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Abstract

In this paper, horizontal lifts of tensor fields of a complex manifold M,, tois cotangent bundle

2
M, are studied.

1. Introduction:

Several authors have introduced horizontal lifts of the cotangent bundle T2M2n of a smooth
manifold M using notations of horizontal lifts of tensor field on manifold M, but no natural
conjecture has been presented for study of complex structure on cotangent bundle. This
demands introduction of some new construction, which we shall prefer to call the construction

of complex analytic cotangent bundle of a complex manifold and in brief complex cotangent

2
bundle byT M,
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2
2. Horizontal Lifts of tensor fields on M,

n

Let us assume a tensor field, which is pure in its all indices, i.e.

S=(Sy  ad" ® ... ®dz"

in U of the complex manifold M,,

2
we define 8" inT M,, by

0 A
wzyjug ——®V...... ®j|
| B a av 8\}
(2.1) \ a a)
o)
yS:SV:(vSi 7—®V ........... ®—
L By ai a‘}; av;lJ
@.v) ,v) n'(U)
with respect to the induced coordinates a , a in , U being an arbitrary

coordinates neighborhood of M,, The tensor field ¥S defined in each ©  (U) is global tensor

2
inl M, ,the definition of the Y depends the position of covariant index M. But we shall apply

the operator ¥ exclusively on a tensor field of type (1,1) which has only on covariant index.

1
Suppose V s affine connection in complex manifold M,, , we define a tensor field Sel (M,,)

If S has components Sty @ “’Sa? ------------ aMin the neighborhood U of M,, , the this tensor field

has local expression
a(dz*)® ... & (dz")
S = v-S- . wWdz*)® ... ® (dz")

1

— 2
with respect to induced coordinate in ™ determines a global tensor field in rae,

2
Other than a function in the complex manifold M,, , a tensor field VYS in M, is defined by
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2.2) yS=8" =(v,V,S.  an(dz")®V ... ® (dz"))
S5 viS w(dE*)® . ®(d2")S.
i s ai as.........at With respect to the
) @) W) s u S om
induced coordinates e, o in , where “%...... a  gnd @ al are

componentso Sin U.

For a function Z in the complex manifold M,, , we put
(2.3) (VZ)" =Zz¢
from (2.2)and (2.3), we have

(2.4) VY(P®Q)=(VYP)® Q" + P ® (VY P)

for any tensor field P and Q in M,, .

Now we define the horizontal lift S” of a tensor field S given in M,, by

(2.5) S" = 8€ +y(VS)

Where V is the affine connection in M. defined by
VV=V,Z+[ZV]

ZV eT\(M

any 21) Thus the horizontal lifts S” coincides with the complete S€if and only if

VS =0.

Taking account of (2.3) and (2.5) we have
(2.6) S7= 8¢

Horizontal lift of tensor field of type (1, 0), i.e. Z" has components of the form
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ZHJ 2 2! W

(2.7) [Tzt Tapz|)

10} (7.7 2
with respect to induced coordinates ((Z*>Vve ):(Z*,v)) jn T (Mzn), where

' =vul* I =vI®
(2.8) na na and no Bomo

are components of V in M, .

If we take n linearly independent 1-form ®1.-+-®

V Vv
then their vertical lifts ©

Z,..,Z VAN
independent vector fields 1 » in U, then their horizontal lifts 1 » are also

linearly independent. Moreover, the vertical lift®" of a non zero 1-form® with local

components (@, ,07) has components of the form
[0 0]
o = |
(2.9) | P O |

and the horizontal lift Z" of a non —zero vector field Z with local coordinates (z*,7%) has the

components of form (1.7). Then ©” and Z" are never linearly dependent. Hence

7 H Tcil(U)
L no;o » are 2nx2n linearly field independent vector in .Thus, we

0
for all vector fields Z1s -+ Z, which are of the form ®  orZ” ,where ® €Ty (M,) and

ZeT, (M,,) then
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(2.10) S=T

Let F be a tensor field of type (1,1) and V be a symmetric affine connection in complex

manifold M2, , then we write

(2.11) F = F¢ + MVF)

where [V Flis a tensor filed of type(1,2) defined by

(2.12) (VE)NZ,V) ==V, (FV)+V,(FZ)

0
Z and V' being arbitrary element of T7(M,) . We call F the horizontal lift of the tensor field

2 H
F of type (1,1) in M., toT M), The horizontal lift F~ has components of the form

[ FP 0 0]
; b PP 0 0
F — a a

r,Fe-r F¢ T Fe=T F* FP P
pi o -

TpF* - F* T Fe-T°'Fh P 5

(213) L ;7770417[3 777Bu a ap B a a

Doy L BB b g
with respect to induced coordinates (2*,v*) , (z*,v*) in? Mzn, where £o , E, , F, ’FE are local

components of F, e, na are components of Vin 2 and ne,, no, are defined in (2.8).

From (2.7),(2.9) and (2.13), we have

Theorem 2.2: 1f Z €T; (M,,),® el (M,,) and, then ' €T} (M,,)

(2.14) Flo" =y(w o F)
(2.15) F'Z" = (FZ)"
(2.16) FUZ0 = (FZ)" = (\VZ)(F)
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Fi'G"0" =Fi(® B) = GF) =(GF)Ye"
14

o

So that

(2.17) (FHG +G" )" = (FG+GH)Y! o

if Z<€T,(M,,)  then by (1.16), we have

(FiGH 7"y = FH(GZ)" = (FGH)! = (FG)" z"

So that

(2.18) (FAG" + G F'y7" = (FG + GF)" o"

As a consequence of (2.17), (2.18) and theorem 1.1, we have

1
Theorem 2.3; if /-G €T, (Mzn), then

(2.19) FTG" + G F' = (FG + GF)!
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