
1

 ISSN 2347–3657

 Volume 9, Issue 1, Jan 2021

50

Research Methodology on Code Clone Detection

with Refactoring Using Textual and Metrics

Analysis in Software
 Ms. BANDARU MAKARA JYOTHI

Abstract

For big industrial software systems, the process of snippeting code and making small, non-

functional changes is a big issue. Code clones, which are copies of existing code, are the result.

Cloned code makes maintenance more of a pain, which is the primary effect. It is common practice

to utilize code clone detection to identify instances of reused code in various applications. Because

they add complexity to the system, evolution clones are seen as detrimental in software

maintenance. The development of clone detection has led to better outcomes while also

simplifying the system for easier maintenance.

You can tell if clone detection is primarily concerned with line-by-line detection or tokenization-

based detection by looking at the current status of code cloning. This method adds complexity to

the system and slows down the process of processing the source code to locate clones. The existing

clone identification algorithm is not able to identify clones that are not perfect copies but have

functional similarities with other code fragments.

Keywords — Code Clone, Clone detection, refactoring, metrics, textual analysis,

I. INTRODUCTION, OVERVIEW, CONCLUSION

OF RESEARCH WORK AND FUTURE

ENHANCEMENTS

II. For big industrial software systems, the

process of snippeting code and making

small, non-functional changes is a big

issue. Code clones, which are copies of

existing code, are the result. Cloned

code makes maintenance more of a

pain, which is the primary effect. It is

common practice to utilize code clone

detection to identify instances of reused

code in various applications. Because

they add complexity to the system,

evolution clones are seen as detrimental

in software maintenance. The

development of clone detection has led

to better outcomes while also

simplifying the system for easier

maintenance.

You can tell if clone detection is

primarily concerned with line-by-line

detection or tokenization-based

detection by looking at the current

status of code cloning. This method

adds complexity to the system and

slows down the process of processing

the source code to locate clones. The

existing clone identification algorithm

is not able to identify clones that are not

perfect copies but have functional

similarities with other code fragments.

ASSOCIATE PROFESSOR

makarajyothi.mca2014@gmail.com

SRINIVASA INSTITUTE OF MANAGEMENT SCIENCES

mailto:makarajyothi.mca2014@gmail.com

 ISSN 2347–3657

 Volume 9, Issue 1, Jan 2021

51

III. The suggested study model for clone

detection technique demonstrates an

easier detection method with efficient

outcomes. Combining a textual

approach with metric analysis of the

provided source code allows this

method to find all four kinds of clones

in a group of code fragments in Java

source code. Clone clusters are created

by collecting all the identified clone

pairs and saving them in files. Clones

that have been found may all be In

response to the programmer's request

for refactoring.

IV. In order to facilitate clone

identification, many semantics have

been developed and their values have

been used. Combining these measures

with textual analysis makes clone

detection more easier and yields more

reliable results.

The Precision and Recall numbers are

used to evaluate the efficiency of the

approach. Benchmark tools such as

Clone DR and CCFinder, among

others, are used to compare the

outcomes of the suggested approach.

Results from the experiments

demonstrate that compared to the prior

methods, these ones provide greater

Precision and Recall values.

CONCLUSIONS

An integral part of every software

development life cycle is software

maintenance. Making life easier for those

working in software maintenance is one way

to boost morale in the sector. Customers

believe software is more adaptable than other

products, thus they anticipate more

maintenance needs (i.e., it's only writing few

instructions). So, adjustments may be made

easily whenever needed. The literature on

software engineering, however, claims this

to be untrue.

Large software systems are more vulnerable

to software cloning. Simply copying and

pasting is the most common cause of cloning.

Since creating code from scratch takes more

time, almost every developer does this

activity in an effort to reduce development

time. Cloning is a solution that developers

may have to consider when they are short on

time. These clones are unintentionally

created by certain maintenance engineers.

While cloning may seem to be a quick and

easy way out of a developer's jam, it often

results in recorded actions that have a

detrimental impact on software quality. It

raises the overall system code and the

amount of lines of code that need

maintenance.Finding and removing clones

from software systems is a hotspot for

current research in the field of clone

detection. Code cloning was described in

many ways in the literature that was

reviewed for this study. There has been a lot

of discussion and comparison of current

methodologies and tools. There has to be a

solution to this issue and it is critical to find

all the clones in the code. You can fix the

code copying issues using the current

refactoring approaches. The suggested

technique makes good use of refactoring. In

this work, a light-weight method has been proposed

to identify functional clones. This method uses the

computation of several metrics in combination with

simple textual analysis technique. The usage of

metrics with existing exponential rate of comparison

overhead of the other methods is reduced to minimum

number of comparisons. This is possible by early

analysis of potential clones and applying comparisons

only on code fragments that are identified as clones

in this analysis. Since the string matching/textual

comparison is performed over the short listed

candidates, a higher amount of recall could be

obtained.

The Proposed work is divided into two stages.

The first one is selection of potential clones and the

second one is comparison of potential clones. The

proposed technique detects exact clones on the

basis of metric match and then by text match.

Potential clones are compared line-by-line to

determine whether two potential clones really are

clones of each other. The experiments proved that

this method can do better than existing systems in

finding and classifying the clones in JAVA. The

Precision and Recall values that are obtained

describe the efficiency of the work proposed. It has

been proved that Precision 98% and Recall 96% is

achievable in code cloning. In addition it also

identifies the functional clones.

Future Enhancements

Though the proposed technique is working

 ISSN 2347–3657

 Volume 9, Issue 1, Jan 2021

52

efficiently for Programming languages like JAVA,

it can be extended to find clones in multiple

languages. When it comes to identify only type I,

type II and type III clones this method can identify

clones in almost all object oriented programming

languages. Research work can be extended not

only to find the clones but also to remove the actual

clones. Though refactoring process has been used,

it can be fully automated and implemented so that

no human intervention is required.

The proposed method is experimented on

medium sized software applications only. These

applications are of 10 to 15 KLOC only.

Experiments on large scale systems can be

conducted to observe efficiency of the method.

The parameters for the efficiency are taken only in

the form of precision and recall values. It also can

be extended to scalability, portability and

robustness etc.

REFERENCES

IEEE Standard 1219, 1998, Relating

to Software Maintenance.

[2] As a result of ISO/IEC.Software

Engineering—Software

Maintenance/ISO/IEC 14764, 1999.

Three, lean. Hello, Arthur. Keeping Up with

Software Maintenance in an Evolving

Landscape. Press, 1988.

Tip S.W.L. and Tip T. "A software

maintenance survey" by Lam was published

in the proceedings of the conference. paper

presented at the 1994 December Asia-Pacific

Software Engineering Conference, pages

70–79. Five, S. C. Chidamber and R. A

metric suite for object-oriented design was

published in June 1994 by Kemerer in the

IEEE Transactions on Software Engineering,

volume 25, issue 5, pages 476–493.

[6] "Software configuration management: A

clear case for IBM Rational" (IBM

Redbooks, 2004), by Jennie Brown and Matti

Teinonen

"Clone detection and refactoring" by Robert

Tairas was published in 2006 in the

Proceedings of the OOPSLA '06 Companion

to the 21st ACM SIGPLAN symposium on

Object-oriented programming systems,

languages, and applications (pp. 780–781).

The conference was held in New York, USA.

Code clone detection systems compared and

evaluated by Chanchal K. Roy, James R.

Cordya, and Rainer Koschkeb [8]

Methods and Resources: A Qualitative

Perspective", Journal of Scientific

Computing, Vol. May 2009, volume 74,

issue 7, pages 470–495.

In the 1998 International Conference on

Software Maintenance, "Clone Detection

Using Abstract Syntax Trees," Ira D. Baxter,

Andrew Yahin, Leonardo Moura, Marcelo

Sant Anna, and Lorraine Bier presented their

work on page 368.

[10] "Analyzing Web Service Similarity

Using Contextual Clones" (ACM Journal,

2011), Douglas Martin and James R. Cordy.

Referenced in [11] M. Fowler's 1999 book

"Refactoring: improving the design of

existing code" published by Addison

Wesley.

[12] "Refactoring Workbook" by William C.

Wake, published by Pearson Education Inc.

in 2004.

In their article "On the Use of Clone

Detection for Identifying Crosscutting

Concern Code" published in the IEEE

Transactions On Software Engineering,

Magiel Bruntink, Remco van Engelen, Arie

van Deursen, and Tom Tourwe provide more

information. page 804–818 of volume 31,

issue 10, October

year 2005

"The enhanced suffix array and its

applications to genome analysis" (In Proc.)

by Abuelhoda, Kurtz, and Ohlebusch [14]

describes this tool. Volume 2452, pages 449–

463, Berlin, 2002, Workshop on Algorithms

in Bioinformatics

The paper "Detecting Higher-level

Similarity Patterns in Programs" was

presented at the European Software

Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of

Software Engineering in Lisbon in 2015. The

authors are Hamid Abdul Basit and Stan

Jarzabek.

September 2005

“Context- based detection of clone-related

bugs” was published in 2007 in New York,

USA, by Lingxiao Jiang, Zhendong Su, and

Edwin Chiu. It was part of the Proceedings

of the 6th joint meeting of the European

software engineering conference and the

ACM SIGSOFT symposium on The

foundations of software engineering.

[17] "A Survey on Software Clone Detection

Research" (Chanchal Kumar Roy and James

 ISSN 2347–3657

 Volume 9, Issue 1, Jan 2021

53

R Cordy, Computer and Information

Science, Vol. No. 541, 115 pages, 2007

"Identifying Redundancy in Source Code

Using Fingerprints" by J. Howard Johnson

was published in the Proceedings of the 1993

Conference of the Centre for Advanced

Studies (CASCON'93).

On pages 171–183, in October 1993, in

Toronto, Canada.

[19] "CP-Miner: Finding Copy-Paste and

Related Bugs in Large-Scale Software Code"

in IEEE Transactions on Software

Engineering, Vol., written by Zhenmin Li,

Shan Lu, Suvda Myagmar, and Yuanyuan

Zhou. Number 32, Issue 3, March 2006,

pages 176–192.

[20] Simon Thompson and Christopher

Brown. The article "Clone Detection and

Elimination for Haskell" was published in

the ACM journal in 2010.

"Investigating the maintenance implications

of the replication of code" was published in

the Proceedings of the 13th International

Conference on Software Maintenance

(ICSM'97) in Bari, Italy in September 1997

by Elizabeth Burd and Malcolm Munro.

Matthias Rieger [22]. A doctoral thesis titled

"Effective Clone Detection without

Language Barriers" was completed in June

2005 at the University of Bern in

Switzerland.

"Aspect Mining using Clone Class Metrics"

by Magiel Bruntink was published in 2004 in

the Proceedings of the 1st Workshop on

Aspect Reverse Engineering.

The article "Function Clone Detection in

Web Applications: A Semi automated

Approach" was published in the Journal of

Web Engineering and was written by Fabio

Calefato, Filippo Lanubile, and Teresa

Mallardo. number one, pages 003-021, 2004.

[25] "The Software Similarity Problem in

Mal-ware Analysis" by Andrew Walenstein

and Arun Lakhotia was published in July

2006 in the Proceedings of the Dagstuhl

Seminar 06301: Duplication, Redundancy,

and Similarity in Software. The paper is on

page 10.

For example, in November 2001, in

Florence, Italy, at the 17th IEEE

International Conference on Software

Maintenance (ICSM'01), Giuliano Antoniol,

Gerardo Casazza, Massimiliano Di Penta,

and Ettore Merlo presented a paper titled

"Modeling Clones Evolution through Time

Series" (pp. 273–280).

27. W-K. B. Li, Chen, and R. "Code

Compaction of Matching Single-Entry

Multiple-Exit Regions" (Gupta's work), in

STAC's tenth annual conference proceedings

Conference (SAS'03), June 2003, San Diego,

California, USA, pp. 401-417.

The paper "An Evaluation of Clone

Detection Techniques for Identifying

Crosscutting Concerns" was presented at the

20th IEEE International Conference on

Software Maintenance in 2004 in

Washington DC, USA. The authors of the

paper are Magiel Bruntink, Arie van

Deursen, Tom Tourwe, and Remco van

Engele.

[29] "Using Clone Detection to Manage a

Product Line" (pp. 1-3, 1998), proceedings

of the International Conference on Clone

detection using abstract syntax trees,

authored by Ira D. Baxter and Dale

Churchett.

[30] "MeCC: Memory Comparison-based

Clone Detector" presented by Heejung

Kimy, Yungbum Jungy, Sunghun Kimx, and

Kwangkeun Yi at the 33rd International

Conference on Software Engineering held in

Waikiki, Honolulu, Hawaii from May 21st to

the 28th, 2011.

Citation: "Clone detection in automotive

model-based development" by Florian

Deissenboeck, Benjamin Hummel, Elmar

Jurgens, Bernhard Schatz, Stefan Wagner,

Jean-François Girard, and Stefan Teucher,

published in Proceedings of the 30th

international conference on Software

engineering (pp. 613-622), New York, [31].

2007 in New York City, USA

"Visualization of clone detection results" by

Robert Tairas, Jeff Gray, and Ira Baxter was

published in the 2006 OOPSLA Workshop

on Eclipse Technology Exchange

Proceedings, edited by ACM.

New York, USA, 2006, pp. 50–54.

An article titled "Towards Flexible Code

Clone Detection, Management, and

Refactoring in IDE" was presented at the

Fifth International Workshop on Software

 ISSN 2347–3657

 Volume 9, Issue 1, Jan 2021

54

Clones by Minhaz F. Zibran and Chanchal K.

Roy.

May 23, 2011, Waikiki, Hawaii, USA

in reference [34] M. A. Lau, D., L. Bergman,

and Kim, K. "An Ethnographic Study of

Copy and Paste Programming Practices in

OOPL" by Notkin, accepted for publication

in the International Symposium on Empirical

Software Engineering proceedings. held in

August 2004 (ISESE '04), pages 83–92

[/35] M. S. Ducasse, G. Rieger, and B. In the

proceedings of the European Conference on

Object-Oriented Programming (ECOOP

'99), June 1999, Golomingi presents "Tool

Support for Refactoring Duplicated OO

Code" (pp. 177-178).

[36] "Clone Detection Using Abstract Syntax

Suffix Trees," In Proc., Raimar Falke, Pierre

Frenzel, and Rainer Koschke, 2007.

published in October 2006 by the 13th

Working Conference on Reverse

Engineering in Benevento, Italy, pages 253–

262.

[37] "Research On the effectiveness of clone

detection by string matching," Journal of

Software Maintenance and Evolution:

Research and Practice, Vol., Stephane

Ducasse, Oscar Nierstrasz, and Matthias

Rieger, in press. 18 (January 2006), pages

37–58.

in "Managing Duplicated Code with Linked

Editing" (Michael Toomim, Andrew Begel

and Susan L. Graham, 2004), pages 173–

180, published in September 2004 in Rome,

Italy, in the Proceedings of the IEEE

Symposium on Visual Languages and

Human-Centric Computing (VL/HCC'04).

"KClone: A Proposed Approach to Fast

Precise Code Clone Detection," in

Proceedings of the Third International

Workshop on Detection of Software Clones

(IWSC 2009), pp. 12-16, 2009, by YueJia,

David Binkley, Mark Harman, Jens Krinke,

and Makoto Matsushita ("39").

[40] R.D. With contributions from R.

Brooks, P. Y. Govindaraju, M. Pirretti, N.

Vijaykrishnan, and M. "Clone Detection in

Sensor Networks with Ad Hoc and Grid

Topologies," International Journal of

Distributed Sensor Networks, Vol.,

published by Kandemir. vol. 5, pages 209–

223, 2009.

"SHINOBI: A Tool for Automatic Code

Clone Detection in the IDE," written by

Shinji Kawaguchi, Takanobu Yamashinay,

Hidetake Uwanoz, Kyhohei Fushida,

Yasutaka Kamei, Masataka Nagura, and

Hajimu Iida and published in the proceedings

of the 16th Working Conference on Reverse

Engineering in October 2009, pages 313–

314.

"Complete and Accurate Clone Detection in

Graph-based Models," in 2009's Proceedings

of the 31st International Conference on

Software Engineering, Washington, DC, by

Nam H. Pham, HoanAnh Nguyen, Tung

Thanh Nguyen, Jafar M. Al-Kofahi, and Tien

N. Nguyen.

This is Kodhai. Okay, Kanmani. Hello,

Kamatchi. A., VidyaSaranya; Radhika.R.

"Detection of Type-1 and Type-2 Code

Clones Using Textual Analysis and Metrics,"

in Proc. of the 2010 International Conference

on Recent Trends in

Washington, DC: Information,

Telecommunication, and Computing, 2010,

pp. 241-243.

[44] "Finding Software License Violations

Through Binary Code Clone Detection,"

edited by Armijn Hemel, Karl

TrygveKalleberg, Rob Vermaas, and

EelcoDolstrac, was presented at the 8th

working conference on Mining software

repositories in May 2011 in New York, NY.

[45] "Clone Detection using Textual and

Metric Analysis to figure out all Types of

Clones," in Proceedings of the International

Joint Journal Conference on Engineering and

Technology (IJJCET 2010), submitted by

Kodhai, Perumal, and Kanmani.

2010 (pp. 99–103).

[46] "Function Clone Detection in

WebApplications: A Semiautomated

Approach" by F. Calefato, F. Lanubile, and

T. Mallardo was published in the Journal of

Web Engineering in 2004 and can be found

in Volume 3, Issue 1, pages 3-21.

[47] Kamiya, Kusumoto, and Inoue's paper

titled "CCFinder: A MultiLinguistic Token-

Based Code Clone Detection System for

Large Scale Source Code" was published in

the IEEE Transactions on Information

Theory. Software Eng., Vol. Volume 28,

 ISSN 2347–3657

 Volume 9, Issue 1, Jan 2021

55

Issue 7, pages 654-670, July 2002.

In the Proceedings of the Second Working

Conference on Reverse Engineering

(WCRE'95), B. Baker wrote an article titled

"On Finding Duplication and Near-

Duplication in Large SoftwareSystems."

published in July 1995 in Toronto, Ontario,

Canada, pages 86–95.

"Detection of Plagiarism in University

Projects Using Metrics based Spectral

Similarity," presented at the 2007 Dagstuhl

Seminar on Software Redundancy,

Duplication, and Similarity, is cited as [49].

Presented at the 15th International

Conference on Software Maintenance

(ICSM'99), pages 109–118, in September

1999, "A Language Independent Approach

for Detecting Duplicated Code" was written

by S. Ducasse, M. Rieger, and S. Demeyer.

The paper "Archeology of Code Duplication:

Recovering Duplication Chains From Small

Duplication Fragments" was presented at the

7th Inter-national Symposium on Symbolic

and Numeric Algorithms for Scientific

Computing (SYNASC'05) in Timisoara,

Romania in September 2005 by Radu

Marinescu and Richard Wettel.

The paper "Identification of high-level

concept clones in source code" was

presented by Andrian Marcus and Jonathan

I. Maletic in November 2001 at the 16th

IEEE International Conference on

Automated Software Engineering (ASE'01).

The paper is located on pages 107–114 and

was held in San Diego, California, USA.

"Finding Clones with Dup: Analysis of an

Experiment," published in the IEEE

Transactions on Software Engineering,

volume 53, was written by B. Baker. Volume

33, Issue 9, pages 608-621, 2007.

55. J.R. K. Cordy and C.E. June 2011,

Kingston, Canada: Roy, "The NiCad Clone

Detector," 19th International Conference on

Program Comprehension.

[55] "Bauhaus: A Tool Suite for Program

Analysis and Reverse Engineering" by Aoun

Raza, Gunther Vogel, and Erhard

Plaodereder was published in the

proceedings of the 11th Ada-Europe

International Conference on Reliable

Software Technologies (LNCS 4006).

June 2006, Porto, Portugal, pages 71–82.

[56] Z. Yang, "Determining Where Two

Programs Differ Syntactically," in Software

Practice and Experience, Vol. 20, 21, 7,

Page numbers 739–755, July 1991.

[57] Wahler, Gustav, Gudenberg, and Seipel,

V. D. In the Proceedings of the 4th IEEE

International Workshop Source Code

Analysis and Manipulation (SCAM), "Clone

Detection in Source Code by Frequent

Itemset Techniques" (pp.128–135), held in

September 2004 in Chicago, IL, USA,

Fischer presents his work.

The paper "Clone Detection via Structural

Abstraction" was presented at the 14th

Conference on Reverse Engineering

(WCRE'07) in October 2007 in Vancouver,

BC, Canada, and was co-authored by

Williams Evans and Christopher Fraser.

59. "Phoenix-Based Clone Detection Using

Suffix Trees" by Robert Tairas and Jeff Gray

was published in March 2006 in Melbourne,

Florida, USA, in the Proceedings of the 44th

annual Southeast regional conference

(ACM-SE'06), on pages 679-684.

In the Proceedings of the 12th International

Conference on Software Maintenance, J.

Mayrand, C. Leblanc, and E. Merlo

conducted an experiment titled "Experiment

on the Automatic Detection of Function

Clones in a Software System Using Metrics."

(ICSM'96), at Monterey, California, USA,

November 1996, pages 244–253. In the

Proceedings of the Winter 1994 Usenix

Technical Conference, Udi Manber

discusses "Finding similar files in a large file

system."

page 110, January 1994, San Francisco,

USA.

In the Proceedings of the 20th annual ACM

SIGPLAN conference on Object-oriented

programming, systems, languages, and

applications (OOP- SLA Companion'05), pp.

140-141, San Diego, CA, USA, October

2005, Seunghak Lee and Iryoung Jeong

presented SDD: High Performance Code

CloneDetection Systemfor Large Scale

Source Code.

63 "The Development of a Software Clone

Detector" by Neil Davey, Paul Barson,

Simon Field, and Ray J. Frank was published

in the International Journal of Applied

 ISSN 2347–3657

 Volume 9, Issue 1, Jan 2021

56

Software Technology, Volume. 1, pages

219–236 (1996)

(64th) B. "Random Graphs" by BoUobas,

published by Cambridge University Press in

2001.

[65] "Code Cloning: The Analysis, Detection

and Removal" (0975 - 8887) in the

International Journal of Computer

Applications by Mohammed Abdul Bari and

Dr. Shahanawaj Ahamad

April 2011, Volume 20, Issue 7.

66. "Efficient Source Code Plagiarism

Identification Based on Greedy String

Tilling" (Khurram Zeeshan Haider,

Tabassam Nawaz, Sami ud Din, and Ali

Javed, 2010). International Journal of

Computer Science and Network Security,

Volume 10, Issue 12, December 2010.

[67] "Do Code Clones Matter?" in

Proceedings of the 31st international

conference on Software engineering, by

Florian Deissenboeck, Benjamin Hummel,

Elmar Jurgens, and Stefan Wagner

New York, NY, USA, 2009, pp. 485–495.

[68] "An Empirical Study on Inconsistent

Changes to Code Clones at Release Level,"

Conference on Reverse Engineering, 2009,

Bettenburg, Nicola, Weyi Shang, Ibrahim,

and W. Adams.

69 "An empirical study on the maintenance

of source code clones" (Suresh

Thummalapenta, Luigi Cerulo, Lerina

Aversano, and Massimiliano Di Penta,

2010), published in the journal Empirical

Software Engineering, February, Volume 15,

Issue 1, pages 1–34.

[70] "Clones: what is that smell?" by Foyzur

Rahman, Christian Bird, and Premkumar

Devanbu, published in August by Empirical

Software Engineering, Vol. 2012, volume

17, issue 4, pages 503-530.

(71), "Clone evolution: a systematic review"

(Journal of Software: Evolution and Process,

Volume 25, Issue 3, pp. 261-283), Jeremy R.

Patel, Robert Tairas, and Nicholas A. Kraft.

March of that year, 2013.

In the Proceedings of the 4th International

Workshop on Software Clones, "Model

clone detection in practice" (pp. 57-64,

2010), Florian Deissenboeck, Benjamin

Hummel, Elmar Juergens, Michael Pfaehler,

and Bernhard Schaetz were the authors.

The authors of the 2007 paper "Spatial

smoothing and hot spot detection for CGH

data using the fused lasso" (Robert

Tibshirani and Pei Wang) are cited as [73].

The authors of the 2010 article "Real-time

PCR for detection of the O25b- ST131 clone

of Escherichia coli and its CTX-M-15-like

extended-spectrum lactamases"

(HiranDhanjia, Michel Doumitha, Olivier

Clermont, Erick Denamur, Russell Hope,

David M. Livermore, and Neil Woodford)

published in the International Journal of

Antimicrobial Agents.

