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Abstract—

Rapid adoption of sensor-based feedback and control systems in smart gadgets. Markets that place a premium on
affordability are among the most likely to embrace these devices. Conventional machine learning-based control
systems often incorporate data from several sensors in order to achieve performance objectives. Another method is
presented that uses the time series data collected by a single sensor. Domain experts' knowledge of the system's
physical occurrences is used to segment the time series output into discrete time chunks. The machine learning
system's characteristics are derived from statistical observations over many time periods. When more characteristics
are found that decouple vital physical measurements, the system's performance is improved. This state-of-the-art
approach requires fewer observations than conventional methods, yet produces equivalent precision. Because of the
reduced number of sensors and the considerably streamlined and more robust algorithm development and testing
stage, the resulting development effort is far more cost-effective than that of traditional sensor categorization
systems. The authors present their conclusions by analyzing a case study of a media-type classification system used

in a commercially available printing system.

I. INTRODUCTION

Sensors are rapidly decreasing in cost while constrained due to cost or other associated factors

performance and accuracy increase. Consequently,
many electromechanical devices have incorporated
sensor-enabled control schemes. Recently, machine
Learning algorithms have begun to leverage this
trend to enable new functionality. Sensed information
may  Be used to generate input features for
algorithms that enable proactive diagnostics, system-
awareness, and other more complex tasks such as
classification. Concerns arise when the number of

sensors and the capability of individual nodes are

like computation time and memory footprint.
Previous efforts to address this concern have focused
on a reduction of computational requirements during
both the training and classification phases of
embedded supervised machine learning algorithm
development [1]. Methods attempting to minimize
the number of features required for classification also
exist; these may be used to reduce the number of

sensors necessary for a given task
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This work presents a novel method to reduce the
number of sensors required for a supervised machine
learning classification system. Expert knowledge of
expected sensor output variation as a function of
intrinsic ~ properties, extrinsic  properties, and
uncontrollable external factors is used to establish a
unique feature set that sufficiently decouples
otherwise inseparable classes. The system design and
control system were concurrently tuned to -elicit
distinct dynamic responses within predefined
temporal regions of a continuous data stream. The
analog data was discredited into several distinct
zones of interest corresponding to the sensors
response to different dynamical processes. A unique
difference method allowed the learning algorithm to
extract additional useful information

From the confounded data set. This methodology is
validated by a case study of a print media classifier
system developed for a commercial laser printer,
which was manufactured and deployed at a large
volume. The resultant classification success exceeded
that of embodiments using multiple sensors with only
a single sensor. Finally, the implications of this
design methodology and advantages over a
traditional data-driven classification system are

discussed.
II. BACKGROUND

The goal of simplification of multi-sensor systems by
harvesting more independent features from a reduced
sensor set relies on modification of the measured
object usually based on time or geometry. There are
numerous studied methods for dimensionality
reduction and representation of time series data.
General dimension-reduction and re-representation
methods include model-based techniques such as

those using hidden Markov models [2], [3]. A second
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class of methods have attempted to reformulate the
data with interpolative or regression methods such as
piecewise linear (PLA) [4] or piecewise polynomial
(PPA) [5] approximations. Another group of methods
uses a symbolic representation optimized with certain
constraints such as  symbolic  aggregated
approximation (SAX). Still other methods use
transforms such as discrete Fourier [6] or discrete
cosine transforms or wavelet systems [7], [8].
Although these methods are largely designed for use
on general, potentially multi-dimensional time series,
they are frequently tested, presented, and verified on
application specific data from medical data [§] to
faults in mechanical gear systems [9]. Once the
transformation has been performed, classification
training and evaluation can occur. Possible
algorithms include 1-nearest neighbors (1NN) or k-
nearest neighbors (kNN) [10], which demonstrated
considerable success when implemented with
representations like SAX in combination with
dynamic time warping [11]. More sophisticated
methods such as neural networks, multi-layer
perceptions [12], Bayesian networks [13], support
vector machines [14] and decision trees [15] have
also been used with success and represent alternative
design options. Some methods use information from
a transformation, such as warping distance, as an
additional feature and integrate this into the
classification method [16]. In each case, the features
used to train these systems are selected to be as
orthogonal as possible and the quality of the resulting
algorithm is, amongst other things, a function of that
orthogonality. Often, the system cannot be easily
simplified, and hardware with embedded supervised
machine learning systems is designed using a

complex network of various sensors. In theory, this
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extra data enables the designer to build and test a
robust algorithm since a network of sensors can be
selected to maximize feature orthogonality. This can
lead to a temptation to deploy more sensors and
computational resources than is strictly necessary. In
industries where customers are highly sensitive to
product cost, such as office printing, the strategy is
often to deploy a single sensor to partly meet design
needs. These attempts have included using a set of
electrodes to take electrical measurements of media
[17], [18], a camera to measure surface roughness
[19] or an ultrasonic sensor to determine media
density [20].

II1I. METHODOLOGY

In concurrently developed physical systems, the
designer has access to significantly more information
about the situation than is often available with
analyzing time series data in a general case. Time
series data output by a single sensor may contain
information about multiple physical quantities due to
system dynamic behavior. Therefore, multiple
physical quantities do not always need to be
measured by the same number of physical sensors.
The designer has an opportunity to tune the hardware
to produce a time series output from a single sensor
and then discredited the output with domain expert
knowledge to produce multiple features while
preserving orthogonality.

This results in a system with fewer sensor nodes and
a lower associated cost. Consider the case of a least-
squares support vector machine (LS-SVM) [21], [22]
deployed in an embedded classification, solving a
multiclass problem (e.g. determine if a presented set
of features belongs to which one of several distinct
sets).

The goal is to take as input a vector x 2 Rnf , where

nf is the number of features used for classification,
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and produce an output y(x) which represents the

the feature vectors corresponding to N training
examples and yk are the corresponding true classes
(in this case yk = +1 if the measurement belongs to a
set and yl = 1 if it does not), the classification
algorithm is trained by solving the following
optimization problem to determine a best separating
hyper surface defined through a nonlinear mapping.
Some interpretations of the LSSVM and other SVMs
make assumptions about the variables being
independent and identically distributed random
variables. While we cannot make this claim for this
dataset due to temporal correlation, SVM-type
algorithms can still work well in practice as long as
the combination of features can

Provide sufficient separation. In the implementation
section, we discuss the distribution of the selected
input features, and it can be observationally inferred
that an SVM might work well given a geometric
rather than probabilistic interpretation of SVM

methods.

minimize Jp(w,e) = Hu'Tw +7= Zf:;. (1)
- k=1
subject to ,r,l;fu'-‘r:;{.u.},-,] Sewpb=toN @

Where the classifier takes the form: y(x) = sign
[wet'(x) + b], and '(xk) is a mapping to a (often)
higher dimensional

Space. In practice the classifier is usually solved for
in the dual space, the space of Lagrange multipliers
of the constraints, k (for k = 1; 2; N). b is a scalar
bias offset term. Is a regularization parameter that
can be used to control over fitting vs. under-fitting
behavior, but was set as 1? W 2 Ruff is a vector of

weights that, along with the mapping '(xk) helps to
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define the decision hyper surface. The dual space

classifier takes the form:

N
y(z) = sgn[z oy K (2, 2y) + 5] 3)
k=1
K(z,z) = @7 (z)elzs)

Is a Kernel
function (a nonlinear mapping that allows additional

flexibility in the classification function). Both the
dual space classifier and the solution of the classifier
optimization problem can be addressed by
considering  the  Karsh-Kuhn-Tucker  (KKT)

conditions for optimality:

N
W= Z g Yo (g )

k=1
.'"..-
Z OEYE = 0,
k=1
e = veg, Yh = 1,2, .. N,

uefwl olze) + 0] — 14 6. =0,¥k=1,2,...,N.

This allows assembly of the following matrix

equation to solve the KKT system:

0 yT W ;
(v oe1)(a)-(2) @

where (O = oz )T o(zy) = wpy K (z, @), with k1 =
1; N. At this point the (no sparse) matrix equation can
be solved for _ and b using standard methods (LU
factorization, etc.). The Kernel function can take a

number of different Forms, of which

Kz, zp) = .}:E—a (linear), Kz, xp) =

02
(zFx 4 7)? (polynomial), and K (&, z1) = exp (—u%k—lz)
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Fig. 1. Traditional method for enabling feature-based
decision making capability on an existing device. The
final classification algorithm is a function of N
features, represented by N nodes. In this work, only
polynomial classifiers are considered. This is due to
the application requirements of processing power and
program memory space, constrained to use the
algorithm of [1]. Typically, y(x) = +1 would yield a
prediction that x belongs in one set, and y(x) = 1
would correspond to the other complementary set.
However, in some cases, including media
classification in a printer, there are areas of the
feature space that for some comparisons make no
difference (there is cases in which mistakes in
classification cause less of a problem for downstream
processes). Specifically, one can have

Some errors in classification that is acceptable to
downstream processes, and some that should be
weighted more heavily. This idea was discussed and
formulated into the training of a multiclass SVM
problem and described in detail in [23]. The solution
method for the system is the same. In this work, the
result associated with each classification is
accordingly either an incorrect classification, an
incorrect (but acceptable) error, or a correct
classification. An acceptable error is simply one that

is tolerable to the downstream processes. In order to
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create a multiclass classification system, the different
classes are separated into complementary groups and
evaluated in a one vs. all sense [22] (other options
exist, but one vs. all is the encoding used in this
work); if there are three

Classes, then there are three classifiers, each of which
evaluates whether the data belongs in one set, or
alternatively, all of the other sets. As mentioned
before, selection of the features that comprise the
feature vector are critical to classifier performance.
The focus of this work is the design of the features
and corresponding sensors and mechanical elements
needed in order to achieve good performance while
minimizing training data and overall cost.

A traditional approach, shown in Figure 1 places the
burden of the system on the sensor nodes themselves.
In this example, a feature contributing to the
classifier has a one-to-one relationship to the number
of required sensor nodes. The proposed approach
illustrated by Figure 2 puts the burden of the system
on the domain expert knowledge and the temporal
output of a single node. The domain expertise is used
to partition the measurement time series m (t) (in
implementation, this is most likely a sampled time

series) into discrete intervals, such that
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Single Node Measurement - Time Series

[omain Expert Knowledge
defines critical intervals and features

Machine Leaming
Blpodithm

Fig. 2. The proposed approach uses the system
knowledge of co-designed hardware to pull multiple

features out of a single time series of data.

mit) = [z(ty,tz):  [Psy.00],
z(tats):  [Pigtal,

T(En-1N ) [Pey_ytnll

The classifier is trained on data that is of the form
(YK, xk). Ideally, ski = k, where k is the set of
intrinsic physical

Properties in the system (_ k =[_1; 2; Nape] To 2
Ropy).

Nape represents an ideal set of orthogonal intrinsic
properties. k. simply put, ideally, the sets to be
classified are well separated by a measurement of
some direct, relevant intrinsic physical property and
have good orthogonality. In the practical case, this is
not so. Every measurement is a function of both the
intrinsic property being measured and the properties

of the physical system involved in that measurement.
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These properties include the structure of the system
and its operation, which are controllable by the
system designer, and known environmental factors
which may not be controllable by the designer.
Considering the form of the constructed intervals and
corresponding statistical measures, the training data

examples ski are such that

o = [f1{deY1. Z1),
Fo( Y2, Z;),

(e, Yn . Zz)]

Here, (f1; f2; fan) are nonlinear functions of the
arguments: _k, the intrinsic physical properties; Ski 2
Rape

Which are known, quantifiable extrinsic system
properties that influence the measurement (Npe is the
number of  extrinsic  properties  affecting
measurements); and (Y1; Y2; YN), which are
uncontrollable external factors that are a function of
the hardware design.

In the case of systems where measurements taken in
different intervals are coupled, taking the difference
between

Two functions can help to train the classifier with
independent information about system interactions
and decouple external factors that influence the
measurement. This can be justified with a brief
expansion analysis. Given two functions if and fjord,
the Taylor series expansions can be taken about a

nominal operating point as
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df; af; af; 5

filow Y, ZA.—&J:_\.& +d{&1 +dIAZL+C (3)

- s O ;i v df)

o, Yi, Z1) = =—Ady —A}.:— AZ C: (6
Jr_]l.,f. i+ k) a;ﬁ!‘ Ol+fﬂ:‘ 3 + i { }
Taking the difference yields

fildw. Yo, Ze) — fildw, Y5, Zk) =
Jﬂ ., df
(m . At gz A+ C)
f; df;
( Ab + AY+d/.,_\7;\ C‘)
A. (df, df}) UIJFI'A} - df}j}
do.  ddy dy; aY;

Ap=0 for same k

37;(‘”{’ ‘”) $6-8

constant
AZp=0 for same k

For the same training example,_k = 0. The same is
true for _Ski. Therefore, the only remaining terms are
those that

Include Yiand I, the associated partial derivatives,
and the difference of the offset constants. This new
feature, fifj , is solely a function of Yi and _Yj ,
which are functions of certain fixed extrinsic system
properties. This information can be learned by the
classifier and improve classification performance.

IV. CASE STUDY AND IMPLEMENTATION

This case study applies the proposed approach to a
commercial color laser (electro photographic) printer
intended for

Shared office use in a managed print services
environment. Most laser printer users do not check or
adjust the media

Type settings. Additionally, only a fraction of users
that do adjust the media settings do so correctly.
Incorrect settings on these devices may cause
problems for both the customer and the manufacturer.
To address this issue, an inexpensive sensor system
and embedded machine learning algorithm were

implemented to classify media without user input.
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The printer control system adjusted device
parameters based on this media classification.

A single inexpensive optical sensor consisting of a
paired LED and phototransistor was mounted within
the printer

Media path. The sensor output a continuous data
stream corresponding to the amount of light
transmitted by in-process media. A simple model of
the sensor was developed and, based upon this,
system hardware and controls were tuned to generate
an information-rich data stream by leveraging the
dynamic response of media to control system inputs.
The printer generated features from this data stream
for each sheet of media. A broad population of
standard office media with varied intrinsic properties,
'k, existing along a continuum was sorted into 1 of 5
distinct classes: light, normal, heavy, card stock, and
transparency. This dataset was used to generate an
embedded machine learning algorithm that used these
features to determine media class in near real time.
Printer process parameters and system controls were
adjusted based upon this prediction. The final
embodiment significantly reduced overall cost,
complexity, and system footprint when compared to
traditional implementations and is described in
greater detail in [24]. A cross section of the printer
media path is shown in Figure 3. The highlighted
region contains a section view of the sensor and the
surrounding printer hardware including upstream
feed rollers, media guides, and downstream feed
rollers. The electrical design schematic for the optical
sensor system is shown in Figure 4. Nominal circuit
values were tuned to adjust the sensor gain, response,
and sensitivity. The resulting full scale range of the
data set was maximized for the population of
expected media and maximum separation between

media classes was achieved. Calibration was
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performed to compensate for system gain and offset
errors. The sensor outputs a continuous data stream
corresponding to the amount of infrared light
transmitted by the in-process media. This output is a
highly coupled function of many confounded factors
including intrinsic media properties (e.g., media basis
weight, media roughness, media thickness, etc.) 'K,
extrinsic system properties (e.g., LED intensity,
media speed, media input source, phototransistor
sensitivity, feed roller velocities, media shape and
offset, LED and phototransistor directionality, etc.)
Zk and uncontrollable external factors (e.g., relative
humidity, temperature, etc.) Yi. Figure 5 depicts how
variability caused by these confounded factors
impacts the measurement for a single media. 20
measurements for a normal weight office media are
shown. The signal varies substantially from sheet to
sheet and within a given sheet. Sensor output for a
given media may vary as much as 20% of the sensors
full scale range at a given process point. This is
primarily a function of intrinsic media properties, 'k.
Within a given sheet, the sensor output may vary as
much as 60% of the sensors full scale range. This is
primarily a function of extrinsic system properties,
Zk. Uncontrollable external factors, Yi, alter both the

intrinsic media properties,

Fig. 3. A cross-section of the printer media path is

depicted. The highlighted region contains an optical

55



% .
& International Journal of
Information Technology & Computer Engineering

sensor consisting of an LED (1) and phototransistor
(2) that measures the amount of infrared light
transmitted by a sheet of media (4) as it is processed
by the printer. Media fed by upstream feed rollers (3)
passes through the sensor, beyond a media guide (5),
and into a set of downstream feed rollers (6).
Hardware (physical design of the media path)

And firmware (system timings and relative velocities
of the feed rollers) were tuned during development to
enhance data orthogonality by controlling the
position and shape of the media relative to the sensor
in the spatial/temporal

Domain.

Calibration Qufput

ALnalog Cutput

o
VINTAEIE 1

Fig. 4. The electrical design schematic for the optical
sensor system is shown. The connection labeled
“Analog Output” is the voltage signal measured by
the analog-to-digital converter and used in the
classification system. Nominal circuit values were
selected to optimize the sensor gain, response, and
sensitivity for a broad range of media types. and
extrinsic system properties, Zk.

Figure 6 depicts how this variability manifests as
boundary confusion. A broad set of standard office
media possessing a range of intrinsic properties, 'k,
existing along a continuum were used to train and test
the algorithm and are listed in Table II for reference.

Corner cases (distinguishing light from card stock,
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for example) are easily distinguished. However,
media properties exist along a continuum and
variability from sheet to sheet and within a given
sheet made the classification problem particularly
challenging. There was a large amount of boundary
confusion. This is especially true for the heavy class
of media which significantly overlaps with both the
normal and

Card stock classes.

For a classifier to be successful, it must decouple the
relevant intrinsic media properties, 'k, from the other
confounding variables and generate a substantially
orthogonal feature set. Media to media variability
must be decoupled from the variability seen from
sheet to sheet or within a given sheet. For the case of

media classification, this was achieved

Sheet-to-Shest Varizhility Anzlysis
Mormal Media - Hammermill Tidal - 75 g/m?
Sample SzeN=10

Analog Output, W

Diskance Traveled, mm

==Mean Value ---Meantdo

Fig. 5. Normalized analog sensor output for 20
separate sheets of a standard office paper are plotted.
Data was collected for 100 millimeters of media
travel. The population means and 99.7 percent
confidence bands for this given

Media are plotted for reference.
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Fig. 6. Normalized analog sensor output for the mean
and 99.7 percent confidence band of each class are
plotted. The population for each class consists of 360
training samples from each media listed in Table II.
A standard classification problem utilizing a
traditional feature set would be intractable due to the
continuous, overlapping nature of the data. By tuning
system hardware and control parameters to leverage
the sensitivity of the measurement to uncontrollable
external factors, Yi, and extrinsic system properties,
Zk. Since the sensor output was a nonlinear function
of 'k, Zk, and Yi, it was possible to use the dynamic
response of the system to help decouple these
convoluted variables using the difference method
described previously. Concurrently developed printer
control algorithms and sensor hardware were tuned
during the development phase to generate a
continuous data stream that could be deconstructed
into several distinct zones of interest corresponding
to the sensors response to different dynamical
processes. The resultant time series data was divided
into 5 distinct zones of interest that corresponded to
changes in the printer process that were designed to
elicit a varied response from the sensor. In order to

make the design more insensitive to printer-to printer
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variation, four ideas were considered when designing
the zone positions. First, a flag sensor (integrated into
the paper feed control system) allowed accurate
registration of the leading edge of the sheet, and the
traverse distance was known from the paper feed
drive encoders. Second, the zones are larger than
strictly necessary for a single printer in order to
accommodate variation around the population of
printers (determined empirically from a number of
different printers).

It is important to be aware that performance can
decrease if the buffer regions are too large as the data
quality will decrease from the statistical measure
being taken. Third, the features and zones are
designed around bulk properties, as described in
Figure 7, which are less sensitive to printer to- printer
variation. Finally, embedded firmware and system
hardware were tuned during product development to
generate subtle changes in media offset and shape
relative to the emitter for each zone such that
additional useful information may be extracted from
the dataset.

This specific approach is summarized in Figure 7.
For example, media in Zone 1 enters the sensor and
obscures the Photo detector. Prior to Zone 1, the
photo detector is saturated and the signal is low.
When the leading edge of the media directly obscures
the direct path between the emitter and the photo
detector, a minimal amount of light is transmitted and
the signal is high. As the media continues
downstream, a larger area of the in-process media is
exposed to the emitter and additional diffusely
scattered light reaches the photo detector; the signal
decreases. The output in Zone 1 is a strong function
of media opacity and feed rate.

Further, media in Zone 3 is fed by two separate feed

roller systems simultaneously. The relative velocity
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of the roller systems is precisely controlled by
embedded firmware to elicit a specific media
response. The shape of the bubble is strongly coupled
to a specific intrinsic property (basis weight). Heavier
media are stiffer and are less likely to buckle; the
upstream feed rollers will slip. Lighter media will
buckle and the position of the sheet relative to the
sensor will change. In this manner, the hardware and
firmware within the system may be adjusted using
expert domain knowledge to extract distinct
information from the measurement based upon the
dynamic response of the media to generated system
inputs. This novel concurrent design approach
allowed the photo detector to collect additional useful
information that was strongly influenced by extrinsic
system properties, Zk. Additionally, Zones 2, 3, and 4
extract similar information from the time series data.
Each zone provides a distinct measure of media
opacity that is a strong function of intrinsic media
properties, 'k. This provides the algorithm with a
degree of redundancy and robustness against gross
error. Discretization of the analog data in this manner
generated a richer feature set with some measurement
redundancy. A small designed experiment was
conducted to assess system performance and select
the final feature set. Due to the information gained
from the difference method previously described,
inclusion of features from redundant zones yielded
improved performance with minimal additional
computing overhead. Features used for the machine

learning algorithm are provided in Table I. Features

uncontrollable external factors that are provided by
the printer systems embedded firmware to help
stratify and decouple the training set. Features x6; x7;
x18 contain an abundance of useful intrinsic media

information, but are nonlinearly coupled to Zk and
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Yi. These features are calculated from the raw data
and contain minimum, maximum and mean
calculations (a measure of opacity) and range
calculations (a measure of uniformity). Features x19;
x20; x21 and x22 represent the previously described
difference calculations that are used to separate 'k
information from the influence of Zk and Yi. This
contention is supported by the different, distinct
trends demonstrated by the plotted feature trends.
However, all the features have significant boundary
confusion, are not practical for use individually, but

contribute to the overall classification performance.

V.IMPLEMENTATION
PERFORMANCE

The results of the classification are given in Table II.
The single node mean and the domain expert
knowledge solutions are compared. The single node
mean corresponds to the Zone 2 mean, or x8, and was
selected as the best single node classification system.
The domain expert knowledge system was compared
against this implementation. In the case of the
domain expert knowledge, a number of feature sets
using different order kernels were evaluated in a
designed experiment to select the optimum group. A
second order polynomial kernel with the features
shown in Table I was selected. The cost function of
the algorithm was modified to ensure media near
decision boundaries were classified in a manner that
would have no negative impact on printer
performance, as detailed in [23]. For this reason, “%
Acceptable” is the key design metric for this system.
This expert-prescribed cost function weighting
Resulted in one particular paper type (Canon GFR-
070) having poorer “% Correct” than in the single
node mean case. This particular error is due to the
fact that media is not naturally categorical. The

weighting method was designed to integrate into the
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Scaled versions of some example input features
across several media types are shown in Fig. 8.
Although the features together include information
for doing corner case separation, the features
themselves suffer from boundary confusion
(significantly overlapping error bars between
categories). A system that is both reliable and
accurate, but is also smaller, simpler, and cheaper
than the alternatives. A mass-produced -electro
photographic printer served as an example of the
methodology's application in a media classification
system. When compared to a standard approach that
did not use domain expert knowledge to enrich the
dataset, the proposed methodology improved
classifier accuracy by 16% and classifier
acceptability by 6.5%. This approach can be
employed by sensor-integrated Internet of Things
(IoT) devices that want to take advantage of the
performance gains afforded by modern sensor
technology while also satisfying a number of market

requirements.
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