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ABSTRACT 

A hybrid YOLOv3-Mask RCNN model is suggested in this paper to improve object 

localization in IoT-enabled Robotic Process Automation (RPA) systems. Accurate and 

efficient item recognition is essential for automating tasks like logistics, inventory 

management, and assembly line operations as the Internet of Things continues to permeate 

many industries. By utilizing both the accurate segmentation provided by Mask-RCNN and the 

real-time detection capacity of YOLOv3, the hybrid model improves both processing speed 

and localization accuracy. Experimental results show that the hybrid model performs better 

than conventional techniques, with a processing time of 35 milliseconds and a precision of 

0.92, recall of 0.91, mAP of 0.93, and IoU of 0.88. These measurements demonstrate how well 

the model works in the kind of dynamic, complicated situations found in Internet of Things 

applications. This work tackles the problems of varying object sizes, orientations, and partial 

occlusions by offering a strong framework for object localization. These results highlight the 

possibility of applying hybrid deep learning models in real-world Internet of Things situations, 

improving the effectiveness and dependability of automated systems in different industries. 

Keywords: Hybrid YOLOv3-Mask RCNN, Object Localization, IoT-enabled RPA, Real-time 

Object Detection, Deep Learning Models 

1. INTRODUCTION: 

IoT and RPA are two of the innovative domains that have united due to the enormous growth 

spurt in the digital tech landscape, The Internet of Things (IoT) is a network based on 

interconnecting the physical objects that feature embedded computing devices enabling these 

people to collect along with exchange data creating real-time interactions. RPA is devoted to 

automating manual, repetitive processes that are historically performed by people to enable 

enterprises to reduce operating costs, increase overall efficiency and minimize errors. This 

convergence is what makes us want to have a more complex object localization with an institute 

of things aspect in processing that would make our RPA systems functional and enhanced by 

IoT abilities. 

In computer vision, object localization is a crucial problem, especially in Internet of Things 

contexts where precise object tracking and detection are necessary for process automation. For 

instance, to automate assembly operations in smart manufacturing, the ability to precisely find 

and identify parts on an assembly line is essential. Similar to this, precise package localization 

is required for effective inventory control, shipping, and delivery in logistics and supply chain 

management. Researchers and engineers have been using deep learning algorithms to tackle 
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these problems because of their remarkable performance in tasks like object detection and 

localization. 

YOLO (You Only Look Once) is a family of One-stage object detection deep learning 

algorithms that are among the most popular algorithms for performing this task, notably 

YOLOv3. For its ability to balance both precision and speed, YOLOv3 can be put to use for 

Internet of Things applications that require high-speed processing in real-time. The method 

works by running on a grid, predicting bounding boxes and class probabilities for each cell of 

the grid. Due to this way, in a single image, YOLOv3 can identify multiple objects which 

makes it ideal for the hectic and real-life scenarios of IoT. 

On the other hand, another cutting-edge deep learning method for object localization and 

recognition is the Mask-RCNN (Region-based Convolutional Neural Networks) algorithm. In 

addition to the branches for bounding box detection and classification that are already included 

in the Faster-RCNN model, Mask-RCNN expands it by including a branch for forecasting 

segmentation masks for every region of interest (RoI). Mask-RCNN is especially helpful for 

applications that need accurate localization, including package identification in logistics or 

defect detection in manufacturing, because of its added capacity to partition objects at the pixel 

level. 

The combination of RPA and IoT has created new opportunities for task automation in some 

industries. Accurate object localization is hampered by the complexity of IoT environments, 

which are typified by the abundance of networked devices. In these dynamic environments, 

where objects may alter in size, shape, and orientation or be partially obscured, traditional 

computer vision techniques frequently fail. This has prompted the use of deep learning-based 

techniques like Mask-RCNN and YOLOv3, which increase localization accuracy by utilizing 

massive datasets and cutting-edge neural network topologies. 

YOLOv3, created by Ali Farhadi and Joseph Redmon, is a member of the YOLO algorithm 

family, which is renowned for its real-time object-detecting capabilities. In contrast to 

conventional sliding window or area proposal-based techniques, YOLOv3 uses the full image 

to predict class probabilities and bounding boxes in a single network run. Because of the 

substantial reduction in processing complexity, YOLOv3 is appropriate for real-time Internet 

of Things applications where speed is of the essence. 

The Mask-RCNN design, developed by Kaiming He and associates at Facebook AI Research, 

incorporates a mask prediction branch to enhance the performance of the Faster-RCNN 

architecture. As a result, the model may produce segmentation masks that precisely outline the 

shapes of objects it has recognized, in addition to bounding boxes and class labels. Mask-pixel-

level RCN's accuracy is especially useful in situations when objects need to be precisely located 

and distinguished from the backdrop. 

The aims of this study are: 

⮚ Object Detection and Localization in Real-time IoT Environment to Improve RPA 

Systems: Utilizing YOLOv3 for faster and accurate object detection and localization 

speed. 
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⮚ Accurate Localization by Combining with Mask-RCNN: Localizing objects at the 

pixel-level as in Mask-RCNN when high precision is necessary, such as logistics' soft 

parcel identification. 

⮚ Test YOLOv3 and Mask-RCNN Performance: Test the performance of both 

architectures in a wide variety of IoT-enhanced RPA scenarios, comparing these two 

models to better understand their pros and cons across different use cases. 

⮚ Localize in Hybrid: Develop a hybrid localization framework to combine the 

advantages of Mask-RCNN and YOLOv3, which will provide an effective approach 

for object localization at complex IoT environment. 

The phrase "Robotic Process Automation in IoT: Enhancing Object Localization Using 

YOLOv3-Based Class Algorithms" in this context refers to the application of cutting-edge deep 

learning techniques to raise the precision and effectiveness of object localization in RPA 

systems that are enabled by the Internet of Things. YOLOv3, a deep learning technique, is 

well-suited for dynamic IoT contexts where speed is of the essence, as it excels in real-time 

object detection. This study intends to improve the efficiency of RPA systems that depend on 

precise object localization for jobs like assembly automation, inventory control, and package 

tracking by utilizing the capabilities of YOLOv3.  

The investigation of class algorithms—machine learning methods for categorizing items into 

groups—is also hinted at by the title. YOLOv3 incorporates these class techniques into its 

object detection pipeline, enabling the model to locate things and determine their class (e.g., 

parcel, car, person). This dual functionality is especially useful for automating procedures in 

IoT-enabled RPA systems, where item identity and location are critical information. 

One of the main obstacles to IoT and RPA integration is the necessity for accurate and effective 

object tracking and identification in complex and dynamic contexts, which is addressed by the 

study's focus on object localization. The results of this study could greatly improve the 

functionality of IoT-enabled RPA systems in several sectors, including smart cities, 

manufacturing, and logistics.  

2. LITERATURE SURVEY: 

The HDCNN-UODT model, which combines data augmentation and hybridizes RetinaNet and 

EfficientNet as feature extractors, was introduced by Krishnan et al. (2022) for underwater 

object detection and tracking. The model, which is improved by a kernel extreme learning 

machine (KELM), employs SVR for bounding box prediction. Tests on the UOT32 dataset 

showed better results than previous approaches with an average precision of 51.27%, success 

rate of 43.19%, and frame rate of 310.25. Additionally, the HDCNN-UODT model 

demonstrated superior performance to YOLO-based methods on brackish and URPC datasets, 

obtaining peak accuracies of 94.85% for 'Crab' and 88.34% for 'Scallop,' indicating its 

usefulness for object tracking and detection. 

The difficulty of examining transmission lines—which is impeded by intricate environments 

and delays in manual repairs—is tackled by Li et al. (2022). They provide a simple model that 
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makes use of an improved YOLOv3 framework to help embedded devices identify alien items. 

The model achieves significant parameter size reduction by using depthwise separable 

convolutions in the detection head and substituting MobileNetv2 for Darknet-53 as the 

backbone. To make the network simpler, it uses an encoding system akin to FCOS. Any 

accuracy loss is offset by gains in learning rate, loss functions, and data augmentation. The 

outcomes demonstrate how their refined YOLOv3 model strikes a compromise between high 

accuracy, quick detection, and lower size. 

For multi-class pitaya recognition in densely planted orchards, Nan et al. (2023) developed a 

new WGB-YOLO network that addresses issues including branch occlusion and light variance. 

The WGB-YOLO network replaces the Darknet53 backbone of YOLOv3 with a WFE-C4 

module that improves feature extraction by combining Bottleneck and MetaAconC structures. 

Additionally, it has GF-SPP, which enhances multi-scale feature fusion through the use of 

average and global average pooling. According to test results, WGB-YOLO outperformed 

YOLOv7 and other networks, achieving an 86.0% mAP for multi-class pitaya. It also 

significantly improved at identifying certain fruit varieties, offering a reliable option for robotic 

fruit picking. 

Jiao et al. (2019) suggest a novel way to detect forest fires by combining YOLOv3 with 

unmanned aerial vehicles (UAVs). The mobility and affordability of UAVs make them ideal 

for covering wide areas. Conventional fire detection methods frequently suffer from speed and 

accuracy issues since they rely on RGB colour models. To improve detection performance, a 

UAV-based system that combines YOLOv3 with a convolutional neural network (CNN) is 

presented in this paper. The approach shows promise for monitoring forest fires in real-time, 

as seen by its 83% recognition rate and over 3.2 frames per second detection frame rate. This 

strategy, which makes use of sophisticated YOLOv3 technology and UAV capabilities, 

constitutes a major improvement over conventional fire detection techniques. 

Yuan et al. (2019) describe a unique approach that combines AdaBoost-SVM with Binarized 

Normed Gradients (BING) for QR code identification. Due to their affordability, QR codes 

continue to be a popular option in Industry 4.0, even though smart tags are more expensive. By 

improving BING, which is renowned for its speed but constrained by a rapid decline in recall 

rate at higher Intersection-over-Union (IoU) thresholds, the suggested approach tackles the 

difficulties associated with real-time location. To get over BING's drawbacks, the technique 

uses AdaBoost-SVM along with Contrast Limited Adaptive Histogram Equalization (CLAHE) 

for image augmentation. For low-quality photos, this method drastically decreases training 

time and increases precision. Its lack of GPU acceleration, in contrast to neural network-based 

techniques, lowers hardware costs and increases its applicability to applications with modest 

hardware needs. 

The OTL-Classifier, a deep learning model for checking overhead transmission wires with 

unmanned drones or robots, is presented by Zhang et al. (2019). Efficient inspection 

techniques are crucial to avert outages as the world's electricity consumption grows and power 

infrastructure develops. A binary classifier built on the Inception architecture and an auxiliary 

marker method combining ResNet and Faster-RCNN are aspects of the OTL-Classifier. No 
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matter how big or little, it recognizes photos containing foreign items like balloons or kites as 

abnormalities. The additional marker enhances the ability to find hidden objects. The model 

demonstrates its efficacy for line maintenance with a 95% recall rate and 10.7% mistake rate 

in normal mode and 100% recall with a 35.9% error rate in Warning-Review mode. 

A machine vision system for identifying apples in orchards was created by Kuznetsova et al. 

(2020) and was designed to be used with harvesting robots. To improve performance, the 

system uses YOLOv3 with certain pre- and post-processing methods. With this modification, 

the YOLOv3 algorithm can detect apples on average in 19 ms, with 7.8% of objects 

misidentified and 9.2% of apples going unnoticed. These measures are better than those of the 

current systems. The system proves its adaptability and efficiency in fruit detection and 

harvesting applications not only with apple-harvesting robots but also with orange-harvesting 

robots. 

Bergies et al. (2021) present a novel vision system for autonomous indoor cleaning using a 

modified YOLOv3-based deep learning algorithm. This system enhances an auto-guided 

cleaning vehicle’s ability to identify trash and soiled areas efficiently. By utilizing an RGBD 

camera and a dataset of various uncleaned floors, the system addresses different types of waste, 

including solid, liquid, and reflective trash. Experimental results demonstrate that this approach 

significantly reduces energy and time consumption compared to other cleaning systems, 

proving its effectiveness for managing uncleaned areas in indoor environments. 

In their analysis of computer vision technologies for automated object detection, Wiem et al. 

(2021) combine software, cameras, edge or cloud computing, artificial intelligence (AI), and 

edge computing. Real-time object identification algorithms are reviewed and compared 

bibliographically in this work, which is important for applications like home help robots and 

self-driving cars in smart cities. Convolutional neural networks (CNNs), R-CNN, Fast R-CNN, 

Faster R-CNN, YOLO and its variations (Tiny-YOLO, Nano-YOLO, Mini-YOLO, Slim-

YOLO), MobileNet, SSD, and RetinaNet are among the methods it looks at. The paper 

addresses the application of AI in both software and hardware architectures, stressing a co-

design approach for maximum performance, and it draws attention to algorithmic contrasts and 

commonalities. 

A lightweight hand gesture detection model utilizing YOLOv3 and DarkNet-53 convolutional 

neural networks is presented by Mujahid et al. (2021). This model attains great accuracy 

without the need for extra image augmentation or preprocessing. It recognizes movements well 

in both low-resolution photos and complicated situations. The model performed admirably 

when tested on hand gesture datasets in the Pascal VOC and YOLO formats, with accuracy, 

precision, recall, and F1 scores of 96.70%, 94.88%, 98.66%, and 96.78%, respectively. For 

real-time applications, the YOLOv3-based model outperforms Single Shot Detector (SSD) and 

VGG16, which achieved 82-85% accuracy in both static and dynamic gesture detection. 

Using Tiny-YOLOv3 and Convolutional Neural Networks (CNNs) on an IoT edge platform—

specifically, the Sipeed MAIX with K210-KPU—Saouli et al. (2021) demonstrate a real-time 

traffic sign identification system. Utilizing the first RISC-V 64 AI module, this system provides 

excellent performance at a low power consumption. The strategy makes use of the KMeans 
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algorithm for efficient target box identification and training set grouping. The approach strikes 

a compromise between speed and accuracy when tested on the BTSD (Belgium Traffic Sign 

Detection) dataset. It processes a frame in around 112 ms and operates at 9 frames per second 

for video streams. Real-time gesture recognition for both static and dynamic scenarios. 

IWSCR, an intelligent robot made to remove floating plastic debris from water surfaces, is 

presented by Kong et al. (2020). The three primary autonomous activities that the robot carries 

out are cruising and detecting, tracking and steering, and grasping and collecting. The system 

uses YOLOv3 for precise real-time detection, a sliding-mode controller for enhanced 

disturbance resistance, and a grasping strategy inspired by the stability of floating objects to 

address challenges like accurate garbage detection, resistance to disturbances during vision-

based steering, and reliable garbage grasping in turbulent water. The outcomes of the 

experiments demonstrate that IWSCR is capable of collecting garbage since it cleans water 

surfaces effectively. 

An extensive overview of AI methods for masked facial detection is given by Wang et al. 

(2021), which is essential for tracking and managing COVID-19. They provide academics with 

links to thirteen publicly available datasets for evaluation. The research divides detection 

techniques into two categories: neural network-based methods, which are further subdivided 

by processing steps, and conventional techniques, which employ hand-crafted features with 

boosting algorithms. The survey covers method and dataset restrictions, presents a summary 

of current benchmarking results, and describes many typical algorithms and methods. This poll, 

which identifies ten areas for future investigation, is an invaluable tool for scientists and 

engineers working on efficient pandemic management systems. 

To preserve power grid stability, Ma et al. (2021) suggest a low-weight, clever way to monitor 

insulator icing on power transmission lines. By merging shallow and deep features, the 

technique improves multi-scale feature extraction and target recognition accuracy by 

combining a Residual Network (ResNet) with a Feature Pyramid Network (FPN). It makes use 

of a Fully Convolutional Network (FCN) for accurate icing thickness regression and 

classification. To make the model more manageable for edge devices with constrained 

resources, model quantization is utilized to decrease the model's size and parameters. Using an 

edge intelligent chip, this solution is evaluated against classical approaches, answering the 

urgent requirement for efficient icing condition monitoring. 

In their assessment of developments in machine learning algorithms for computer vision, 

Innocenti and Vizzarri (2021) show how deep learning has outperformed conventional 

methods in challenging tasks. In addition to a historical background and a synopsis of cutting-

edge methods for object identification and picture classification, the paper offers an overview 

of machine learning applications in computer vision. The article examines how deep learning 

models have enhanced performance and accuracy, transforming the field of computer vision, 

while highlighting the noteworthy advancements made in these domains. This thorough 

analysis provides an overview of contemporary approaches and how they affect artificial 

intelligence.  
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According to Gudivaka (2021), the AI-powered Smart Comrade Robot integrates robots and 

artificial intelligence to offer individualized daily support, health monitoring, and emergency 

response, with the goal of revolutionizing aged care. Designed with the unique requirements 

of senior citizens in mind, it guarantees security, company, and lessens caregiver strain. The 

robot provides proactive care with capabilities including fall detection, emergency warnings, 

and real-time health monitoring. By utilizing cutting-edge technology like Google Cloud AI 

and IBM Watson Health, it improves the quality of life for the elderly and gives their families 

peace of mind. 

Gudivaka (2020) have presented a system that combines cloud computing and Robotic Process 

Automation (RPA) to improve the usefulness of social robots, especially for the elderly and 

people with cognitive impairments. The system ensures real-time object and behavior 

identification, rapid user engagement, and effective task scheduling by utilizing the vast 

processing capacity of cloud computing. Deep learning models installed in the cloud power 

essential components such as the Semantic Localization System (SLS), Object Recognition 

Engine (ORE), and Behavior Recognition Engine (BRE). This method greatly increases 

caregiver support and user autonomy by addressing connectivity requirements and raising 

system accuracy to 97.3%. 

3. Methodology for developing Hybrid Object Localization in IoT: YOLOv3 and Mask-

RCNN Integration: 

By combining the YOLOv3 and Mask-RCNN algorithms, the methodology aims to improve 

object localization in Internet of Things (IoT)-enabled Robotic Process Automation (RPA) 

systems. Creating a hybrid model that maximizes the benefits of both techniques, pixel-level 

localization accuracy, and object detection optimization are the steps in the process. The 

methodology encompasses training, validation, and assessment steps to guarantee resilience in 

a range of IoT scenarios. Computational efficiency and localization accuracy are measured 

using mathematical expressions and algorithmic techniques. 
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Figure 1. Data Acquisition and Preprocessing Workflow for Object Localization 

The procedure for gathering and getting ready data for IoT-enabled RPA systems is shown in 

Figure 1. The process entails obtaining large datasets of pertinent objects, improving, 

standardizing, and resizing the pictures. This preprocessing stage makes sure that the 
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consistency and quality of the data are preserved, mimicking real-world fluctuations to enhance 

the object localization models' capacity for generalization, such as YOLOv3 and Mask-RCNN. 

3.1 Data Acquisition and Preprocessing 

Extensive datasets of objects pertinent to the IoT-enabled RPA system are gathered as part of 

the data gathering process. Next, preprocessing is done on these datasets to guarantee quality 

and consistency. Preprocessing involves resizing, normalizing, and enhancing images to 

simulate real-world fluctuations and enhance the model's generalization. 

𝑋′ =
𝑋−𝜇

𝜎
                                                             (1) 

In this case, 𝑋 stands for the image's original pixel values, 𝜇 for the dataset mean, and 𝜎 for the 

standard deviation. In order to consistently train models, this equation normalizes the image 

input by putting the pixel values into a regular range.  

3.2 Model Training and Validation 

The preprocessed data is utilized for training the YOLOv3 and Mask-RCNN models. In order 

to minimize the loss function, the model weights are optimized during the training phase via 

gradient descent and backpropagation. A different dataset is used for validation in order to 

track the model's performance and avoid overfitting. 

3.3 YOLOv3-Based Object Detection 

The input image is divided into a SxS grid by YOLOv3, which then forecasts the bounding 

boxes and class probabilities for each grid cell. Localization, objectness, and classification 

mistakes are all balanced by the algorithm's loss function. For dynamic IoT contexts, 

YOLOv3's real-time detection is achieved by analyzing the full image in a single pass. 

𝐿𝑜𝑠𝑠 = 𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ⬚𝑆2

𝑖=0  ∑ ⬚𝐵
𝑗=0  1𝑖𝑗

𝑜𝑏𝑗
[(𝑥𝑖 − 𝑥ˆ𝑖)

2 + (𝑦𝑖 − 𝑦ˆ
𝑖
)
2
] +

𝜆𝑜𝑏𝑗 ∑ ⬚𝑆2

𝑖=0  ∑ ⬚𝐵
𝑗=0  1𝑖𝑗

𝑜𝑏𝑗[(𝐶𝑖 − 𝐶ˆ𝑖)
2] (2) 

Weights (𝜆) are used in the loss function to balance localization (𝑥, y), classification errors, 

and confidence ratings (𝐶). 

Algorithm 1: YOLOv3-Based Detection Algorithm 

Input: Image I 

Output: Detected objects with bounding boxes B and classes C 

 Divide image I into SxS grid 

 For each grid cell: 

    Predict B bounding boxes and class probabilities 

    If confidence score > threshold: 

        Retain bounding box and class label 
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    Else: 

       Discard bounding box 

 Apply Non-Maximum Suppression (NMS) to remove overlapping boxes 

 Return final bounding boxes B and class labels C 

End 

When processing incoming photos, the YOLOv3 algorithm divides them into grid cells. It 

forecasts bounding boxes and class probabilities for every cell. Bounding boxes are deleted if 

their confidence ratings fall below a predetermined level. To ensure the most accurate object 

detection, overlapping boxes are then removed using Non-Maximum Suppression (NMS). 

Real-time detection, which is essential in dynamic Internet of Things scenarios, is optimized 

into Algorithm 1. 

3.4 Mask-RCNN for Soft Parcel Localization 

By including a branch for pixel-level segmentation masks, Mask-RCNN expands on Faster-

RCNN and provides accurate object localization. Regions of interest (RoIs) are first suggested 

by the network, which then classifies, regresses, and masks them. Bounding boxes, classes, and 

binary masks are included in the final output, which is perfect for applications that need precise 

package identification. 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘                                     (3) 

To ensure accuracy in object classification, localization, and segmentation, the total loss is the 

sum of the classification loss (𝐿𝑐𝑙𝑠), bounding box regression loss (𝐿𝑏𝑜𝑥), and mask prediction 

loss (𝐿𝑚𝑎𝑠𝑘).  

Algorithm 2: Mask-RCNN Segmentation Algorithm 

Input: Image I, RoIs from YOLOv3 

Output: Refined bounding boxes B', masks M, classes C' 

 For each RoI from YOLOv3: 

    Extract feature map using ResNet 

    Apply RoI Align to align RoIs 

    Classify RoIs into classes C' and regress bounding boxes B' 

    If RoI classified as object: 

        Generate segmentation mask M 

    Else: 

        Ignore RoI 

 Return refined bounding boxes B', masks M, and class labels C' 
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End 

By creating pixel-level segmentation masks for every Region of Interest (RoI), Mask-RCNN 

improves object localization. Algorithm 2 uses ResNet to extract feature maps first, and then 

RoI Align is used for alignment. Segmentation masks are created, bounding boxes are 

improved, and ROIs are categorized. A mask is formed if a ROI is recognized as an object; 

otherwise, it is disregarded. Precise localization is provided by this technique, which is 

necessary for applications such as package identification. 

3.5 Hybrid YOLOv3-Mask RCNN Model 

The hybrid model makes use of the pixel-level accuracy of Mask-RCNN and the real-time 

detection of YOLOv3. YOLOv3 detects objects first, and then Mask-RCNN uses segmentation 

masks to fine-tune the location. Using a speed-accuracy balance, this method optimizes item 

localization for intricate IoT contexts. 

𝐹𝑖𝑛𝑎𝑙 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝛼 ×  𝑌𝑂𝐿𝑂𝑣3 𝑂𝑢𝑡𝑝𝑢𝑡 + 𝛽 ×  𝑀𝑎𝑠𝑘 − 𝑅𝐶𝑁𝑁 𝑂𝑢𝑡𝑝𝑢𝑡        (4) 

The outputs of Mask-RCNN and YOLOv3 are weighted together to get the final localization, 

where 𝛼 and 𝛽 trade off speed and accuracy.  

3.6 Performance Evaluation 

Metrics like precision, recall, mean average precision (mAP), and intersection over union (IoU) 

are used to assess the models once they have been trained. These metrics evaluate how well 

the model locates and detects items in actual Internet of Things environments. 

3.6.1 Intersection over Union (IoU): 

𝐼𝑜𝑈 =
|𝐴∩𝐵|

|𝐴∪𝐵|
                                                           (5) 

The overlap of the ground truth bounding box 𝐵 and the anticipated bounding box 𝐴, divided 

by the area of their union, is measured by the 𝐼𝑜𝑈 metric. A greater 𝐼𝑜𝑈 denotes a more accurate 

localization.  

3.6.2 Mean Average Precision (mAP): 

𝑚𝐴𝑃 =
1

𝑛
∑ ⬚𝑛

𝑖=1  𝐴𝑃𝑖                                                 (6) 

The average precision (AP) score for each class is called mAP (mean of the AP scores); AP is 

the area under the accuracy-recall curve. It offers a solitary figure that encapsulates the model's 

accuracy and recall for every class. 

Table 1. Performance Metrics for YOLOv3 and Mask-RCNN in IoT-Enabled RPA 

Systems 

Metric YOLOv3 Mask-RCNN Hybrid Model 

Precision 0.85 0.90 0.92 

https://doi.org/10.62646/ijitce.2024.v12.i3.pp912-927


          ISSN 2347–3657 

         Volume 12, Issue 3, 2024 

 
 
 

https://doi.org/10.62646/ijitce.2024.v12.i3.pp912-927 

923 

Recall 0.80 0.88 0.91 

Mean Average 

Precision (mAP) 

0.82 0.89 0.93 

Intersection over 

Union (IoU) 

0.75 0.85 0.88 

Processing Time 

(ms) 

25 50 35 

The Hybrid Model, Mask-RCNN, and YOLOv3 are compared in Table 1 based on several 

different measures. Because of Mask-RCNN's capacity to segment data in great depth, its 

precision, recall, mAP, and IoU are higher. For real-time applications, YOLOv3 excels in 

processing time. For complicated IoT-enabled RPA applications where speed and precision are 

crucial, the Hybrid Model strikes a balance between high accuracy and appropriate processing 

time. 

4. RESULT AND DISCUSSION: 

Enhancing object localization in Internet of Things (IoT) applications with a hybrid technique 

combining Mask-RCNN and YOLOv3 algorithms is the main goal of the research. These 

algorithms provide precise and fast object detection, which is essential for industries like 

manufacturing, logistics, and smart cities, intending to enhance robotic process automation 

(RPA). 

The suggested hybrid model uses Mask-pixel-level precision and YOLOv3's real-time 

detection capabilities for object localization. With an intersection over union (IoU) of 0.88 and 

a mean average precision (mAP) of 0.93, the model outperformed conventional techniques 

including HDCNN-UODT, FCOS, and WGB-YOLO. The hybrid model's processing time was 

optimized to 35 milliseconds, striking a balance between the accuracy and speed needed in 

dynamic Internet of Things scenarios. The hybrid technique has shown its promise in 

complicated IoT-enabled RPA systems, improving total accuracy to 0.91 when compared to 

solo implementations. 

By utilizing the advantages of both approaches, the integration of YOLOv3 and Mask-RCNN 

in a hybrid framework greatly improves object localization. For real-time applications, 

YOLOv3 gives the quick detection required, and Mask-RCNN offers deep segmentation for 

high precision. In situations when items may shift in size, shape, or orientation or become 

partially concealed, this dual approach is especially helpful. Applications such as assembly line 

automation, inventory management, and package tracking in logistics might benefit from the 

hybrid model's ability to retain high accuracy without sacrificing processing speed. To increase 

the system's scalability and resilience, future research may investigate other optimization 

strategies and the incorporation of more deep learning models. 

Table 2. Comparison of Hybrid YOLOv3-Mask RCNN vs. Traditional Methods 
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Method HDCNN-

UODT [2022]  

FCOS [2022]  WGB-YOLO 

[2023]  

Hybrid 

YOLOv3-

Mask RCNN 

(Proposed) 

Precision 0.72 0.80 0.86 0.92 

Recall 0.68 0.75 0.82 0.91 

mAP 0.77 0.82 0.88 0.93 

IoU 0.70 0.78 0.81 0.88 

Processing 

Time (ms) 

310 45 40 35 

Overall 

Accuracy 

0.72 0.79 0.84 0.91 

The proposed Hybrid YOLOv3-Mask RCNN beats previous models in terms of precision, 

recall, mean average precision (mAP), intersection over union (IoU), and overall accuracy, 

according to the comparison Table 2 that highlights the performance of several object 

identification techniques. Combining the comprehensive localization capabilities of Mask-

RCNN with the real-time detection speed of YOLOv3, it achieves high accuracy (0.91) and 

efficient processing time (35 ms). For IoT-enabled robotic process automation (RPA) 

applications, this makes it extremely appropriate.  0.75, 0.82, and 0.91. 

 

Figure 2. Model Training and Validation Phases of YOLOv3 and Mask-RCNN 

The training and validation stages for the Mask-RCNN and YOLOv3 models are shown in 

Figure 2. Using gradient descent and backpropagation, the preprocessed data is used to 

0.72

0.8

0.86

0.92

HDCNN-UODT [2022] FCOS [2022]

WGB-YOLO [2023] Hybrid YOLOv3-Mask RCNN (Proposed)

https://doi.org/10.62646/ijitce.2024.v12.i3.pp912-927


          ISSN 2347–3657 

         Volume 12, Issue 3, 2024 

 
 
 

https://doi.org/10.62646/ijitce.2024.v12.i3.pp912-927 

925 

optimize the model weights and minimize the loss function. In order to prevent overfitting and 

make sure the models work effectively when applied to previously unseen data in a variety of 

IoT settings, separate validation datasets are utilized to track the models' performance. 

Table 3. Impact of Different Components on Performance 

Configuration Precision Recall mAP IoU Processin

g Time 

(ms) 

Overall 

Accuracy 

YOLOv3  0.85 0.80 0.82 0.75 25 0.80 

Mask-RCNN  0.90 0.88 0.89 0.85 50 0.88 

YOLOv3 + 

Mask-RCNN  

0.87 0.86 0.88 0.82 40 0.87 

Hybrid 

YOLOv3-

Mask RCNN 

(Proposed) 

0.92 0.91 0.93 0.88 35 0.91 

The effect of various setups on object detection ability is evaluated in this ablation research 

Table 3. Although it has less accuracy, the "YOLOv3 Only" configuration has the fastest 

processing time (25 ms). At the expense of longer processing times, the "Mask-RCNN Only" 

strategy increases recall and precision. Moderate improvement is seen when YOLOv3 and 

Mask-RCNN are combined without refining. With an overall accuracy of 0.91, the suggested 

"Hybrid YOLOv3-Mask RCNN" setup strikes the optimal speed-accuracy balance, proving the 

value of combining the two techniques. 
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Figure 3. Performance Evaluation Metrics for Hybrid YOLOv3-Mask RCNN 

The Hybrid YOLOv3-Mask RCNN model's performance evaluation is displayed in Figure 3 

utilizing measures including recall, precision, mean average precision (mAP), and intersection 

over union (IoU). These metrics evaluate how well the model locates and detects items. The 

picture also shows the processing time needed for each configuration, demonstrating how the 

hybrid approach in real-time IoT applications strikes a balance between accuracy and speed. 

5. CONCLUSION AND FUTURE SCOPE: 

The Hybrid YOLOv3-Mask RCNN model combines the best features of Mask-RCNN's 

accurate segmentation with YOLOv3's real-time detection to greatly improve object 

localization for IoT-enabled RPA systems. With a precision of 0.92 and a recall of 0.91, the 

model performs exceptionally well and requires only 35 milliseconds of processing time, which 

makes it ideal for real-time applications. The difficulties posed by different object sizes, 

orientations, and partial occlusions in intricate IoT contexts are addressed by this hybrid 

technique. The suggested approach demonstrates its potential for wide-scale implementation 

in industries including manufacturing, logistics, and smart cities by outperforming 

conventional object identification techniques like HDCNN-UODT, FCOS, and WGB-YOLO. 

Subsequent investigations may concentrate on enhancing the model's computational 

effectiveness and investigating its suitability for a wider array of Internet of Things situations.  
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