased 
exponentially due to digital recordkeeping, imaging 
technologies, genomic sequencing, and wearable 
devices. Although this data has tremendous potential, 
its complexity makes manual interpretation slow and 
error-prone. Traditional rule-based analysis often fails 
to detect subtle patterns, leading to delayed or incorrect 
diagnoses. ML provides intelligent, adaptive analysis 
capable of processing large datasets efficiently, 
uncovering hidden trends, and generating accurate 
clinical insights. As healthcare data continues to 
expand, intelligent automated systems are essential for 
improving diagnosis, treatment decisions, and patient 
outcomes. 
Role of Machine Learning in Medical Diagnosis 
Machine Learning plays a vital role in enhancing the 
accuracy, speed, and efficiency of medical diagnosis. 
Conventional methods rely on manual interpretation of 
medical data, which can be time- consuming and 
susceptible to errors. ML techniques analyze medical 
images—such as X-rays, CT scans, and MRIs to detect 
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tumors, fractures, and other abnormalities. ML models 
also process electronic health records and laboratory 
data to predict disease risks and identify high-priority 
patients. Natural language processing further supports 
diagnosis by extracting meaningful information from 
unstructured clinical notes. By enabling early 
detection, reducing diagnostic errors, and supporting 
evidence-based decisions, ML has become a crucial 
tool in modern diagnostic practice. 
Applications of Machine Learning in Medical 
Diagnosis and Treatment 
Machine Learning (ML) has become a transformative 
tool across multiple areas of medical diagnosis and 
treatment. In radiology, ML—especially deep 
learning techniques like CNNs—enhances the 

 
detection of lung nodules, tumors, fractures, and 
organ abnormalities from X-rays, CT scans, MRI, 
and ultrasound images, improving accuracy and 
reducing human error. In pathology, ML models 
analyze digital biopsy slides to classify tissues, 
detect cancer, and grade tumors with high precision. 

In neurology, ML processes MRI, fMRI, EEG, and 
EMG data to identify early signs of disorders such 
as Alzheimer’s disease, epilepsy, and 
neurodegenerative conditions. For infectious 
diseases, ML integrates clinical, laboratory, and 
epidemiological data to detect outbreaks, predict 
severity, and support triage decisions, as seen during 
COVID-19. In cardiology, ML improves ECG and 
echocardiogram interpretation, enabling early 
identification of arrhythmias and heart failure. In 
oncology, ML assists personalized treatment 
planning by predicting therapy responses based on 
tumor and genetic profiles. ML also supports mental 
health diagnosis by analyzing speech, facial 
expressions, and behavioral patterns for early 
detection of disorders. In chronic disease 
management, ML models predict disease flare-ups 
using wearable and environmental data. 
Additionally, ML accelerates drug discovery and 
ICU decision-making by predicting complications 
such as sepsis and organ failure

. 

2. Background Study on Machine Learning Applications in Medical Diagnosis 
 

Author(s) & 
Year 

Disease / 
Application Area 

Methodology / 
Approach 

Key Findings / Conclusions 

Hai Minh et al. 
(2025) 

Colorectal cancer 
diagnosis 

Machine learning 
classification using 
medical datasets 

The study reported that machine learning 
provided an effective and practical computational 
approach for colorectal cancer diagnosis by 
improving classification  accuracy  and  
supporting 
clinical decision-making. 

Wang et al. Cardiovascular ML-assisted point- of-
care diagnostic models 

The authors stated that machine learning- assisted 
point-of-care systems significantly enhanced 
cardiovascular healthcare by enabling rapid 
detection, risk stratification, 
and real-time decision support. 

(2025)   disease (Point-of- 

   care systems) 

Jdey 
(2024) 

et al. Malaria diagnosis Deep learning and 
machine learning 
techniques 

The study noted that ML and DL methods 
improved malaria detection accuracy, while also 
highlighting implementation challenges 
and the need for interdisciplinary research. 

Almakhzoumi et 
al. (2024) 

Malaria detection Machine 
with 
datasets 

learning 
imaging 

The authors demonstrated that ML techniques 
enabled automated recognition of infected cells, 
supporting faster and more 
reliable diagnostic workflows. 

Yan et al. General medical Multimodal The study explained that integrating 

(2023)   diagnostics machine learning multiple data sources through multimodal 

     ML enhanced prediction, classification, and 

     clinical decision support across medical 

     domains. 
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Kokabi 
(2023) 

et al. Cancer diagnosis Biosensors integrated 
with ML 

The authors concluded that combining biosensors 
with ML enabled early cancer diagnosis through 
real-time monitoring and 
accurate interpretation of biological signals. 

Jameela et al. 
(2022) 

Malaria detection Deep learning and 
transfer learning 

The study observed that DL and transfer learning 
significantly improved detection accuracy  by  
extracting  discriminative 
features from microscopic images. 

Li et al. (2022) Lung cancer Machine learning on
 imaging, 
genomic,  and 
clinical data 

The authors reported that ML supported 
diagnosis, treatment planning, and prognosis  
prediction  using  integrated 
computational models. 

Bhavsar et al. 
(2021) 

General medical 
diagnosis 

Machine learning- 
based decision systems 

The study concluded that ML enhanced 
diagnostic accuracy, automated clinical tasks,  
and  supported  decision-making 
across diverse diseases. 

Battineni et al. 
(2020) 

Chronic disease 
diagnosis 

ML predictive 
models 

The authors stated that ML improved long-term 
disease management by analyzing patient 
histories and identifying 
risk patterns. 

Yue 
(2018) 

et al. Breast cancer Machine learning 
classification 
algorithms 

The study indicated that ML improved diagnosis 
and prognosis by enhancing classification  
accuracy  and  identifying 
malignant patterns. 

Safdar 
(2018) 

et al. Heart disease ML-based decision 
support systems 

The authors explained that ML strengthened 
heart disease diagnosis by integrating 
clinical data with predictive analytics. 

Sumathi & 
Poorna (2016) 

Mental health in 
children 

Machine learning 
classification 
techniques 

The study reported accurate prediction of mental 
health problems through analysis of behavioural 
and physiological indicators. 

Prasad 
(2016) 

et al. Thyroid disease Hybrid  rough  set 
theory and ML 
models 

The authors stated that hybrid ML architectures 
improved diagnosis by refining feature selection 
and increasing precision. 

Barua 
(2015) 

et al. Driver stress 
detection 

Supervised ML 
using physiological 
sensors 

The study found that ML algorithms effectively 
diagnosed stress levels by identifying 
physiological response patterns. 

Dilsizian & 
Siegel (2014) 

Cardiac imaging Artificial intelligence 
and big data analytics 

The authors emphasized that AI-driven analytics 
advanced personalized cardiac diagnosis through 
automated image interpretation  and  improved  
clinical 
decisions. 
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𝑖=1 

3. Research Methodology 
This section outlines a systematic and scientifically 
structured research methodology adopted for the predictive 
modeling of infectious diseases, namely COVID-19, Lung 
Cancer, Swine Flu, and Dengue, using machine learning 
and fuzzy mathematical techniques. The proposed 
framework integrates multiple stages, including data 
acquisition, preprocessing, mathematical formulation, 
supervised learning model development, and rigorous 
performance evaluation. Emphasis is placed on 
transforming raw clinical and climatic data into normalized 
and analyzable forms to ensure consistency and accuracy 
in model training. It is proposed to use the trained models 
(including support vector machine, random forest, nearest 
neighbor, and decision tree algorithms which are developed 
based on mathematics) for comparison. Popular metrics 
like accuracy, fine-tuning, recall, F1 metric, mean squared 
error and confusion matrix are employed to estimate the 
quality of prediction and generalize. Also, fuzzy logic is 
used in combination with branching process to account for 
the presence of uncertainty on epidemiological parameters 
such as incidence and recovery rates. This fuzzy 
logic/machine learning hybrid methodology is 
interpretable, enables nonlinearity modeling and offers 

robustness to uncertainty. So, our proposed method yields 
the faithful, interpretable, and scalable data representation 
for disease prediction that is readily applicable to 
epidemiological studies or clinical decision support 
systems. Recent fast developments in the area of machine 
learning and artificial intelligence techniques enormously 
modified medical diagnosis and treatment planning. The 
medical field's growing availability of clinical, 
epidemiological, and environmental data has opened the 
door for intelligent diagnostic systems that can aid 
healthcare workers in making complex decision. The 
successful applications of these technologies, however, 
demand well-defined research targets in terms of clinical 
and mathematical rigor. The objectives of the present study 
are formulated in response to the limitations identified in 
existing literature, particularly the over-reliance on 
traditional diagnostic approaches, limited interpretability of 
machine learning models, and the lack of generalized 
frameworks applicable across multiple disease conditions. 
These challenges highlight the need for a systematic 
investigation into the role of machine learning techniques, 
supported by applied mathematical and fuzzy modelling, in 
improving diagnostic accuracy, robustness, and clinical 
usability. 

 
3.1 Data Collection and Preprocessing 
Let the dataset be represented as 
 

𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑁 
 
where, 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑) ∈ ℝ𝑑denotes the feature vector (clinical or climatic variables), 𝑦𝑖 ∈ 
{0,1} represents the class label (absence/presence of disease). Preprocessing steps include: 
 
Data cleaning (handling missing and noisy values), 

Normalization using Min–Max scaling: 𝑥′ = 
  𝑥−𝑥mi𝚗  

𝑥max−𝑥mi𝚗 
Train–test split using an 80:20 ratio: 𝒟 = 𝒟𝑡𝑟𝑎𝑖𝑛 ∪ 𝒟𝑡𝑒𝑠𝑡 

 
 

3.2 Mathematical Modeling of Machine Learning Algorithms 
Support Vector Machine (SVM) 
 
SVM aims to find an optimal hyperplane: 

𝐰 ⋅ 𝐱 + 𝑏 = 0 
 
that maximizes the margin between two classes by solving: 
 

min 
𝐰,௕,క

1

2
∥ 𝐰 ∥ଶ+ 𝐶 ෍ 𝜉௜

ே

௜ୀଵ

 

 
subject to: 

𝑦௜(𝐰 ⋅ 𝐱௜ + 𝑏) ≥ 1 − 𝜉௜, 𝜉௜ ≥ 0 
 
For nonlinear data, the RBF kernel is used: 
 

𝐾(𝑥௜, 𝑥௝) = exp (−𝛾 ∥ 𝑥௜ − 𝑥௝ ∥ଶ) 
 
Random Forest (RF) 



ISSN 2347–3657 

Volume 14, Issue 1, 2026 
   

303  

𝑘 

Random Forest is an ensemble of decision trees: 𝑦 ̂ = mode{𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝑀(𝑥)} 
where each tree 𝑇𝑚is trained on a bootstrap sample. The impurity at a node is measured using Gini 

 
𝐾 

𝐺 = 1 − ∑ 
𝑘=1 

𝑝2. 

 k-Nearest Neighbours (k- NN) 
 
 
 The classification is based on distance: 

𝑑(𝑥௜, 𝑥௝) = ඩ෍(

ௗ

௟ୀଵ

𝑥௜௟ − 𝑥௝௟)
ଶ 

 The predicted class is 
𝑦ො = mode{𝑦௝ ∣ 𝑥௝ ∈ 𝒩௞(𝑥)} 

 Decision Tree (DT) 
 Decision Trees recursively partition data by maximizing Information Gain: 
 

𝐼𝐺(𝑆, 𝐴) = 𝐻(𝑆) − ෎
∣ 𝑆௩ ∣

∣ 𝑆 ∣
௩∈஺

𝐻(𝑆௩) 

                     where entropy: 

𝐻(𝑆) = − ෍ 𝑝௜

௖

௜ୀଵ

log ଶ 𝑝௜  

Artificial Neural Network (ANN) 
 
An ANN neuron output is given by: 
 

𝑦 = 𝑓(∑ 𝑤௜
௡
௜ୀଵ 𝑥௜+𝑏) 

                  
  where 𝑓(⋅)is the activation function (sigmoid or ReLU). 
The loss function used is Mean Squared Error (MSE): 

𝑀𝑆𝐸 =
1

𝑁
෍(

ே

௜ୀଵ

𝑦௜ − 𝑦ො௜)ଶ 

Weights are updated using gradient descent: 

𝑤൫𝑡+1൯ = 𝑤(௧) − 𝜂
∂𝐿

∂𝑤
 

3.3.6 Performance Evaluation Metrics 
 
Model performance is evaluated using: 
 
Accuracy 

        Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 

                                           Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 

            Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score 

      𝐹1 =
2 × Precision × Recall

Precision + Recall
 

 
 
 

Index: 
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Fuzzy Mathematical Modeling and Bifurcation 
Analysis 

 
To model uncertainty, epidemiological parameters are 
represented as triangular fuzzy numbers 
 

𝛽෨ = (𝛽௟, 𝛽௠, 𝛽௨) 
 

The fuzzy basic reproduction number is defined as: 

𝑅෨଴ =
𝛽෨

𝛾෤
 

 
where 𝛾෤denotes the recovery rate. 

If 
𝑅෨଴ > 1 

 
 
the system exhibits endemic equilibrium; otherwise, a 
disease-free equilibrium exists. Fuzzy bifurcation  
analysis helps study system stability under parameter 
uncertainty, enhancing epidemiological interpretation 
 pasted.  

 
Hybrid Analytical–ML Framework 

 
Feature importance obtained from Random Forest is 
integrated into analytical estimation: 

𝐶መ = ෍ 𝑤௜

ௗ

௜ୀଵ

𝑥௜ 

 
where 𝑤௜denotes feature importance weight. This hybrid 
framework enables interpretable forecasting with 
 improved robustness. 

 
4. Simulation and Result Analysis 
This section presents a comprehensive 
implementation and relative evaluation of multiple 
machine learning algorithms used for COVID-19 
predictive modelling, supported by mathematical 
formulation, experimental metrics, and analytical 
extensions. The discussion integrates classical ML 
models with fuzzy logic–based bifurcation analysis 
to strengthen epidemiological interpretation. 
Algorithmic Performance Analysis 

Five models Random Forest, k-Nearest Neighbours, 
Decision Tree, Artificial Neural Network (ANN), 
and Support Vector Machine (SVM) were 
implemented and evaluated using standard 
classification metrics. 

 Random Forest achieved the highest 
overall presentation with an accuracy of 
60.50% and balanced precision, recall, and 
F1-score (0.55, 0.54, 0.54). The confusion 
matrix shows stronger identification of 
Class-1 cases, indicating robustness of 
ensemble learning in handling feature 
interactions. 

 k-NN and Decision Tree exhibited 
comparatively lower accuracies (53.50% 
and 51.00%), struggling particularly with 
Class-2 prediction, likely due to class 
imbalance and limited feature separability. 

 ANN delivered moderate accuracy 
(58.50%) but showed signs of overfitting, 
as reflected by low training MSE and 
higher validation/test errors. 

 SVM (RBF kernel) performed 
competitively (59.00% accuracy), 
benefitting from nonlinear kernel mapping, 
though misclassification of Class-2 
remained notable. 

Fuzzy Bifurcation and Epidemiological Insight 
The fuzzy bifurcation analysis incorporated 
uncertainty in epidemiological parameters 
(infection, recovery, and death rates). The fuzzy 
basic reproduction number 𝑅 ̃0 = (1.24,1.67,2.32) 
remained greater than 1 across all fuzzy intervals, 
indicating persistent endemic behaviour. This 
confirms that under current parameter uncertainty, 
the system does not transition to a disease-free 
equilibrium. 
Analytical Estimation Framework 
Using Random Forest feature importance weights, 
an analytical estimation predicted 1,800 confirmed 
cases for a sample scenario. This hybrid ML-
analytical approach enables rapid forecasting while 
maintaining interpretability. 
Random Forest Regression 

 
Fig. 1: Random Forest Confusion Matrix Fig. 2: Random Forest Model Value 
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The Random Forest model demonstrates moderate 
predictive presentation in the given classification 
task. The general accuracy of 60.50% can be 
interpreted that the model is able to correctly 
categories a little bit higher than half of all cases, it 
implies acceptable but not very robust performance. 
As for the precision, we see that it is 0.55, which 
means that about 55% of the instances guessed as 
positive are correct which clearly indicates a 
medium reliability level on predicting positives. The 
recall of 0.54 also tells that the model can identify 
around 54 % of all real positive cases, however this 
again shows there are still a significant number 

which are not identified true cases. Also, the low 
F1-score (0.54), as this is balanced between 
precision and recall, reinforces that moderate 
effectivity. 
The confusion matrix reveals that the model 
performs better in identifying Class 1 compared to 
Class 2, with a higher number of true positives for 
Class 1. However, misclassification of Class 2 
remains significant, indicating scope for 
improvement through feature enhancement, class 
balancing, or hyperparameter tuning. 
k-Nearest Neighbours (k-NN) 

 

Fig. 3: k-NN Confusion Matrix Fig. 4: k-NN Model Evaluation Value 

 
 
The k-Nearest Neighbours (k-NN) model exhibits 
relatively low predictive presentation in the given 
classification task. This is translated as the model 
classifying instances correctly just over half of the 
time, and hence only a marginal improvement on 
random guessing. The model performs poorly, as 
indicated by the precision and recall values of 0.48 
as well as F1-score values 2 ≈ below (Table III). The 
precision of 0.48 means that less than half of the 
examples we predicted are positive (were correct), 
and the recall of 0.48 shows us that our model 
misses over half the actual positives! The non 

symmetrical feature of false positives opposed to 
false negatives is evidenced as well by the F1-score. 
As can be seen from the confusion matrix, model 
had less accuracy in predicting class 2 compared to 
class 1 and it frequently made wrong predictions as 
Class 2 irrespective of correct one. This might be 
attributed to their similarity of features, data scarcity 
and class imbalance. In general, these results 
suggest that k-NN need to be optimized, feature 
scaled or distance metrics other than the Euclidean 
would provide a better performance on 
classification. 

Decision Tree Regression 

 
Fig. 5: DT Confusion Matrix Fig. 6: Decision Tree Model Evaluation Results 

Value 
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The Decision Tree model shows limited predictive 
capability for the given classification task. The 
global performance, accuracy = 51.00%, of the CR 
model shows that the CR classification correctly 
identifies a little better than half of all cases (only 
slightly better than chance). The Precision, Recall, 
and the F1-score of 0.49 are additional indicators of 
a weak and unstable performance on this dataset. 
0.49 precision means that about half of our positive 
predictions are wrong and 0.49 recall says that we 
miss a lot of positive cases. The balanced and low 
F1-score indicates that the model does not handle 

both false positives and false negatives well. 
The confusion matrix shows serious 
misclassification in two classes. While the model is 
able to distinguish Class 1 a bit better than Class 2, 
it still predicts many of the samples belonging to 
both classes incorrectly. This indicates the Decision 
Tree tends to overfit or is not able to capture 
complex relations. In general, the results suggest 
pruning or hyperparameter tuning or adopting an 
ensemble system in order to achieve good 
performance. 

 
Artificial Neural Network (ANN) 

 
Fig. 7: ANN Confusion Matrix Fig. 8: ANN Model Evaluation Results: Value 

The Artificial Neural Network (ANN) model 
demonstrates moderate predictive performance in 
the classification task. The performance score of 
58.50% demonstrates the model’s ability to correctly 
predict just over a half of the instances, and is an 
improvement compare to compeller models as k-NN 
Ans Decision Tree. The precision and recall of 0.53 
indicates that the test performs with moderate 
accuracy, in a sufficiently optimal way so as to 
positively identify positive cases while maintaining 
an acceptable degree of correctness in predictions. 
The F1-score of 0.52, which is a harmonic average 
of the precision and recall, also supports the 

moderate performance of this model. 
The confusion matrix indicates that ANN achieves 
high true positive rate in recognising Class 1, while 
the misclassification of Class 2 is still significant. 
This imbalance suggests that the model is biased 
towards Class 1 patterns and fails to generalize 
equally in both classes. While ANN can fit non-
linear relationships from data, the findings indicate 
what might be overfit or lack of proper feature 
representation. Further performance enhancements 
could have been realized through architectural 
tuning, regularization, or a larger training set. 

 
Fig. 9: Mean Squared Error (MSE) 

The Mean Squared Error (MSE) plot illustrates the 
learning behaviour of the Artificial Neural Network 
across training, validation, and test datasets over 

1,000 epochs. MSE decrease rapidly in the first 
epochs, showing that learning is good and 
prediction errors are quickly decreasing. Towards 
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the end of training, all three curves eventually 
converge, indicating that learning is stable and 
generalizes well. A validation performance of 
7.5945 ×10⁻⁸ at epoch 1000 indicates good 
convergence with low error. The convergence of 

training, validation and test curves close to each 
other shows that the model is not overfitting heavily, 
and suggests strong predictive reliability on 
unobserved data. 

 
 

 

Fig. 10: Mean Squared Error (MSE) Changes Over 207 Epochs 
 
The Mean Squared Error (MSE) plot over 207 
epochs illustrates the learning and generalization 
behaviour of the model across training, validation, 
and test datasets. The training MSE reduces so 
quickly that the learning is efficient and fits well to 
the data. Nevertheless, the validation means squared 
error is still high and does not decrease much. The 
test means squared error (MSE) variation is quite 

prominent, and it clearly has a sudden minimization 
around epoch 140, then grows back quickly 
evidence of over-fit to unseen observations. The 
peak of the validation performance 76.1292 at epoch 
201 indicates that while training keeps growing, it 
overfits showing that either regularization or better 
model tuning are needed. 
 

 
Fig. 11: Mean Squared Error (MSE) for Training 

 
The Mean Squared Error (MSE) plot over 11 epochs 
illustrates the learning behaviour of the model 
during early training. The training MSE reduces 
rapidly, which means the model fast captures 
patterns in the Web logs. The validation MSE 
reaches its minimum of 83.3087 in epoch 5, and 
from this point on it stays about the same or rises 

slightly indicating the beginning of overfitting. In 
the meantime, the test MSE decreases initially and 
increases then to indicate limited generalization to 
other unseen samples. Such a mismatch between 
training and validation/test errors were reported to 
originate from the overtraining of NN beyond early 
epochs, and are suggestive to the significance of 
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regularization and early stopping. 
 
 

Support Vector Machine (SVM) Regression 

 
Fig 12: SVM Confusion Matrix Fig. 13: SVM Regression Value 

 
The Support Vector Machine (SVM) model 
demonstrates moderate classification performance. 
An overall accuracy of 59.00% implies that the 
model can classify just under 60% of all instances 
correctly. The precision of 0.56 means 56% of the 
observations predicted as positive were correct. On 
the other hand, recall of 0.54 means that if we have 
1 positive sample in test set our model can identify 
~54% of them , which is just a bit higher than 
average. The F1-score of 0.53, which is an average 
of the two former measures, validates such 
performance and highlights that our model performs 
moderately. The confusion matrix indicates that 
SVM can predict Class 1 objects better than Class 2 
objects, and misclassified the Class 2 samples more 
often. Altogether, the SVM seems to work quite 
well, however additional optimization or better 
feature-set might be required to boost up its 
classification robustness. 
 

5. Conclusion and Future Scope 
The present study demonstrated that integrating 
machine learning with applied mathematical and 
fuzzy logic–based modeling provides an effective 
and interpretable framework for disease prediction 
across multiple medical conditions. The 
comparative analysis of supervised learning 
algorithms revealed that ensemble-based 
approaches, particularly Random Forest, offer 
greater stability and robustness in handling complex 
and uncertain medical datasets. The incorporation of 
fuzzy mathematical modeling and bifurcation 
analysis enhanced epidemiological interpretation by 
explicitly accounting for uncertainty in key 
parameters such as infection and recovery rates. This 
hybrid analytical–ML framework addressed major 
limitations of conventional diagnostic systems, 
including limited interpretability and sensitivity to 
data variability, thereby improving clinical usability 
and decision support potential. Future research may 
focus on extending the framework to larger, real-

time, and multi-center datasets to improve 
generalizability. The integration of deep learning 
architectures, temporal models, and real-time sensor 
data can further enhance predictive accuracy. 
Additionally, incorporating explainable AI 
techniques and advanced uncertainty quantification 
methods may strengthen transparency, trust, and 
adoption in clinical and public health applications. 
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