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Abstract— 

Rapid adoption of sensor-based feedback and control systems in smart gadgets. Markets that place a premium on 

affordability are among the most likely to embrace these devices. Conventional machine learning-based control 

systems often incorporate data from several sensors in order to achieve performance objectives. Another method is 

presented that uses the time series data collected by a single sensor. Domain experts' knowledge of the system's 

physical occurrences is used to segment the time series output into discrete time chunks. The machine learning 

system's characteristics are derived from statistical observations over many time periods. When more characteristics 

are found that decouple vital physical measurements, the system's performance is improved. This state-of-the-art 

approach requires fewer observations than conventional methods, yet produces equivalent precision. Because of the 

reduced number of sensors and the considerably streamlined and more robust algorithm development and testing 

stage, the resulting development effort is far more cost-effective than that of traditional sensor categorization 

systems. The authors present their conclusions by analyzing a case study of a media-type classification system used 

in a commercially available printing system. 

I. INTRODUCTION 

Sensors are rapidly decreasing in cost while 

performance and accuracy increase. Consequently, 

many electromechanical devices have incorporated 

sensor-enabled control schemes. Recently, machine 

Learning algorithms have begun to leverage this 

trend to enable new functionality. Sensed information 

may Be used to generate input features for 

algorithms that enable proactive diagnostics, system- 

awareness, and other more complex tasks  such as 

classification. Concerns arise when the number of 

sensors and the capability of individual nodes are 

constrained due to cost or other associated factors 

like computation time and memory footprint. 

Previous efforts to address this concern have focused 

on a reduction of computational requirements during 

both the training and classification phases of 

embedded supervised machine learning algorithm 

development [1]. Methods attempting to minimize 

the number of features required for classification also 

exist; these may be used to reduce the number of 

sensors necessary for a given task 
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This work presents a novel method to reduce the 

number of sensors required for a supervised machine 

learning classification system. Expert knowledge of 

expected sensor output variation as a function of 

intrinsic properties, extrinsic properties, and 

uncontrollable external factors is used to establish a 

unique feature set that sufficiently decouples 

otherwise inseparable classes. The system design and 

control system were concurrently tuned to elicit 

distinct dynamic responses within predefined 

temporal regions of a continuous data stream. The 

analog data was discredited into several distinct 

zones of interest corresponding to the sensors 

response to different dynamical processes. A unique 

difference method allowed the learning algorithm to 

extract additional useful information 

From the confounded data set. This methodology is 

validated by a case study of a print media classifier 

system developed for a commercial laser printer, 

which was manufactured and deployed at a large 

volume. The resultant classification success exceeded 

that of embodiments using multiple sensors with only 

a single sensor. Finally, the implications of this 

design methodology and advantages over a 

traditional data-driven classification system are 

discussed. 

II. BACKGROUND 

The goal of simplification of multi-sensor systems by 

harvesting more independent features from a reduced 

sensor set relies on modification of the measured 

object usually based on time or geometry. There are 

numerous studied methods for dimensionality 

reduction and representation of time series data. 

General dimension-reduction and re-representation 

methods include model-based techniques such as 

those using hidden Markov models [2], [3]. A second 

class of methods have attempted to reformulate the 

data with interpolative or regression methods such as 

piecewise linear (PLA) [4] or piecewise polynomial 

(PPA) [5] approximations. Another group of methods 

uses a symbolic representation optimized with certain 

constraints such as symbolic aggregated 

approximation (SAX). Still other methods use 

transforms such as discrete Fourier [6] or discrete 

cosine transforms or wavelet systems [7], [8]. 

Although these methods are largely designed for use 

on general, potentially multi-dimensional time series, 

they are frequently tested, presented, and verified on 

application specific data from medical data [8] to 

faults in mechanical gear systems [9]. Once the 

transformation has been performed, classification 

training and evaluation can occur. Possible 

algorithms include 1-nearest neighbors (1NN) or k- 

nearest neighbors (kNN) [10], which demonstrated 

considerable success when implemented with 

representations like SAX in combination with 

dynamic time warping [11]. More sophisticated 

methods such as neural networks, multi-layer 

perceptions [12], Bayesian networks [13], support 

vector machines [14] and decision trees [15] have 

also been used with success and represent alternative 

design options. Some methods use information from 

a transformation, such as warping distance, as an 

additional feature and integrate this into the 

classification method [16]. In each case, the features 

used to train these systems are selected to be as 

orthogonal as possible and the quality of the resulting 

algorithm is, amongst other things, a function of that 

orthogonality. Often, the system cannot be easily 

simplified, and hardware with embedded supervised 

machine learning systems is designed using a 

complex network of various sensors. In theory, this 
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extra data enables the designer to build and test a 

robust algorithm since a network of sensors can be 

selected to maximize feature orthogonality. This can 

lead to a temptation to deploy more sensors and 

computational resources than is strictly necessary. In 

industries where customers are highly sensitive to 

product cost, such as office printing, the strategy is 

often to deploy a single sensor to partly meet design 

needs. These attempts have included using a set of 

electrodes to take electrical measurements of media 

[17], [18], a camera to measure surface roughness 

[19] or an ultrasonic sensor to determine media 

density [20]. 

III. METHODOLOGY 

In concurrently developed physical systems, the 

designer has access to significantly more information 

about the situation than is often available with 

analyzing time series data in a general case. Time 

series data output by a single sensor may contain 

information about multiple physical quantities due to 

system dynamic behavior. Therefore, multiple 

physical quantities do not always need to be 

measured by the same number of physical sensors. 

The designer has an opportunity to tune the hardware 

to produce a time series output from a single sensor 

and then discredited the output with domain expert 

knowledge to produce multiple features while 

preserving orthogonality. 

This results in a system with fewer sensor nodes and 

a lower associated cost. Consider the case of a least- 

squares support vector machine (LS-SVM) [21], [22] 

deployed in an embedded classification, solving a 

multiclass problem (e.g. determine if a presented set 

of features belongs to which one of several distinct 

sets). 

The goal is to take as input a vector x 2 Rnf , where 

nf is the number of features used for classification, 

and produce an output y(x) which represents the 

classifier output. Given xk 2 Rnf; k = 1; 2;:::; N are 

the feature vectors corresponding to N training 

examples and yk are the corresponding true classes 

(in this case yk = +1 if the measurement belongs to a 

set and yl = 1 if it does not), the classification 

algorithm is trained by solving the following 

optimization problem to determine a best separating 

hyper surface defined through a nonlinear mapping. 

Some interpretations of the LSSVM and other SVMs 

make assumptions about the variables being 

independent and identically distributed random 

variables. While we cannot make this claim for this 

dataset due to temporal correlation, SVM-type 

algorithms can still work well in practice as long as 

the combination of features can 

Provide sufficient separation. In the implementation 

section, we discuss the distribution of the selected 

input features, and it can be observationally inferred 

that an SVM might work well given a geometric 

rather than probabilistic interpretation of SVM 

methods. 

 
 

Where the classifier takes the form: y(x) = sign 

[wet'(x) + b], and '(xk) is a mapping to a (often) 

higher dimensional 

Space. In practice the classifier is usually solved for 

in the dual space, the space of Lagrange multipliers 

of the constraints, _k (for k = 1; 2; N). b is a scalar 

bias offset term.   Is a regularization parameter that 

can be used to control over fitting vs. under-fitting 

behavior, but was set as 1? W 2 Ruff is a vector of 

weights that, along with the mapping '(xk) helps to 
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define the decision hyper surface. The dual space 

classifier takes the form: 

 
 

         Is a Kernel 

function (a nonlinear mapping that allows additional 

flexibility in the classification function). Both the 

dual space classifier and the solution of the classifier 

optimization problem can be addressed by 

considering the Karsh-Kuhn-Tucker (KKT) 

conditions for optimality: 

 
 

This allows assembly of the following matrix 

equation to solve the KKT system: 

 
 

1; N. At this point the (no sparse) matrix equation can 

be solved for _ and b using standard methods (LU 

factorization, etc.). The Kernel function can take a 

number of different Forms, of which 

 
 

 
 

 
 

Fig. 1. Traditional method for enabling feature-based 

decision making capability on an existing device. The 

final classification algorithm is a function of N 

features, represented by N nodes. In this work, only 

polynomial classifiers are considered. This is due to 

the application requirements of processing power and 

program memory space, constrained to use the 

algorithm of [1]. Typically, y(x) = +1 would yield a 

prediction that x belongs in one set, and y(x) = 1 

would correspond to the other complementary set. 

However, in some cases, including media 

classification in a printer, there are areas of the 

feature space that for some comparisons make no 

difference (there is cases in which mistakes in 

classification cause less of a problem for downstream 

processes). Specifically, one can have 

Some errors in classification that is acceptable to 

downstream processes, and some that should be 

weighted more heavily. This idea was discussed and 

formulated into the training of a multiclass SVM 

problem and described in detail in [23]. The solution 

method for the system is the same. In this work, the 

result associated with each classification is 

accordingly either an incorrect classification, an 

incorrect (but acceptable) error, or a correct 

classification. An acceptable error is simply one that 

is tolerable to the downstream processes. In order to 
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create a multiclass classification system, the different 

classes are separated into complementary groups and 

evaluated in a one vs. all sense [22] (other options 

exist, but one vs. all is the encoding used in this 

work); if there are three 

Classes, then there are three classifiers, each of which 

evaluates whether the data belongs in one set, or 

alternatively, all of the other sets. As mentioned 

before, selection of the features that comprise the 

feature vector are critical to classifier performance. 

The focus of this work is the design of the features 

and corresponding sensors and mechanical elements 

needed in order to achieve good performance while 

minimizing training data and overall cost. 

A traditional approach, shown in Figure 1 places the 

burden of the system on the sensor nodes themselves. 

In this example, a feature contributing to the 

classifier has a one-to-one relationship to the number 

of required sensor nodes. The proposed approach 

illustrated by Figure 2 puts the burden of the system 

on the domain expert knowledge and the temporal 

output of a single node. The domain expertise is used 

to partition the measurement time series m (t) (in 

implementation, this is most likely a sampled time 

series) into discrete intervals, such that 

 

 

 
Fig. 2. The proposed approach uses the system 

knowledge of co-designed hardware to pull multiple 

features out of a single time series of data. 

 
 
 

The classifier is trained on data that is of the form 

(YK, xk). Ideally, ski = _k, where _k is the set of 

intrinsic physical 

Properties in the system (_k = [_1; _2; _Nape] To 2 

Ropy). 

Nape represents an ideal set of orthogonal intrinsic 

properties. _ _k. simply put, ideally, the sets to be 

classified are well separated by a measurement of 

some direct, relevant intrinsic physical property and 

have good orthogonality. In the practical case, this is 

not so. Every measurement is a function of both the 

intrinsic property being measured and the properties 

of the physical system involved in that measurement. 



                  ISSN 2347–3657 

             Volume 9, Issue 4, Dec 2021 

 

 

54 

 

These properties include the structure of the system 

and its operation, which are controllable by the 

system designer, and known environmental factors 

which may not be controllable by the designer. 

Considering the form of the constructed intervals and 

corresponding statistical measures, the training data 

examples ski are such that 

 

 

 
Here, (f1; f2; fan) are nonlinear functions of the 

arguments: _k, the intrinsic physical properties; Ski 2 

Rape 

Which are known, quantifiable extrinsic system 

properties that influence the measurement (Npe is the 

number of extrinsic properties affecting 

measurements); and (Y1; Y2; YN), which are 

uncontrollable external factors that are a function of 

the hardware design. 

In the case of systems where measurements taken in 

different intervals are coupled, taking the difference 

between 

Two functions can help to train the classifier with 

independent information about system interactions 

and decouple external factors that influence the 

measurement. This can be justified with a brief 

expansion analysis. Given two functions if and fjord, 

the Taylor series expansions can be taken about a 

nominal operating point as 

 

 

 
For the same training example, k = 0. The same is 

true for _Ski. Therefore, the only remaining terms are 

those that 

Include _Yi and _I, the associated partial derivatives, 

and the difference of the offset constants. This new 

feature, fifj , is solely a function of _Yi and _Yj , 

which are functions of certain fixed extrinsic system 

properties. This information can be learned by the 

classifier and improve classification performance. 

IV. CASE STUDY AND IMPLEMENTATION 

This case study applies the proposed approach to a 

commercial color laser (electro photographic) printer 

intended for 

Shared office use in a managed print services 

environment. Most laser printer users do not check or 

adjust the media 

Type settings. Additionally, only a fraction of users 

that do adjust the media settings do so correctly. 

Incorrect settings on these devices may cause 

problems for both the customer and the manufacturer. 

To address this issue, an inexpensive sensor system 

and embedded machine learning algorithm were 

implemented to classify media without user input. 



                  ISSN 2347–3657 

             Volume 9, Issue 4, Dec 2021 

 

 

55 

 

The printer control system adjusted device 

parameters based on this media classification. 

A single inexpensive optical sensor consisting of a 

paired LED and phototransistor was mounted within 

the printer 

Media path. The sensor output a continuous data 

stream corresponding to the amount of light 

transmitted by in-process media. A simple model of 

the sensor was developed and, based upon this, 

system hardware and controls were tuned to generate 

an information-rich data stream by leveraging the 

dynamic response of media to control system inputs. 

The printer generated features from this data stream 

for each sheet of media. A broad population of 

standard office media with varied intrinsic properties, 

'k, existing along a continuum was sorted into 1 of 5 

distinct classes: light, normal, heavy, card stock, and 

transparency. This dataset was used to generate an 

embedded machine learning algorithm that used these 

features to determine media class in near real time. 

Printer process parameters and system controls were 

adjusted based upon this prediction. The final 

embodiment significantly reduced overall cost, 

complexity, and system footprint when compared to 

traditional implementations and is described in 

greater detail in [24]. A cross section of the printer 

media path is shown in Figure 3. The highlighted 

region contains a section view of the sensor and the 

surrounding printer hardware including upstream 

feed rollers, media guides, and downstream feed 

rollers. The electrical design schematic for the optical 

sensor system is shown in Figure 4. Nominal circuit 

values were tuned to adjust the sensor gain, response, 

and sensitivity. The resulting full scale range of the 

data set was maximized for the population of 

expected media and maximum separation between 

media classes was achieved. Calibration was 

performed to compensate for system gain and offset 

errors. The sensor outputs a continuous data stream 

corresponding to the amount of infrared light 

transmitted by the in-process media. This output is a 

highly coupled function of many confounded factors 

including intrinsic media properties (e.g., media basis 

weight, media roughness, media thickness, etc.) 'K, 

extrinsic system properties (e.g., LED intensity, 

media speed, media input source, phototransistor 

sensitivity, feed roller velocities, media shape and 

offset, LED and phototransistor directionality, etc.) 

Zk and uncontrollable external factors (e.g., relative 

humidity, temperature, etc.) Yi. Figure 5 depicts how 

variability caused by these confounded factors 

impacts the measurement for a single media. 20 

measurements for a normal weight office media are 

shown. The signal varies substantially from sheet to 

sheet and within a given sheet. Sensor output for a 

given media may vary as much as 20% of the sensors 

full scale range at a given process point. This is 

primarily a function of intrinsic media properties, 'k. 

Within a given sheet, the sensor output may vary as 

much as 60% of the sensors full scale range. This is 

primarily a function of extrinsic system properties, 

Zk. Uncontrollable external factors, Yi, alter both the 

intrinsic media properties, 

 

 

Fig. 3. A cross-section of the printer media path is 

depicted. The highlighted region contains an optical 
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sensor consisting of an LED (1) and phototransistor 

(2) that measures the amount of infrared light 

transmitted by a sheet of media (4) as it is processed 

by the printer. Media fed by upstream feed rollers (3) 

passes through the sensor, beyond a media guide (5), 

and into a set of downstream feed rollers (6). 

Hardware (physical design of the media path) 

And firmware (system timings and relative velocities 

of the feed rollers) were tuned during development to 

enhance data orthogonality by controlling the 

position and shape of the media relative to the sensor 

in the spatial/temporal 

Domain. 

 

 

 
 

Fig. 4. The electrical design schematic for the optical 

sensor system is shown. The connection labeled 

“Analog Output” is the voltage signal measured by 

the analog-to-digital converter and used in the 

classification system. Nominal circuit values were 

selected to optimize the sensor gain, response, and 

sensitivity for a broad range of media types. and 

extrinsic system properties, Zk. 

Figure 6 depicts how this variability manifests as 

boundary confusion. A broad set of standard office 

media possessing a range of intrinsic properties, 'k, 

existing along a continuum were used to train and test 

the algorithm and are listed in Table II for reference. 

Corner cases (distinguishing light  from card stock, 

for example) are easily distinguished. However, 

media properties exist along a continuum and 

variability from sheet to sheet and within a given 

sheet made the classification problem particularly 

challenging. There was a large amount of boundary 

confusion. This is especially true for the heavy class 

of media which significantly overlaps with both the 

normal and 

Card stock classes. 

For a classifier to be successful, it must decouple the 

relevant intrinsic media properties, 'k, from the other 

confounding variables and generate a substantially 

orthogonal feature set. Media to media variability 

must be decoupled from the variability seen from 

sheet to sheet or within a given sheet. For the case of 

media classification, this was achieved 

 

 

Fig. 5. Normalized analog sensor output for 20 

separate sheets of a standard office paper are plotted. 

Data was collected for 100 millimeters of media 

travel. The population means and 99.7 percent 

confidence bands for this given 

Media are plotted for reference. 
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Fig. 6. Normalized analog sensor output for the mean 

and 99.7 percent confidence band of each class are 

plotted. The population for each class consists of 360 

training samples from each media listed in Table II. 

A standard classification problem utilizing a 

traditional feature set would be intractable due to the 

continuous, overlapping nature of the data. By tuning 

system hardware and control parameters to leverage 

the sensitivity of the measurement to uncontrollable 

external factors, Yi, and extrinsic system properties, 

Zk. Since the sensor output was a nonlinear function 

of 'k, Zk, and Yi, it was possible to use the dynamic 

response of the system to help decouple these 

convoluted variables using the difference method 

described previously. Concurrently developed printer 

control algorithms and sensor hardware were tuned 

during the development phase to generate a 

continuous data stream that could be deconstructed 

into several distinct zones of interest corresponding 

to the sensors response to different dynamical 

processes. The resultant time series data was divided 

into 5 distinct zones of interest that corresponded to 

changes in the printer process that were designed to 

elicit a varied response from the sensor. In order to 

make the design more insensitive to printer-to printer 

variation, four ideas were considered when designing 

the zone positions. First, a flag sensor (integrated into 

the paper feed control system) allowed accurate 

registration of the leading edge of the sheet, and the 

traverse distance was known from the paper feed 

drive encoders. Second, the zones are larger than 

strictly necessary for a single printer in order to 

accommodate variation around the population of 

printers (determined empirically from a number of 

different printers). 

It is important to be aware that performance can 

decrease if the buffer regions are too large as the data 

quality will decrease from the statistical measure 

being taken. Third, the features and zones are 

designed around bulk properties, as described in 

Figure 7, which are less sensitive to printer to- printer 

variation. Finally, embedded firmware and system 

hardware were tuned during product development to 

generate subtle changes in media offset and shape 

relative to the emitter for each zone such that 

additional useful information may be extracted from 

the dataset. 

This specific approach is summarized in Figure 7. 

For example, media in Zone 1 enters the sensor and 

obscures the Photo detector. Prior to Zone 1, the 

photo detector is saturated and the signal is low. 

When the leading edge of the media directly obscures 

the direct path between the emitter and the photo 

detector, a minimal amount of light is transmitted and 

the signal is high. As the media continues 

downstream, a larger area of the in-process media is 

exposed to the emitter and additional diffusely 

scattered light reaches the photo detector; the signal 

decreases. The output in Zone 1 is a strong function 

of media opacity and feed rate. 

Further, media in Zone 3 is fed by two separate feed 

roller systems simultaneously. The relative velocity 
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of the roller systems is precisely controlled by 

embedded firmware to elicit a specific media 

response. The shape of the bubble is strongly coupled 

to a specific intrinsic property (basis weight). Heavier 

media are stiffer and are less likely to buckle; the 

upstream feed rollers will slip. Lighter media will 

buckle and the position of the sheet relative to the 

sensor will change. In this manner, the hardware and 

firmware within the system may be adjusted using 

expert domain knowledge to extract distinct 

information from the measurement based upon the 

dynamic response of the media to generated system 

inputs. This novel concurrent design approach 

allowed the photo detector to collect additional useful 

information that was strongly influenced by extrinsic 

system properties, Zk. Additionally, Zones 2, 3, and 4 

extract similar information from the time series data. 

Each zone provides a distinct measure of media 

opacity that is a strong function of intrinsic media 

properties, 'k. This provides the algorithm with a 

degree of redundancy and robustness against gross 

error. Discretization of the analog data in this manner 

generated a richer feature set with some measurement 

redundancy. A small designed experiment was 

conducted to assess system performance and select 

the final feature set. Due to the information gained 

from the difference method previously described, 

inclusion of features from redundant zones yielded 

improved performance with minimal additional 

computing overhead. Features used for the machine 

learning algorithm are provided in Table I. Features 

x1; x2; : : : ; x5 are extrinsic system properties and 

uncontrollable external factors that are provided by 

the printer systems embedded firmware to help 

stratify and decouple the training set. Features x6; x7; 

x18 contain an abundance of useful intrinsic media 

information, but are nonlinearly coupled to Zk and 

Yi. These features are calculated from the raw data 

and contain minimum, maximum and mean 

calculations (a measure of opacity) and range 

calculations (a measure of uniformity). Features x19; 

x20; x21 and x22 represent the previously described 

difference calculations that are used to separate 'k 

information from the influence of Zk and Yi. This 

contention is supported by the different, distinct 

trends demonstrated by the plotted feature trends. 

However, all the features have significant boundary 

confusion, are not practical for use individually, but 

contribute to the overall classification performance. 

V.IMPLEMENTATION 

PERFORMANCE 

The results of the classification are given in Table II. 

The single node mean and the domain expert 

knowledge solutions are compared. The single node 

mean corresponds to the Zone 2 mean, or x8, and was 

selected as the best single node classification system. 

The domain expert knowledge system was compared 

against this implementation. In the case of the 

domain expert knowledge, a number of feature sets 

using different order kernels were evaluated in a 

designed experiment to select the optimum group. A 

second order polynomial kernel with the features 

shown in Table I was selected. The cost function of 

the algorithm was modified to ensure media near 

decision boundaries were classified in a manner that 

would have no negative impact on printer 

performance, as detailed in [23]. For this reason, “% 

Acceptable” is the key design metric for this system. 

This expert-prescribed cost function weighting 

Resulted in one particular paper type (Canon GFR- 

070) having poorer “% Correct” than in the single 

node mean case. This particular error is due to the 

fact that media is not naturally categorical. The 

weighting method was designed to integrate into the 
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printers existing control scheme with minimal system 

impact. The richer feature set provides the machine 

learning algorithm more flexibility to adjust decision 

surfaces such that printer performance is not 

compromised when boundary confusion occurs. 

VI. CONCLUSIONS 

To further inform the design of Internet of Things 

(IoT) systems with domain expert knowledge and 

time series data, a 

 

Methodology was developed. 

 
 

 

 
 



                  ISSN 2347–3657 

             Volume 9, Issue 4, Dec 2021 

 

 

60 

 

 

 
 

 

 
Scaled versions of some example input features 

across several media types are shown in Fig. 8. 

Although the features together include information 

for doing corner case separation, the features 

themselves suffer from boundary confusion 

(significantly overlapping error bars between 

categories). A system that is both reliable and 

accurate, but is also smaller, simpler, and cheaper 

than the alternatives. A mass-produced electro 

photographic printer served as an example of the 

methodology's application in a media classification 

system. When compared to a standard approach that 

did not use domain expert knowledge to enrich the 

dataset, the proposed methodology improved 

classifier accuracy by 16% and classifier 

acceptability by 6.5%. This approach can be 

employed by sensor-integrated Internet of Things 

(IoT) devices that want to take advantage of the 

performance gains afforded by modern sensor 

technology while also satisfying a number of market 

requirements. 
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