
1 

 

 



                ISSN 2347–3657 

             Volume 9, Issue 1, Jan 2021 

 

 

125 

 

 

Emitter detection for the Internet of Things based on transient data 

using convolutional neural networks and the general linear chirplet 

transform with optimization 

MADHU CHOUHAN 

 

 

 

 

Abstract 

In this letter, the General Linear Chirplet Transform (GLCT), a time-frequency representation recently 

introduced in the literature, is probed for its potential use in conjunction with Using a Convolutional Neural 

Network (CNN) to recognize IoT wireless devices. 

 

During transmission, radio frequency emissions from the IoT devices are analyzed to determine their identities. 

By presenting an optimization approach for GLCT tailored to emitter identification, we use the innovative 

combination of CNN and GLCT (CNN-GLCT) to the transient sections of the radio frequency emissions. We 

demonstrate empirically that this combination outperforms previous Deep CNN techniques and shallow 

machine learning methods like SVM and KNN, notably in low Signal-to-Noise Ratio (SNR) and fading 

environments, where these other methods struggle. 

 

INTRODUCTION 
 

A primary function of security is identification. 

Authentication may be based on something an 

entity knows (like a password) or something the 

entity has (like a smartcard) the entity itself (such 

as a biometric trait) or something it has created 

(such as cryptographic material). Multi-factor 

identification may use two or more of these 

characteristics simultaneously for positive 

identification. In this letter, we'll look at one 

method of identifying electronic gadgets by their 

unique characteristics; especially, the Radio 

Frequency (RF) emissions produced by wireless 

gadgets during transmission. The research literature 

demonstrates that precise wireless device 

identification is feasible. 

In reality, there are elements in the digitized signal 

obtained from the RF emissions that are directly 

connected to the properties of the electronic 

components, either because of the materials used or 

the manufacturing process. Multiple publications 

have shown that this method provides very high 

identification accuracy over a wide range of 

protocols, including WiFi [1, 2], the Internet of 

Things [3, 4], and DSRC [5]. Different terms are 

used to refer to this method in the specialized 

literature. Because the inherent traits are 

conceptually similar to human DNA, it has been 

given a variety of names, including Radiometric 

Identification in [5], Special Emitter Identification 

(SEI) in [6], RF fingerprinting in [7], and RF-DNA 

in [8]. 
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Special Emitter Identification will be used to 

describe this method for the remainder of this letter 

(SEI). 

 

Particularly, we are concerned with the issue of 

recognizing a wireless device from among a group 

of wireless devices that all use the same wireless 

standard (e.g., WiFi). Based on the account given 

in 

 

 

According to [9], the following desirable 

characteristics should be included in any suggested 

method for this setting: accuracy in a) identification 

and b) resistance to interference from the wireless 

propagation medium (e.g., presence of background 

RF noise or fading). 

Recently, Deep Learning (DL) approaches have 

been employed in comparable scenarios, with 

considerable improvements in accuracy compared 

to methods based on hand-crafted features or 

shallow machine learning algorithms (e.g., [5],[6], 

and [10]). 

 

What We've Done: In this letter, we discuss the 

application of CNN plus GLCT (hence referred to 

as CNNGLCT) to the issue of SEI. Here, we offer a 

new optimization strategy for choosing the best 

value for the GLCT algorithm's window parameter. 

This technique uses the unique properties of SEI to 

get the best values for such a parameter without 

carrying out the classification process. As a result, 

when compared to existing CNN-based 

classification algorithms, this one dramatically 

shortens the total processing time. Our empirical 

findings further demonstrate that, in the presence of 

Additive White Gaussian Noise (AWGN) and 

fading effects, CNN-GLCT performs better than 

other combinations of CNN with time frequency 

representations seen in the literature. A copy of the 

dataset used for this reply may be found in IEEE 

Data Port with the DOI of 10.21227/pqap-7b64. 

 

The paper will proceed as described below. The 

GLCT and the other time-frequency 

transformations we evaluate are described in 

Section II. In Section III, we discuss the system we 

 
propose to use to categorize wireless gadgets. The 

materials of the test bed, the CNN architecture that 

yielded our findings, the window optimization 

strategy in GLCT, and the degrading effects (i.e., 

AWGN and fading) that were utilized to assess the 

evaluated methods' resilience are all described here. 

Our experimental findings and associated 

comparison analyses are presented in Section IV, 

and a summary and suggestions for further 

development are provided in Section V. 

 

LINEAR CHIRPLET TRANSFORM IN 

GENERAL II 

 

The Generalized Linear Chirplet Transform 

(GLCT) is an innovative Time Frequency (TF) 

analysis presented in [11]. 

 

(LCT). According to [11], GLCT may be used to 

easily depict multi-component signals that have 

different non-linear properties. This makes GLCT 

an excellent tool for implementing SEI-based due 

to the non-linear nature of transients, which are 

present in abundance in wireless communication 

signals. Our experimental findings in Section IV 

reveal that GLCT is similarly very insensitive to 

noise. To achieve a high TF resolution, GLCT is a 

member of the family of parameterized Time 

Frequency Analysis (TFA) techniques that focus on 

determining the signal's unique characteristics. 

 

To better depict highly non-linear signals (the 

transient of the bursts in our example), the first 

Chirplet Transform (CT) was created in [12] and 

later improved by various writers. In specifically, 

in [13] the authors suggested an adaptive TFA 

approach that uses maximum likelihood estimation 

to choose the optimal width and chirp rate. All of 

the aforementioned approaches, as well as other 

approaches offered in the literature, have 

limitations when it comes to representing non- 

linear signals, as detailed in [11]. As such, [11] 

created the GLCT to remedy these deficiencies. 

GLCT operates as described below. The typical 

STFT transform for a signal s(t) is 
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where the window used to sever the transmission is 

denoted by w(ut0). 

We need to add a demodulated operator, which is 

time-variant, to get rid of the modulated element's 

effect. 

 

Specifically with regards to non-linear signals in 

this case. This changes Eq. (1) to 

 

 

 

 

The signal's Instantaneous Frequency (IF) peaks at 

its highest value, producing a crisp TF 

representation, if the demodulated operator is 

compatible with the modulated element. 

 

having the desired qualities for SEI (such resistance 

to noise, for example). Identifying such an operator 

is challenging, particularly for non-linear signals. 

As an example of a simplification, the conventional 

LCT may be obtained by approximating the 

operator using the following equation.; 
 

 

Even in this reduced form, however, it is not 

always possible to predict the signal's IF 

characteristics with certainty (for example, in the 

presence of many components such as 

fingerprints). 

 

 

tool), it is not easy to calculate the value of the 

expression eic(ut0)2=2. 

 

The authors of [11] suggest introducing a 

parameter that determines a rotation in the TF plane 

as a means of defining the GLCT: 

 

 

 

 
 

Two hyperparameters (arising from the preceding 

equations) must be experimentally established 

when employing GLCT to represent the signal in 

the TF space for SEI. I looked out of the window 

and saw 

 

 

and N, the number of values (or chirplets) in the 

continuation. Improving classification accuracy is 

our top priority, thus we're focusing on how to best 

tweak these hyperparameters. 

 

Section IV demonstrates that although parameter N 

is not very important for maximizing accuracy, the 

window w does so. However, it might be time- 

consuming to run CNN-GLCT for all possible 

values of w in order to optimize w. Here, we offer a 

hypothesis-based, alternate, and more effective 

method of optimizing the w parameter based on 

certain characteristics of SEI. In Section III, we go 

into depth about this approach. 

 

The Continuous Wavelet Transform (CWT) [5, 14], 

the Hilbert Huang Transform (HHT) [15], and the 

Singular Spectrum Analysis (SSA) are all time- 

frequency domain transforms that are relevant to 

the topic at hand and are widely used in SEI to 

encode short, noisy, non-stationary signals such as 

the transients employed here. 

Methodology and Resources III 

Contents, Part A: Components 

The RF fingerprints have been collected using nine 

(9) identical Nordic IoT devices. To facilitate a 

MySensors network, all Nordic IoT gadgets 

broadcast on the ISM 2.4GHz frequency ranges 
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used by the industrial, scientific, and medical 

sectors. 

To capture the signal from the Internet of Things, a 

Software Defined Radio (SDR) N200 receiver from 

the Universal Software Radio Peripheral (USRP) 

has been set up with a sample rate Fs of 10 MHz. 

To ensure consistent data collection, the 

XCVR2450 front end of the USRP SDR receiver is 

locked to the GNSS (u-blox NEO6Q GPS receiver) 

and disciplined to a 10 MHz reference clock. 

Despite the small sample size, the number of 

wireless devices we evaluated is comparable to that 

of the relevant literature (5 devices in [6] and 9 

devices in [7]). Since our focus is on the more 

difficult intra-model classification issue, we 

additionally emphasize that all nine devices belong 

to the same model. 

 

Functioning B. 

 

The workflow consists of the following sub- 

processes. 

 

First, the nine satellites' combined signal in space 

 

An SDR gathers data from wireless Internet of 

Things devices. Baseband downsampling of the 

real-valued signal is followed by in-phase and 

quadrature component (IQ) storage. 

 

Following synchronization and normalizing of the 

signals (power normalization is achieved by 

factoring the signal of the collected bursts with 

their total Root Mean Square (RMS) level), the 

bursts of traffic corresponding to each payload may 

be extracted. Then, among all the wireless devices, 

800 bursts are chosen, for a grand total of 9800 = 

7200. Next, we apply a moving variance to the 

bursts to isolate the transients displayed in Figure 

1, and we use cross-correlation to get them all in 

sync. 

 

 
 

The transients are then subjected to a time- 

frequency transform using the GLCT. The process 

culminates in a classification evaluation utilizing a 

Deep Learning CNN classifier and a human judge. 

 

Combinations of CNN and other TF 

representations, as shown in Section IV, provide 

results that are inferior to those obtained using deep 

learning methods. 

 

C. Optimisation of the GLCT 

 

Earlier I indicated that a new optimization 

technique will be given below in order to compute 

the w parameter. Because fingerprints are not 

known in advance, the optimization is predicated 

on the unique features of the SEI issue. One 

common technique is optimizing w through a 

whole CNN time-frequency transformation chain. 

Instead, we use a time-domain analysis of the 

signal itself to find the best value for w in our 

optimization process. From a purely intuitive 

standpoint, it seems that fingerprints represent a 

quite sizable departure from the ideal transitory 

form. Then, using this intuition as a starting point, 

we conduct an analysis of the standard deviation 

across transient forms to determine the optimal 

value for the w parameter that yields the largest 

standard deviation for all windows of the same 

width, or width. 

 

 

std(x1:::xWi)) According to the GLCT algorithm 

and the total size of the transitory SegTran, N is the 

number of window sizes employed by the method, 
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and M is the number of iterations through the 

process. 

transitory windows of size Wi (M = SegTran=Wi). 

The method then repeats the preceding stages for I 

= W1;::: ;WN, each time calculating the standard 

deviation for all M windows of size Wi and storing 

the maximum detected value Devi over all M 

windows. 

The best possible window size, Optw, is found 

when Devi is maximized. It's important to keep in 

mind that the method relies on the maximum 

standard deviation measured on a single window 

(the one that yields the maximum) for each Wi, 

rather than on an average of all windows. This is 

because it is evident that the latter would provide 

consistent outcomes across all values of Wi. 

According to Section IV, the findings of this 

straightforward approach are promising. 

 

The standard deviation calculations are made more 

accurate in this letter by first adding a smoothing 

filter to the dataset. These preprocessing processes 

are exclusively used on the training set in all of our 

trials. 

 

These methods are referred to as Opt and Opt/Fil, 

respectively, throughout the remainder of this letter 

and the subsequent figures. 

 

D. Neural network and machine learning 

algorithms 

 

From our first studies, we can conclude that the 

absolute component of the complex signal delivers 

higher classification accuracy than either the whole 

complex signal or the phase component alone for 

all machine learning methods we examined. 

Limited space prevents us from detailing the 

outcomes of this comparison here (although 

comparable conclusions may be found in [5]). 

 

In light of these results, we will focus just on the 

absolute part of the signal from here on out. The 

7200 total samples (800 samples for 9 wireless 

devices to classify) are divided as follows: a 

training set of 5400 bursts (of which 1/10, i.e. 540 

bursts, is utilized for validation) and a test set of 

1800 bursts. A subset of the whole set is randomly 

selected to serve as both the training and testing 

sets. 

The charts in Section IV show the average value 

obtained after repeating the categorization 

procedure 20 times. 

As can be seen in Figure 2, the selected CNN 

network topology is rather complex. Convolutional 

layer parameters (such as stride) are tuned based on 

the particular input, whereas the size of the input 

layer is determined by the timefrequency 

representation (for example, 80*120 for CNN- 

CWT). Some kind of padding is applied. The 

maximum number of pools is 4, and the number of 

filters may range from 20 to 30. Using a learning 

rate of 0.001, the RMSProp solver was chosen 

since it outperformed the competition on this 

dataset. It turns discovered that this was the 

optimum form on average across all values of 10i, 

where I = 2, 3, and 4. 

 

Each batch had 128 iterations, and there were 160 

total epochs. To prevent over-fitting, the L2 

regularization parameter \swas tuned for each 

representation (e.g., L2=0.0005 for \sCNN-CWT). 

To get the best results, this parameter's optimal 

range was 

 

between one-hundredth of a cent and five cents. 

When training, the loss function was tuned for 

Cross-Entropy, and a dropout layer was used. 

 

Here, we put CNN's performance up to that of two 

"shallow" 

 

The time domain only implementations of the 

machine learning techniques Support Vector 

Machine (SVM) using a Radial Basis Function 

(RBF) kernel, and K Nearest Neighbor (KNN). 

 

Also, the validation set was used to fine-tune the 

SVM's scaling factor of the RBF kernel and C 

parameters, as well as the KNN's number of 

neighbors and distance metrics. 

 

As indicated in Section IV and the following 

subsections, the test set is subjected to noise and 

fading conditions. 
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IV. RESULTS AND ANALYSIS 

 

We optimized the calculation of the window w, as 

described in Section III-C, and then optimized the 

value of N independently. 

However, our own experiments (not given here 

owing to space constraints), have demonstrated that 

increasing N does not noticeably decrease the 

accuracy of the resultant classifiers. For the 

following tests, we choose N = 14, which offers a 

large number of chirplets (from Eq. 4) while 

keeping the processing time tolerable, in order to 

strike a suitable compromise between accuracy and 

processing time. Using the method described in 

Section III-C, we determined what value window w 

would have under a range of realistic scenarios 

(e.g., presence of AWGN and fading effects). 

 

The samples in our training set had a signal-to- 

noise ratio (SNR) of 50 dB (the baseline data), 

whereas the samples in our test set had SNRs 

ranging from -20 dB to 50 dB to mimic the effects 

of AWGN. This is the typical SNR range cited in 

the research [5, 10]. 

 

In order to account for the effects of fading, the 

Rayleigh fading model was used; this model uses a 

fading index Fi between 1 and 10 to parametrize 

the delay and gain values. In order to calculate the 

delay vector, we use the following formulae for a 

four-path channel's delays and gains: 
 

 
The fading effects become more significant with 

lower Fi values, leading to a corresponding drop in 

classification accuracy. Both the training set and 

the testing set were produced with Fi=10 to 

maximize the likelihood of success. 

Different choices of w are used to evaluate our 

optimization strategy (with and without filter) 

against the gold standard. In Section IV-A and IV- 

B, we detail these findings. 

 

 

In this part, we provide the empirical findings of a 

comparison between CNNGLCT and three other 

CNN combinations (CNN-SSA, CNN-CWT, and 

CNN-HHT) and the time domain alone. 

 

Interpretation CNN-T rated at [10]. Classification 

algorithms based on support vector machines and 

k-nearest neighbors when applied to the time 

domain (SVM-T and KNN-T, respectively) serve 

as a benchmark for comparison in this study [2]. 

We started by testing how well our GLCT 

optimization strategy worked when AWGN was 

present. As shown in Figure 3, the Opt/Fil method 

successfully determines the best window widths for 

a broad range of SNR values in decibels. For 

specific levels of SNR (for example, SNR=-10db), 

the Opt method performs marginally worse than 

Opt/Fil, indicating that the use of the filter is 

advantageous to the optimization procedure. 
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You can see how CNN-GLCT stacks up against the 

competition in Figure 4. Based on these results, we 

may conclude the following. 

The usual combination of time domain and CNN, 

commonly employed in the literature (e.g., [10]), is 

considerably outperformed by Time Frequency 

representations paired with CNN; 

 

b) When compared to the various TF 

representations we tried, including SSA, HHT (by a 

large margin), and CWT, GLCT performed the best 

(used in combination with CNN in [5]). 

 

The TF representations seem to be especially 

resilient to AWGN, with CNN-GLCT Opt/Fil 

attaining the highest performance, although all the 

offered approaches may yield a very high 

classification accuracy for large levels of SNR. 

 

The impact of fading on B. A comparison to 

different ways 

 

In this article, we discuss the results of our trials 

testing resistance to fading (Figure 5 and Figure 6). 

Optimized methods are compared to the gold 

standard initially (Figure 5). As opposed to the 

AWGN scenario, the Optimized methods only 

perform optimally under mildly degraded fading 

circumstances (i.e., Fi > 3). Similar to AWGN, 

Opt/Fil yields superior outcomes than Opt (e.g., Fi 

> 5). However, the method does not provide ideal 

outcomes in the presence of severe fading (Fi 3).. 

Figure 6 shows that our findings with 

AGWN are supported by a comparison to the other 

baselines using CNN-GLCT. 

 

Despite using a predetermined value of w, CNN- 

GLCT still produces good results. 

 

superior accuracy as compared to alternative 

baselines for the vast majority of fading index Fi 

values. CNN-CWT and CNN-HHT outperform 

CNN-GLCT only in very severe fading (Fi = 1). On 

top of that, time frequency representations are far 

more effective than shallow machine learning 

methods when dealing with fading. 
 

 
V. CONCLUSIONS 

 

We've looked at using GLCT in conjunction with 

CNN to identify IoT wireless devices based on the 

fluctuations in their bursts. The Outcomes 

demonstrate that compared to the time domain 

representation of the signal or the CWT and SSA 
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representations, GLCT gives superior identification 

accuracy, particularly in the presence of AWGN 

and fading effects. We also suggested a more ad 

hoc method for finding the best possible GLCT 

window size. The results show that this works very 

well in the AWGN case and works reasonably well 

in the fading situation. To further explore the 

method provided here, GLCT will be applied to 

more emitter identification datasets in the future. 
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