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Abstract—

Small modifications in the virus code are easily detected by conventional signature-based malware detection

techniques. The majority of malware programs nowadays are modifications of other applications. They thus

have various signatures yet have certain similar patterns. Instead than only seeing slight changes, it's

important to recognize the virus pattern in order to protect sensor data. However, we suggest a quick

detection technique to find patterns in the code using machine learning-based approaches in order to quickly

discover these health sensor data in malware programs. To evaluate the code using health sensor data,

XGBoost, LightGBM, and Random Forests will be specifically used. The codes are either supplied into them

as single bytes or tokens or as sequences of bytes or tokens (e.g. 1-, 2-, 3-, or 4- grams).

I. INTRODUCTION

All types of sensors are being used to gather health
sensor data as we enter the Internet of Things Era.
Eventually, malicious software or programs that are
hidden in health sensor data and are regarded as
intrusions in the target host computer are executed in
accordance with a hacker's predetermined logic.
Computer viruses, worms, Trojan horses, bonnets,
ransom ware, and other harmful codes fall under the
category of hazardous codes in health sensor data [1].
Malware assaults may harm computer networks and
systems while stealing sensitive data and core data.

One of the biggest risks to modern computer security

is it [2, 3].There are typically two kinds of malware
analysis techniques. [4-7]. (1) Static analysis is often
carried out by examining each component of a binary
file and displaying its many resources without
actually using it. A disassemble may also be used to
disassemble (or redesign) binary files (such as IDA).
Humans are able to read and comprehend assembly
code, which may sometimes be converted from
machine code. Malware analysts are able to decipher
assembly instructions and see the program's intended

behavior.
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Some contemporary malware is developed utilizing
unclear methods to thwart this kind of examination,
such introducing grammatical flaws in the code.
Although these mistakes might be perplexing to the
disassemble, they are nonetheless functional during
execution. (2) Dynamic analysis is carried out by
analyzing the behavior of the virus while it is running
on the host 1. The Qatar National Research Fund, a
subsidiary of the Qatar Foundation, provided funding
for this study under Grant NPRP10-1205-160012.
The writers alone bear full responsibility for the
assertions stated in this article. System. Modern
malware may employ a number of misleading
strategies to evade dynamic analysis, such as testing
active debuggers or virtual environments, delaying
the execution of harmful payloads, or requesting
interactive user input [8—10].

In this work, static code analysis is the major topic.
The primary feature matching or broad-spectrum
signature scanning techniques used in early static
code analysis. Broad-spectrum scanning examines
the feature code and employs masked bytes to
separate the portions that need to be compared from
those that do not, whereas feature matching simply
uses feature string matching to complete the
detection. The hysteresis issue is critical since both
approaches must get malware samples and extract
characteristics before they can be identified. In
addition, when malware technology advances, the
number of malware variants suddenly rises and
malware starts to change during transmission in an
effort to escape being detected and eliminated. It is
challenging to extract a fragment of code to serve as
a virus signature since the form of the variations

varies greatly.
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II. REALTED WORK

Given this circumstance, it makes sense to use
machine learning-based techniques that analyze
unfamiliar binary code using static code analysis
while drawing on prior experience and expertise to
automatically categorize malware. In accordance with
the instructions, this work makes use of relevant
machine learning-based technologies and investigates
how to apply this strategy to the categorization of
malware [11-14].

Malware detection essentially boils down to a
classification issue that determines whether a sample
is genuine software or malicious software. Therefore,
the key processes of a machine learning algorithm
drive host malware detection technology, and the
primary research steps of this study are as follows:
Gather enough samples of both genuine software and
malicious code.

Process the sample's data effectively and extract the
characteristics. Select the classification's primary
characteristics further.

By combining the training with machine learning
techniques, a categorization model is created.

Using the learned classification model, find unknown
samples. Finding the most useful characteristics and
models for this practical endeavor is the final
objective. The primary research issues and
fundamental concepts are presented in this chapter.
What people typically utilize in this field, how to get
experimental data, and what we do with them in this
study are all described below.

A detection model built on top of machine learning
techniques and the model we use in the tests,

followed by a summary and analysis of the outcomes.

III. MALWARE CODE ANALYSIS
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A. Malware Sample Collection

The foundation for code analysis is the efficient
acquisition of malware samples. The classification
model may perform more accurate detection tasks
when integrated with machine learning methods, but
only after proper training using the sample data [38,
40]. Malware samples may be obtained in a variety of
methods.

1) User-side sampling: The majority of anti-virus
software providers use this as their primary
technique. Antivirus software users that transmit
malware samples to providers. This strategy performs
well in real-time, but it is challenging to get the data
directly since security providers often decide not to
release their data in an open manner.

2) Open network databases; examples are VX
Heavens, Open Malware, and Virus Bulletin. The
open online sample systems are currently constrained
in comparison to the pace at which malicious code is
updated, and the websites have issues such being
subject to assaults. Therefore, the development of a
malware sharing mechanism has shown its
significance more and more.

3) Additional technological methods a particularly
fragile system is created to entice attackers to attack
in order for the system to get malware samples via
collection utilizing a capture tool like a honey pot
(such as the Nepenthes honey pot). Additionally,
certain Trojans and Internet backdoors may be
acquired through spam traps or security discussion
forums. The size of the capture sample for the
aforementioned technological techniques is limited,
however. Fortunately, Secure Age provided the raw
data for this research, which we can utilize directly

without further processing. Then, with regard to
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feature extraction, it is often essential to first
disassemble the code in order to extract the static
features of the malware. IDAPro, Hopper, OllyDbg,
and other popular tools are included.

One of them, IDA Pro, is an interactive disassemble
that can produce malware assembly code in addition
to doing other tasks including locating functional
blocks, obtaining input functions, and outlining
functional flow diagrams. These are likewise used in
this essay.

B. Feature Selection

Three primary categories of characteristics are as

follows:

1) The majority of sample features are extracted
using sequence-based feature types. The N-gram is a
representative piece of technology. The N-gram,
where N is the length of a feature sequence,
presupposes that a word's N instances are only
connected to its N1 preceding instances. The N-gram
model breaks a phrase into LN+1 feature sequences
using sliding windows if the phrase set has length L.
For instance, when a 3-gram is applied to the word
set PUSH SUB SAL, SUB SAL AND, SAL AND
DIV, AND DIV LDS, and DIV LDS POP (L=7 at
this time), five distinctive sequences are produced:
PUSH SUB SAL, SAL AND DIV, AND DIV LDS,
and DIV LDS POP. Each string consists of three

words.

In order to successfully identify malware in the
choice of lemmas, Abou-Assaleh [15] first proposed
a feature extraction framework based on byte
sequences and applied the K closest neighbor
classification approach. Opcodes are employed to

choose words in a unique manner. Henchiri published
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an unique method for extracting n-gram
characteristics [16]. We can better define malware by
extracting opcode features. According to Moskovitch
[17], who examined five different classifiers based on
opcode sequences using a test set of more than 3 104
files, the detection accuracy for malware was as high
as 99%. to increase classification precision in the
presence of incomplete and noisy data. Abualsaud
[39] published a new noise-aware signal combination
(NSC) ensemble classifier. Using feature extraction,
NSC Five different types of characteristics are
selected for this paper:

The byte count function. As far as we are aware, a
computer's files are entirely composed of binary and
hexadecimal code. It makes sense to count the
numbers in raw exe files. The first 4096 number
strings of exe files are obtained using the PE header

as shown below.

dERTRESTE

AN

Fig. 1. Number string of exe files.
This is a series of strings from 0-255, and a label 0/1

is at the beginning. We count the number of 0-255s in

all strings and make labs files using them.
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Fig. 2. Labs files

A labs file is a common data format in machine

learning. Each line in it starts with a label and some
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data such as x:y, which means that dimension x’s
value is y. In the labs, a label of 0 represents malware
and 1 represents safe software, while x: y means that
in this exe file, the number x occurs y times.

C. Model Selection

The characteristic data that are obtained by the static
and dynamic analysis of the malicious code can be
used as inputs into the machine learning algorithm
training in order to generate a corresponding
malicious code classifier.

The Naive Bays is a simple method to build a
classifier. In many practical applications, the Naive
Bayesian model

Parameter estimation uses the maximum likelihood
estimation method. In other words, the Naive
Bayesian model

Can work without the Bayesian probability or any
Bayesian model [39].

The KNN algorithm is one of the most intuitive
machine learning algorithms. One of the KNN's
strengths is to support "enhanced learning," where
new samples of the training set can be trained as
being incremental without having to retrain the model
[38, 40].

The SVM algorithm tries to find a linear hyper plane
for binary classification. The SVM and KNN
algorithms are

More efficient when dealing with smaller samples,
but as the data sets increase in size, the SVM and
KNN become

Computationally expensive [39].

Random Forests are a kind of bagging model, which
is a joint prediction model that is composed of
multiple decision trees. If the model we train in the

process is a decision tree, then we will get a Random
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Forest. For a wide variety of data, it can produce
high-accuracy classifiers. It can handle a large
number of input variables. It can assess the
importance of variables when determining categories.
Additionally, the learning process is very fast.

The naive Bayes, SVM, KNN [39] and Random
Forest [25] are 4 traditional learning models. There
are also some new machine learning models that
were invented in recent years. XGBoost is an open-
source software library that provides the gradient
boosting framework for C++, Java, Python, R, and
Julia. The biggest feature of XGBoost is that it can
automatically use the CPU's multithreading to
improve the algorithm’s accuracy. It has gained much
popularity and attention recently as it was the
algorithm of choice for many winning teams of a
number of machine learning competitions.
(Wikipedia) CART (regression tree) is the most basic
part of XGBoost. It builds a classification tree based
on training characteristics and training data, and
determines the prediction result of each

Piece of data. The construction of the tree uses the
gin index to calculate the gain and select the features
of the tree. The formula of the gin index is given as
formula (1), and the gain formula of the gin index is

given as formula (2)

K
Gini(D) =2 p,(1-p,) (1)
Eal

Pk represents type k’s probability in dataset D, and a

large K means a large number of types in D.

Gini(D.A) = % Gini(D,) + % Gini(D,) (2)
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D represents the entire dataset; D1 and D2 represent
the datasets with feature A in the dataset and the
datasets with

Feature non-A, respectively; and Gini(D1) denotes
the gini index of the datasets with feature A.

In XGBoost [19], the objective function is
approximated by a second-order Taylor expansion
and the time complexity significantly decreases. It
also defines the complexity of the tree and applies it
to the target function, which can dynamic grow the
tree through splitting and segment evaluations at the
split nodes. These are the advantage of XGBoost that
traditional boosting algorithms do not have.
LightGBM [20] is another kind of boosting model. It
is a fast, distributed, high performance gradient
framework based on decision tree algorithms, which
is used for ranking, classification and many other
machine learning tasks. It is under the umbrella of the
DMTK project of Microsoft. The shortcomings of
XGBoost are as follows: (1) each iteration requires
traversing the entire training data multiple times. (2)
When traversing each split node, a split-gain
calculation is needed, which consumes a lot of time
too. In this paper, the models we use are XGBoost,
LightGBM

And Random Forest. We tested the SVM (Support
vector machine) before, but the running speed is too
slow and the

Performance is not good enough, and so we
ultimately decided to use these 3 models.

IV. EXPERIMENTAL ANALYSIS

In order to illustrate the performance differences
between the models, between the features and even
between different dimensions in the same feature, we

extract 27 subdivided features, including the byte
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count (256d, where d represents dimensions), opcode
1-gram (150d), opcode 2-4-grams (150, 450, and
750d), daf 1-gram (150d), daf 2-4-grams (150, 450,
and 750d), segment (150, 450, and 750d) and dll
(150, 450, and 750d), and conduct 81 experiments
(we run each feature’s libsvm file in XGBoost,
LightGBM and Random Forest). The training set is
from Secure Age’s malware sample from 04/2017
and the test set is the sample from 05/2017. The
experiments include 4 parts:

1. Testing the effect of each feature and model in this
practical dataset.

2. Testing which model performs the best for a
certain feature.

3. Testing which feature performs the best on the
whole.

4. Testing which dimension leads to the best results
with respect to a certain feature.

For opcode and daf features, we assess the
evolutionary trend from I-gram to 4-grams and
whether opcode or daf is better. For a certain model,
we also test which kind of feature that model prefers
to use.

Three measures are adopted to evaluate them.

1. AUC (area under the curve): If a positive sample
and a negative sample are randomly selected, the
AUC gives the

Probability that the classifier correctly gives the
positive sample a higher score than the negative
sample [21]. The

Higher the AUC value is, the stronger the sorting
ability of the model [22].

2. Precision and Recall: In this dataset, we define the
number of positive samples as P and the number of

negative samples as N (malware or legitimate
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software). In the first case, for a sample, if the
prediction is positive and it is actually positive, we
call it a true positive (7P). In the second case, if the
prediction is positive and the actual value is negative,
we call it a false positive (FP). In the third case, if the
prediction is negative and the actual value is positive,
it is called a false negative (FN). In the last case, if
the prediction is negative and the actual value is
negative, it is called a true negative (7N) [39, 40].
Each sample can only belong to one of these four
cases. There is no other possibility. Then, we have
the following: P=TP+FN, N=TN+FP, Precision-
P=TP/TP+FP, Precision-N=TN/TN+FN, Recall-
P=TP/P, and Recall -N=TN/N. Recall reflects the
ability of the classification model to identify P/N
samples. The higher the recall is, the stronger the
model's ability to identify P/N samples. The precision
[23] [41, 42] reflects the ability of the model to
discriminate N/P samples.

3. Accuracy: TP+TN/P+N. It reflects the accuracy of
the classifier on the whole, that is, the proportion of
correct

Predictions. First, compare the three models from the
scale of features. The comparison for the byte count
feature is shown in Fig. 4.

Byte count has only one dimension, 256, since there
are 256 possible numbers in the byte count (0-255).
LightGBM

Performs the best for byte count. The comparison for
the instruction 1-4-grams features is shown in Fig. 5.
For the

Instruction 1-gram, there are only 160+ kinds of
instructions in the X86 assembly language, and so it

has only 1 dimensions:
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150. For the 2-4-grams, we give it the 3 dimensions
of 150, 450, and 750, which mean that we count the
150, 450, and 750 most common instructions,
respectively. We also test 3 dimensions in the
remaining features except for daf 1-gram since we

want to compare it with the instruction 1-gram.
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Fig. 5. Comparison for instruction 1-4-grams features
for 1-gram and 2-grams, XGBoost is a little better
than LightGBM, while for 3-grams and 4-grams, the
result is just the opposite. However, in regard to the
dimensions, the conclusion is the same, regardless of
the model. 750d is better than 450d, and 450d is
better than 150d. If we compare the best accuracy of
1-4-grams, we can find that 2-grams >1- gram >3-
grams >4-grams. The comparison for the daf 1-4-

grams features is shown in Fig. 6.
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Fig. 6. Comparison for daf 1-4-grams features
LightGBM is always the best in 1-4-grams.
Furthermore,

We have same dimensional comparison result of
750d>450d>150d and the almost same result for the
different grams of 1-gram>2-grams>3-grams>4-
grams. Compared with the simple opcode feature
[24], the opcode is better than the daf feature by
2.5%. The comparison for the segment feature is
shown in Fig. 7.
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Fig. 7. Comparison for segment feature

LightGBM is the best in this feature, while to my
surprise, 450d is better than 750d and 750d is better
than 150d. The comparison for the DIl function

feature is shown in Fig. 8.
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Fig. 8. Comparison for DIl function feature
In this feature, all of the 3 models do not perform

well. If we must evaluate them, LightGBM is still the

best, and
750d>450d>150d.
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Fig. 9. XGBoost comparison

Second, we compare the three models from the scale
of models. The comparison for XGBoost, LightGBM
and Random Forest [25] are shown in Fig. 9, Fig. 10,
and Fig. 11 respectively.

As is shown, XGBoost and LightGBM prefer the
750d feature while Random Forest prefers 450d
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feature. They all prefer the Sequence-based feature

types rather than the API Call-based feature types.
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Fig. 10. LightGBM Comparation Fig. 11. Random
Forest Comparison In general, we can say that
opcodel-gram, 2-grams, daf 1- gram and segment
count are the 4 most effective features. For the grams,
1 and 2 are better than 3 and 4, perhaps because 1-
gram and 2-grams have more identifiable grammar
[26]. For the dimension, the greater the dimension is,
the better the result but the Random Forest may not
be able to deal with too much noise in high
dimensions, while XGBoost and LightGBM perform
well. For the models, Random Forest is significantly
worse than the other 2 models. In some features,
XGBoost has better performance, while for most
features, LightGBM is better. LightGBM is indeed an

optimized version of XGBoost.
CONCLUSION

The use of machine learning techniques in the
identification of dangerous code has been
increasingly appreciated by the academic community
and various security companies due to the complexity
of malware codes hidden in health sensor data [27-
30, 38, 40]. This study, which is founded on the idea
of machine learning, integrates the benefits of many

models [31-33, 36-37] and addresses static code
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analysis using various machine learning methods and
code attributes. For the design and implementation of
malware detection technologies for machine learning
in the future, this study may serve as a useful
reference [34]. This section is still in the developing
stage, nevertheless. Below is a list of all the duties
and difficulties that still need to be accomplished.

1. A lack of useful data: To create an efficient model,
a machine learning algorithm often has to be trained
on tens of thousands of data points [35]. These
fundamental data must often be acquired manually,
and the speed cannot be guaranteed [36, 37].

2. Interpretable outcomes are lacking: Internally, this
is due to the fact that we just know that numerous
features are beneficial without understanding why.
The biggest hurdle in the future will be how this issue

is interpreted.
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