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Abstract 

For big industrial software systems, the process of snippeting code and making small, non- 

functional changes is a big issue. Code clones, which are copies of existing code, are the result. 

Cloned code makes maintenance more of a pain, which is the primary effect. It is common practice 

to utilize code clone detection to identify instances of reused code in various applications. Because 

they add complexity to the system, evolution clones are seen as detrimental in software 

maintenance. The development of clone detection has led to better outcomes while also 

simplifying the system for easier maintenance. 

You can tell if clone detection is primarily concerned with line-by-line detection or tokenization- 

based detection by looking at the current status of code cloning. This method adds complexity to 

the system and slows down the process of processing the source code to locate clones. The existing 

clone identification algorithm is not able to identify clones that are not perfect copies but have 

functional similarities with other code fragments. 
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I. INTRODUCTION, OVERVIEW, CONCLUSION 

OF RESEARCH WORK AND FUTURE 

ENHANCEMENTS 

II. For big industrial software systems, the 

process of snippeting code and making 

small, non-functional changes is a big 

issue. Code clones, which are copies of 

existing code, are the result. Cloned 

code makes maintenance more of a 

pain, which is the primary effect. It is 

common practice to utilize code clone 

detection to identify instances of reused 

code in various applications. Because 

they add complexity to the system, 

evolution clones are seen as detrimental 

in   software   maintenance.   The 

development of clone detection has led 

to better outcomes while also 

simplifying the system for easier 

maintenance. 

You can tell if clone detection is 

primarily concerned with line-by-line 

detection or tokenization-based 

detection by looking at the current 

status of code cloning. This method 

adds complexity to the system and 

slows down the process of processing 

the source code to locate clones. The 

existing clone identification algorithm 

is not able to identify clones that are not 

perfect copies but have functional 

similarities with other code fragments. 
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III. The suggested study model for clone 

detection technique demonstrates an 

easier detection method with efficient 

outcomes. Combining a textual 

approach with metric analysis of the 

provided source code allows this 

method to find all four kinds of clones 

in a group of code fragments in Java 

source code. Clone clusters are created 

by collecting all the identified clone 

pairs and saving them in files. Clones 

that have been found may all be In 

response to the programmer's request 

for refactoring. 

IV. In order to facilitate clone 

identification, many semantics have 

been developed and their values have 

been used. Combining these measures 

with textual analysis makes clone 

detection more easier and yields more 

reliable results. 

The Precision and Recall numbers are 

used to evaluate the efficiency of the 

approach. Benchmark tools such as 

Clone DR and CCFinder, among 

others, are used to compare the 

outcomes of the suggested approach. 

Results from the experiments 

demonstrate that compared to the prior 

methods, these ones provide greater 

Precision   and   Recall   values. 

 
CONCLUSIONS 

An integral part of every software 

development life cycle is software 

maintenance. Making life easier for those 

working in software maintenance is one way 

to boost morale in the sector. Customers 

believe software is more adaptable than other 

products, thus they anticipate more 

maintenance needs (i.e., it's only writing few 

instructions). So, adjustments may be made 

easily whenever needed. The literature on 

software engineering, however, claims this 

to be untrue. 

Large software systems are more vulnerable 

to software cloning. Simply copying and 

pasting is the most common cause of cloning. 

Since creating code from scratch takes more 

time, almost every developer does this 

activity in an effort to reduce development 

time. Cloning is a solution that developers 

may have to consider when they are short on 

time. These clones are unintentionally 

created by certain maintenance engineers. 

While cloning may seem to be a quick and 

easy way out of a developer's jam, it often 

results in recorded actions that have a 

detrimental impact on software quality. It 

raises the overall system code and the 

amount of lines of code that need 

maintenance.Finding and removing clones 

from software systems is a hotspot for 

current research in the field of clone 

detection. Code cloning was described in 

many ways in the literature that was 

reviewed for this study. There has been a lot 

of discussion and comparison of current 

methodologies and tools. There has to be a 

solution to this issue and it is critical to find 

all the clones in the code. You can fix the 

code copying issues using the current 

refactoring approaches. The suggested 

technique makes good use of refactoring. In 

this work, a light-weight method has been proposed 

to identify functional clones. This method uses the 

computation of several metrics in combination with 

simple textual analysis technique. The usage of 

metrics with existing exponential rate of comparison 

overhead of the other methods is reduced to minimum 

number of comparisons. This is possible by early 

analysis of potential clones and applying comparisons 

only on code fragments that are identified as clones 

in this analysis. Since the string matching/textual 

comparison is performed over the short listed 

candidates, a higher amount of recall could be 

obtained. 

The Proposed work is divided into two stages. 

The first one is selection of potential clones and the 

second one is comparison of potential clones. The 

proposed technique detects exact clones on the 

basis of metric match and then by text match. 

Potential clones are compared line-by-line to 

determine whether two potential clones really are 

clones of each other. The experiments proved that 

this method can do better than existing systems in 

finding and classifying the clones in JAVA. The 

Precision and Recall values that are obtained 

describe the efficiency of the work proposed. It has 

been proved that Precision 98% and Recall 96% is 

achievable in code cloning. In addition it also 

identifies the functional clones. 

 

Future Enhancements 

Though the proposed technique is working 
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efficiently for Programming languages like JAVA, 

it can be extended to find clones in multiple 

languages. When it comes to identify only type I, 

type II and type III clones this method can identify 

clones in almost all object oriented programming 

languages. Research work can be extended not 

only to find the clones but also to remove the actual 

clones. Though refactoring process has been used, 

it can be fully automated and implemented so that 

no human intervention is required. 

The proposed method is experimented on 

medium sized software applications only. These 

applications are of 10 to 15 KLOC only. 

Experiments on large scale systems can be 

conducted to observe efficiency of the method. 

The parameters for the efficiency are taken only in 

the form of precision and recall values. It also can 

be extended to scalability, portability and 

robustness etc. 
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