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ABSTRACT

This paper proposes a unified and mathematically
grounded hybrid framework for disease prediction by
integrating machine learning, applied mathematics, and
fuzzy logic. The study focuses on predictive modeling of
infectious and non-communicable diseases, including
COVID-19, lung cancer, swine flu, and dengue, using
structured  clinical, epidemiological, and climatic
datasets. Data preprocessing techniques such as
cleaning, normalization, and train—test splitting are
employed to ensure reliability and consistency. Multiple
supervised learning algorithms Support Vector Machine,
Random Forest, k- Nearest Neighbors, Decision Tree,
and Artificial Neural Network are implemented and
comparatively evaluated using accuracy, precision,
recall, Fl-score, mean squared error, and confusion
matrices. To address uncertainty in epidemiological
parameters,  fuzzy — mathematical ~modeling and
bifurcation analysis are incorporated, enabling
uncertainty-aware interpretation of disease dynamics
through the fuzzy basic reproduction number.
Experimental results indicate that Random Forest
achieves the most stable and reliable performance, while
SVM and ANN show competitive outcomes. Overall, the
proposed hybrid analytical-ML framework enhances
interpretability, robustness, and scalability, making it
suitable for epidemiological studies and clinical decision
support systems.

Keywords: Machine Learning, Fuzzy Logic, Disease
Prediction, Epidemiological Modeling, Clinical Decision
Support.

L Introduction

The rapid expansion of digital technologies has
transformed modern healthcare, making Machine
Learning (ML) one of the most influential tools in
medical science. ML enables computer systems to
analyze large and complex medical datasets, detect
patterns, and generate reliable diagnostic predictions
with minimal human intervention. With the growth of
electronic health records, medical

imaging, laboratory reports, genomic data, and
wearable sensor outputs, traditional diagnostic
approaches often struggle to manage data complexity
and scale. ML overcomes these limitations by

identifying hidden relationships that may not be
evident to clinicians, thus supporting early disease
detection, risk assessment, and accurate prognosis.
Beyond diagnosis, ML contributes significantly to
treatment planning and personalized medicine by
predicting treatment responses and optimizing clinical
decisions. However, the increasing use of ML also
raises issues related to data quality, interpretability,
ethics, and clinical trust, requiring careful evaluation to
ensure safe and effective implementation in healthcare.
Emergence of Machine Learning in Healthcare
Machine Learning marks a shift from experience-based
to evidence-based medicine. With the digitization of
healthcare data—from EHRs and diagnostic images to
laboratory and genomic records—ML has become
essential for processing high-dimensional information
and generating clinically meaningful insights. Early
ML applications relied on simple rule-based models,
but advancements in computational power and deep
learning have enabled sophisticated applications such
as disease prediction, medical image analysis, and
clinical decision-support systems. ML now enhances
diagnostic accuracy, reduces human error, and
facilitates preventive healthcare, making it a core
component of modern medical systems.

Growth of Medical Data and Need for Intelligent
Analysis

The volume of medical data has increased
exponentially due to digital recordkeeping, imaging
technologies, genomic sequencing, and wearable
devices. Although this data has tremendous potential,
its complexity makes manual interpretation slow and
error-prone. Traditional rule-based analysis often fails
to detect subtle patterns, leading to delayed or incorrect
diagnoses. ML provides intelligent, adaptive analysis
capable of processing large datasets efficiently,
uncovering hidden trends, and generating accurate
clinical insights. As healthcare data continues to
expand, intelligent automated systems are essential for
improving diagnosis, treatment decisions, and patient
outcomes.

Role of Machine Learning in Medical Diagnosis
Machine Learning plays a vital role in enhancing the
accuracy, speed, and efficiency of medical diagnosis.
Conventional methods rely on manual interpretation of
medical data, which can be time- consuming and
susceptible to errors. ML techniques analyze medical
images—such as X-rays, CT scans, and MRIs to detect
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tumors, fractures, and other abnormalities. ML models
also process electronic health records and laboratory
data to predict disease risks and identify high-priority
patients. Natural language processing further supports
diagnosis by extracting meaningful information from
unstructured clinical notes. By enabling early
detection, reducing diagnostic errors, and supporting
evidence-based decisions, ML has become a crucial
tool in modern diagnostic practice.

Applications of Machine Learning in Medical
Diagnosis and Treatment

Machine Learning (ML) has become a transformative
tool across multiple areas of medical diagnosis and
treatment. In radiology, ML—especially deep
learning techniques like CNNs—enhances the

detection of lung nodules, tumors, fractures, and
organ abnormalities from X-rays, CT scans, MRI,
and ultrasound images, improving accuracy and
reducing human error. In pathology, ML models
analyze digital biopsy slides to classify tissues,
detect cancer, and grade tumors with high precision.
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In neurology, ML processes MRI, fMRI, EEG, and
EMG data to identify early signs of disorders such
as  Alzheimer’s  disease, epilepsy, and
neurodegenerative  conditions. For infectious
diseases, ML integrates clinical, laboratory, and
epidemiological data to detect outbreaks, predict
severity, and support triage decisions, as seen during
COVID-19. In cardiology, ML improves ECG and

echocardiogram interpretation, enabling early
identification of arrhythmias and heart failure. In
oncology, ML assists personalized treatment

planning by predicting therapy responses based on
tumor and genetic profiles. ML also supports mental
health diagnosis by analyzing speech, facial
expressions, and behavioral patterns for early
detection of disorders. In chronic disease
management, ML models predict disease flare-ups
using  wearable and environmental data.
Additionally, ML accelerates drug discovery and
ICU decision-making by predicting complications
such as sepsis and organ failure

2. Background Study on Machine Learning Applications in Medical Diagnosis

Author(s) & Disease / Methodology / Key Findings / Conclusions
Year Application Area Approach
Hai Minh et al. Colorectal cancer | Machine learning | The study reported that machine learning
(2025) diagnosis classification  using | provided an effective and practical computational
medical datasets approach for colorectal cancer diagnosis by
improving classification accuracy and
supporting
clinical decision-making.
Wang et al. | Cardiovascular ML-assisted point- of- | The authors stated that machine learning- assisted
(2025) discase  (Point-of- | care diagnostic models | point-of-care systems significantly enhanced
cardiovascular healthcare by enabling rapid
care systems) detection, risk stratification,
and real-time decision support.
Jdey et al. | Malaria diagnosis Deep learning and | The study noted that ML and DL methods
(2024) machine learning | improved malaria detection accuracy, while also
techniques highlighting implementation challenges
and the need for interdisciplinary research.
Almakhzoumi et | Malaria detection Machine learning | The authors demonstrated that ML techniques
al. (2024) with imaging | enabled automated recognition of infected cells,
datasets supporting faster and more
reliable diagnostic workflows.
Yan et al. | General medical | Multimodal The study explained that integrating
(2023) diagnostics machine learning multiple data sources through multimodal
ML enhanced prediction, classification, and
clinical decision support across medical
domains.
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Kokabi et
(2023)

al.

Cancer diagnosis

Biosensors integrated
with ML

The authors concluded that combining biosensors
with ML enabled early cancer diagnosis through
real-time monitoring and

accurate interpretation of biological signals.

Jameela et al.

Malaria detection

Deep learning and

The study observed that DL and transfer learning

(2022) transfer learning significantly improved detection accuracy by
extracting discriminative
features from microscopic images.

Li et al. (2022) Lung cancer Machine learning on | The authors reported that ML supported

imaging, | diagnosis, treatment planning, and prognosis
genomic, and | prediction using integrated
clinical data computational models.
Bhavsar et al. General medical | Machine learning- | The study concluded that ML enhanced
(2021) diagnosis based decision systems | diagnostic accuracy, automated clinical tasks,
and supported decision-making
across diverse diseases.
Battineni et al. Chronic disease | ML predictive | The authors stated that ML improved long-term
(2020) diagnosis models disease management by analyzing patient
histories and identifying
risk patterns.
Yue et al. | Breast cancer Machine learning | The study indicated that ML improved diagnosis
(2018) classification and prognosis by enhancing classification
algorithms accuracy and identifying
malignant patterns.
Safdar et al. | Heart disease ML-based decision The authors explained that ML strengthened
(2018) support systems heart disease diagnosis by integrating
clinical data with predictive analytics.
Sumathi & | Mental  health  in | Machine learning | The study reported accurate prediction of mental
Poorna (2016) children classification health problems through analysis of behavioural
techniques and physiological indicators.
Prasad et al. | Thyroid disease Hybrid rough set The authors stated that hybrid ML architectures
(2016) theory and ML | improved diagnosis by refining feature selection
models and increasing precision.
Barua et al. | Driver stress | Supervised ML | The study found that ML algorithms effectively
(2015) detection using physiological diagnosed stress levels by identifying
Sensors physiological response patterns.
Dilsizian & | Cardiac imaging Artificial intelligence The authors emphasized that Al-driven analytics
Siegel (2014) and big data analytics | advanced personalized cardiac diagnosis through

automated image interpretation and
clinical

decisions.

improved
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3. Research Methodology

This section outlines a systematic and scientifically
structured research methodology adopted for the predictive
modeling of infectious diseases, namely COVID-19, Lung
Cancer, Swine Flu, and Dengue, using machine learning
and fuzzy mathematical techniques. The proposed
framework integrates multiple stages, including data
acquisition, preprocessing, mathematical formulation,
supervised learning model development, and rigorous
performance evaluation. Emphasis is placed on
transforming raw clinical and climatic data into normalized
and analyzable forms to ensure consistency and accuracy
in model training. It is proposed to use the trained models
(including support vector machine, random forest, nearest
neighbor, and decision tree algorithms which are developed
based on mathematics) for comparison. Popular metrics
like accuracy, fine-tuning, recall, F1 metric, mean squared
error and confusion matrix are employed to estimate the
quality of prediction and generalize. Also, fuzzy logic is
used in combination with branching process to account for
the presence of uncertainty on epidemiological parameters
such as incidence and recovery rates. This fuzzy
logic/machine  learning  hybrid  methodology is
interpretable, enables nonlinearity modeling and offers

3.1 Data Collection and Preprocessing
Let the dataset be represented as

D = {(xi, yo3¥

where, xi = (xi1, Xi2, ..
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robustness to uncertainty. So, our proposed method yields
the faithful, interpretable, and scalable data representation
for disease prediction that is readily applicable to
epidemiological studies or clinical decision support
systems. Recent fast developments in the area of machine
learning and artificial intelligence techniques enormously
modified medical diagnosis and treatment planning. The
medical field's growing availability of clinical,
epidemiological, and environmental data has opened the
door for intelligent diagnostic systems that can aid
healthcare workers in making complex decision. The
successful applications of these technologies, however,
demand well-defined research targets in terms of clinical
and mathematical rigor. The objectives of the present study
are formulated in response to the limitations identified in
existing literature, particularly the over-reliance on
traditional diagnostic approaches, limited interpretability of
machine learning models, and the lack of generalized
frameworks applicable across multiple disease conditions.
These challenges highlight the need for a systematic
investigation into the role of machine learning techniques,
supported by applied mathematical and fuzzy modelling, in
improving diagnostic accuracy, robustness, and clinical
usability.

i=1
., Xid) € Rddenotes the feature vector (clinical or climatic variables), yi €

{0,1} represents the class label (absence/presence of disease). Preprocessing steps include:

Data cleaning (handling missing and noisy values),

.. . . . . XXmin
Normalization using Min—-Max scaling: x = ——— —

Xmax— X¥min

Train—test split using an 80:20 ratio: D = Dtrain U Drest

3.2 Mathematical Modeling of Machine Learning Algorithms
Support Vector Machine (SVM)

SVM aims to find an optimal hyperplane:

w-x+b=0

that maximizes the margin between two classes by solving:

N
'1II I+ C
ming 1w I+ € ) 8
i=

subject to:

yiw-x;+b)=21-§,§ =0

For nonlinear data, the RBF kernel is used:

K(x;,x;) = exp(=y Il x; — x; II*)

Random Forest (RF)
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Random Forest is an ensemble of decision trees: ¥ = mode{T(x), T2(x), ..., Tm(x)}

where each tree Thmis trained on a bootstrap sample. The impurity at a node is measured using Gini

) K p
Index: ,_ ;| _ 5 X
k=1

k-Nearest Neighbours (k- NN)

The classification is based on distance:

d(xi'xj) =

d
Z(xil - le)z
=1

¥ = mode{y; | x; € Ny (x)}

The predicted class is

Decision Tree (DT)
Decision Trees recursively partition data by maximizing Information Gain:

IS, |
IG(S,A) = H(S) — Zmﬂ(su)

VEA
where entropy:

[
H($) = - Z pilog; p;
i=1
Artificial Neural Network (ANN)
An ANN neuron output is given by:
y = f(Ziz1wi x;+b)

where f(-)is the activation function (sigmoid or ReLU).
The loss function used is Mean Squared Error (MSE):

1% .
MSE=NZ(yi—yi)
i=

Weights are updated using gradient descent:

oL
t+1) — ,,@®) _ ., 2~
w w n Eo
3.3.6 Performance Evaluation Metrics

Model performance is evaluated using:

Accuracy
A _ TP +TN
Uy = TP+ TN + FP + FN
Precision
Precision — TP
recision = TP T FP
Recall
Recall = P
TP EN
F1-Score

2 X Precision X Recall
F1=

Precision + Recall
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Fuzzy Mathematical Modeling and Bifurcation
Analysis

To model uncertainty, epidemiological parameters are
represented as triangular fuzzy numbers

B = (Bu B, Bu)
The fuzzy basic reproduction number is defined as:

Ro=

<™

where ydenotes the recovery rate.
If

Ry>1

the system exhibits endemic equilibrium; otherwise, a
disease-free equilibrium exists. Fuzzy bifurcation
analysis helps study system stability under parameter
uncertainty, enhancing epidemiological interpretation
pasted.

Hybrid Analytical-ML Framework

Feature importance obtained from Random Forest is
integrated into analytical estimation:

d
C = ZWL' X
i=1

where w;denotes feature importance weight. This hybrid
framework enables interpretable forecasting with
improved robustness.

4. Simulation and Result Analysis

This  section presents a  comprehensive
implementation and relative evaluation of multiple
machine learning algorithms used for COVID-19
predictive modelling, supported by mathematical
formulation, experimental metrics, and analytical
extensions. The discussion integrates classical ML
models with fuzzy logic—based bifurcation analysis
to strengthen epidemiological interpretation.
Algorithmic Performance Analysis

Rmnidoem Foresl Confuson Merns

Clas

Tois

Prufidiant Sl

Fig. 1: Random Forest Confusion Matrix
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Five models Random Forest, k-Nearest Neighbours,
Decision Tree, Artificial Neural Network (ANN),
and Support Vector Machine (SVM) were
implemented and evaluated using standard
classification metrics.

e Random Forest achieved the highest
overall presentation with an accuracy of
60.50% and balanced precision, recall, and
Fl-score (0.55, 0.54, 0.54). The confusion
matrix shows stronger identification of
Class-1 cases, indicating robustness of
ensemble learning in handling feature
interactions.

e Lk-NN and Decision Tree exhibited
comparatively lower accuracies (53.50%
and 51.00%), struggling particularly with
Class-2 prediction, likely due to class
imbalance and limited feature separability.

® ANN delivered moderate accuracy
(58.50%) but showed signs of overfitting,
as reflected by low training MSE and
higher validation/test errors.

e SVM (RBF kernel) performed
competitively (59.00% accuracy),
benefitting from nonlinear kernel mapping,
though misclassification of Class-2
remained notable.

Fuzzy Bifurcation and Epidemiological Insight
The fuzzy bifurcation analysis incorporated
uncertainty  in  epidemiological  parameters
(infection, recovery, and death rates). The fuzzy
basic reproduction number Ry = (1.24,1.67,2.32)
remained greater than 1 across all fuzzy intervals,
indicating persistent endemic behaviour. This
confirms that under current parameter uncertainty,
the system does not transition to a disease-free
equilibrium.

Analytical Estimation Framework

Using Random Forest feature importance weights,
an analytical estimation predicted 1,800 confirmed
cases for a sample scenario. This hybrid ML-
analytical approach enables rapid forecasting while
maintaining interpretability.

Random Forest Regression

Random Forest model Value

505

L1LL

Fig. 2: Random Forest Model Value
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The Random Forest model demonstrates moderate
predictive presentation in the given classification
task. The general accuracy of 60.50% can be
interpreted that the model is able to correctly
categories a little bit higher than half of all cases, it
implies acceptable but not very robust performance.
As for the precision, we see that it is 0.55, which
means that about 55% of the instances guessed as
positive are correct which clearly indicates a
medium reliability level on predicting positives. The
recall of 0.54 also tells that the model can identify
around 54 % of all real positive cases, however this
again shows there are still a significant number

ISSN 2347-3657
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which are not identified true cases. Also, the low
Fl-score (0.54), as this is balanced between
precision and recall, reinforces that moderate
effectivity.

The confusion matrix reveals that the model
performs better in identifying Class 1 compared to
Class 2, with a higher number of true positives for
Class 1. However, misclassification of Class 2
remains  significant, indicating scope for
improvement through feature enhancement, class
balancing, or hyperparameter tuning.

k-Nearest Neighbours (k-NN)

B-MH Confusion s
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Fig. 3: k-NN Confusion Matrix

The k-Nearest Neighbours (k-NN) model exhibits
relatively low predictive presentation in the given
classification task. This is translated as the model
classifying instances correctly just over half of the
time, and hence only a marginal improvement on
random guessing. The model performs poorly, as
indicated by the precision and recall values of 0.48
as well as F1-score values 2 = below (Table III). The
precision of 0.48 means that less than half of the
examples we predicted are positive (were correct),
and the recall of 0.48 shows us that our model
misses over half the actual positives! The non
Decision Tree Regression

Fig. 4: k-NN Model Evaluation Value

symmetrical feature of false positives opposed to
false negatives is evidenced as well by the Fl-score.
As can be seen from the confusion matrix, model
had less accuracy in predicting class 2 compared to
class 1 and it frequently made wrong predictions as
Class 2 irrespective of correct one. This might be
attributed to their similarity of features, data scarcity
and class imbalance. In general, these results
suggest that k-NN need to be optimized, feature
scaled or distance metrics other than the Euclidean
would provide a better performance on
classification.

Daclnion Tran Conluslon Matis
™ Decision Tree model evaluation results Value
- L SO
: i P 51,004
E L] S0L50%
3 e 0%
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Fig. 5: DT Confusion Matrix Fig. 6: Decision Tree Model Evaluation Results

Value
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The Decision Tree model shows limited predictive
capability for the given classification task. The
global performance, accuracy = 51.00%, of the CR
model shows that the CR classification correctly
identifies a little better than half of all cases (only
slightly better than chance). The Precision, Recall,
and the F1-score of 0.49 are additional indicators of
a weak and unstable performance on this dataset.
0.49 precision means that about half of our positive
predictions are wrong and 0.49 recall says that we
miss a lot of positive cases. The balanced and low
F1-score indicates that the model does not handle

Artificial Neural Network (ANN)

it il Misiian Hatmin ©ilusbin Mt s

s Clann

Fig. 7: ANN Confusion Matrix
The Artificial Neural Network (ANN) model
demonstrates moderate predictive performance in
the classification task. The performance score of
58.50% demonstrates the model’s ability to correctly
predict just over a half of the instances, and is an
improvement compare to compeller models as k-NN
Ans Decision Tree. The precision and recall of 0.53
indicates that the test performs with moderate
accuracy, in a sufficiently optimal way so as to
positively identify positive cases while maintaining
an acceptable degree of correctness in predictions.
The F1-score of 0.52, which is a harmonic average
of the precision and recall, also supports the
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both false positives and false negatives well.

The confusion matrix shows serious
misclassification in two classes. While the model is
able to distinguish Class 1 a bit better than Class 2,
it still predicts many of the samples belonging to
both classes incorrectly. This indicates the Decision
Tree tends to overfit or is not able to capture
complex relations. In general, the results suggest
pruning or hyperparameter tuning or adopting an
ensemble system in order to achieve good
performance.

ANN model evaluation results: Value

SR 505

Fig. 8: ANN Model Evaluation Results: Value

moderate performance of this model.

The confusion matrix indicates that ANN achieves
high true positive rate in recognising Class 1, while
the misclassification of Class 2 is still significant.
This imbalance suggests that the model is biased
towards Class 1 patterns and fails to generalize
equally in both classes. While ANN can fit non-
linear relationships from data, the findings indicate
what might be overfit or lack of proper feature
representation. Further performance enhancements
could have been realized through architectural
tuning, regularization, or a larger training set.

. Basl Valdmhion Pefarmanos (s 7 004 0s-08 &) spoch 1000

B i

L TRTEI T TR

Fig. 9: Mean Squared Error (MSE)

The Mean Squared Error (MSE) plot illustrates the
learning behaviour of the Artificial Neural Network
across training, validation, and test datasets over

1,000 epochs. MSE decrease rapidly in the first
epochs, showing that learning is good and
prediction errors are quickly decreasing. Towards
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the end of training, all three curves eventually
converge, indicating that learning is stable and
generalizes well. A validation performance of
7.5945 x10°* at epoch 1000 indicates good
convergence with low error. The convergence of

[t e B R

- e
i
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training, validation and test curves close to each
other shows that the model is not overfitting heavily,
and suggests strong predictive reliability on
unobserved data.

Fig. 10: Mean Squared Error (MSE) Changes Over 207 Epochs

The Mean Squared Error (MSE) plot over 207
epochs illustrates the learning and generalization
behaviour of the model across training, validation,
and test datasets. The training MSE reduces so
quickly that the learning is efficient and fits well to
the data. Nevertheless, the validation means squared
error is still high and does not decrease much. The
test means squared error (MSE) variation is quite

R ML P LS R o rerad

=1
AL
P

g g e Ees B

prominent, and it clearly has a sudden minimization
around epoch 140, then grows back quickly
evidence of over-fit to unseen observations. The
peak of the validation performance 76.1292 at epoch
201 indicates that while training keeps growing, it
overfits showing that either regularization or better
model tuning are needed.

Fig. 11: Mean Squared Error (MSE) for Training

The Mean Squared Error (MSE) plot over 11 epochs
illustrates the learning behaviour of the model
during early training. The training MSE reduces
rapidly, which means the model fast captures
patterns in the Web logs. The validation MSE
reaches its minimum of 83.3087 in epoch 5, and
from this point on it stays about the same or rises

slightly indicating the beginning of overfitting. In
the meantime, the test MSE decreases initially and
increases then to indicate limited generalization to
other unseen samples. Such a mismatch between
training and validation/test errors were reported to
originate from the overtraining of NN beyond early
epochs, and are suggestive to the significance of
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regularization and early stopping.

Support Vector Machine (SVM) Regression

S5WM Conhesion Mabrix

Trus Dl

Fig 12: SVM Confusion Matrix

The Support Vector Machine (SVM) model
demonstrates moderate classification performance.
An overall accuracy of 59.00% implies that the
model can classify just under 60% of all instances
correctly. The precision of 0.56 means 56% of the
observations predicted as positive were correct. On
the other hand, recall of 0.54 means that if we have
1 positive sample in test set our model can identify
~54% of them , which is just a bit higher than
average. The Fl-score of 0.53, which is an average
of the two former measures, validates such
performance and highlights that our model performs
moderately. The confusion matrix indicates that
SVM can predict Class 1 objects better than Class 2
objects, and misclassified the Class 2 samples more
often. Altogether, the SVM seems to work quite
well, however additional optimization or better
feature-set might be required to boost up its
classification robustness.

5. Conclusion and Future Scope

The present study demonstrated that integrating
machine learning with applied mathematical and
fuzzy logic—based modeling provides an effective
and interpretable framework for disease prediction

across multiple medical conditions. The
comparative analysis of supervised learning
algorithms  revealed  that  ensemble-based

approaches, particularly Random Forest, offer
greater stability and robustness in handling complex
and uncertain medical datasets. The incorporation of
fuzzy mathematical modeling and bifurcation
analysis enhanced epidemiological interpretation by
explicitly accounting for uncertainty in key
parameters such as infection and recovery rates. This
hybrid analytical-ML framework addressed major
limitations of conventional diagnostic systems,
including limited interpretability and sensitivity to
data variability, thereby improving clinical usability
and decision support potential. Future research may
focus on extending the framework to larger, real-
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5VM Regression Value

Fig. 13: SVM Regression Value

time, and multi-center datasets to improve
generalizability. The integration of deep learning
architectures, temporal models, and real-time sensor
data can further enhance predictive accuracy.
Additionally, incorporating  explainable Al
techniques and advanced uncertainty quantification
methods may strengthen transparency, trust, and
adoption in clinical and public health applications.
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