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ABSTRACT

A hybrid YOLOv3-Mask RCNN model is suggested in this paper to improve object
localization in IoT-enabled Robotic Process Automation (RPA) systems. Accurate and
efficient item recognition is essential for automating tasks like logistics, inventory
management, and assembly line operations as the Internet of Things continues to permeate
many industries. By utilizing both the accurate segmentation provided by Mask-RCNN and the
real-time detection capacity of YOLOV3, the hybrid model improves both processing speed
and localization accuracy. Experimental results show that the hybrid model performs better
than conventional techniques, with a processing time of 35 milliseconds and a precision of
0.92, recall 0of 0.91, mAP 0of 0.93, and IoU of 0.88. These measurements demonstrate how well
the model works in the kind of dynamic, complicated situations found in Internet of Things
applications. This work tackles the problems of varying object sizes, orientations, and partial
occlusions by offering a strong framework for object localization. These results highlight the
possibility of applying hybrid deep learning models in real-world Internet of Things situations,
improving the effectiveness and dependability of automated systems in different industries.

Keywords: Hybrid YOLOv3-Mask RCNN, Object Localization, loT-enabled RPA, Real-time
Object Detection, Deep Learning Models

1. INTRODUCTION:

IoT and RPA are two of the innovative domains that have united due to the enormous growth
spurt in the digital tech landscape, The Internet of Things (IoT) is a network based on
interconnecting the physical objects that feature embedded computing devices enabling these
people to collect along with exchange data creating real-time interactions. RPA is devoted to
automating manual, repetitive processes that are historically performed by people to enable
enterprises to reduce operating costs, increase overall efficiency and minimize errors. This
convergence is what makes us want to have a more complex object localization with an institute
of things aspect in processing that would make our RPA systems functional and enhanced by
IoT abilities.

In computer vision, object localization is a crucial problem, especially in Internet of Things
contexts where precise object tracking and detection are necessary for process automation. For
instance, to automate assembly operations in smart manufacturing, the ability to precisely find
and identify parts on an assembly line is essential. Similar to this, precise package localization
is required for effective inventory control, shipping, and delivery in logistics and supply chain
management. Researchers and engineers have been using deep learning algorithms to tackle
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these problems because of their remarkable performance in tasks like object detection and
localization.

YOLO (You Only Look Once) is a family of One-stage object detection deep learning
algorithms that are among the most popular algorithms for performing this task, notably
YOLOV3. For its ability to balance both precision and speed, YOLOvV3 can be put to use for
Internet of Things applications that require high-speed processing in real-time. The method
works by running on a grid, predicting bounding boxes and class probabilities for each cell of
the grid. Due to this way, in a single image, YOLOvV3 can identify multiple objects which
makes it ideal for the hectic and real-life scenarios of IoT.

On the other hand, another cutting-edge deep learning method for object localization and
recognition is the Mask-RCNN (Region-based Convolutional Neural Networks) algorithm. In
addition to the branches for bounding box detection and classification that are already included
in the Faster-RCNN model, Mask-RCNN expands it by including a branch for forecasting
segmentation masks for every region of interest (Rol). Mask-RCNN is especially helpful for
applications that need accurate localization, including package identification in logistics or
defect detection in manufacturing, because of its added capacity to partition objects at the pixel
level.

The combination of RPA and IoT has created new opportunities for task automation in some
industries. Accurate object localization is hampered by the complexity of [oT environments,
which are typified by the abundance of networked devices. In these dynamic environments,
where objects may alter in size, shape, and orientation or be partially obscured, traditional
computer vision techniques frequently fail. This has prompted the use of deep learning-based
techniques like Mask-RCNN and YOLOv3, which increase localization accuracy by utilizing
massive datasets and cutting-edge neural network topologies.

YOLOV3, created by Ali Farhadi and Joseph Redmon, is a member of the YOLO algorithm
family, which is renowned for its real-time object-detecting capabilities. In contrast to
conventional sliding window or area proposal-based techniques, YOLOvV3 uses the full image
to predict class probabilities and bounding boxes in a single network run. Because of the
substantial reduction in processing complexity, YOLOV3 is appropriate for real-time Internet
of Things applications where speed is of the essence.

The Mask-RCNN design, developed by Kaiming He and associates at Facebook Al Research,
incorporates a mask prediction branch to enhance the performance of the Faster-RCNN
architecture. As a result, the model may produce segmentation masks that precisely outline the
shapes of objects it has recognized, in addition to bounding boxes and class labels. Mask-pixel-
level RCN's accuracy is especially useful in situations when objects need to be precisely located
and distinguished from the backdrop.

The aims of this study are:

> Object Detection and Localization in Real-time [oT Environment to Improve RPA
Systems: Utilizing YOLOvV3 for faster and accurate object detection and localization
speed.
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> Accurate Localization by Combining with Mask-RCNN: Localizing objects at the
pixel-level as in Mask-RCNN when high precision is necessary, such as logistics' soft
parcel identification.

> Test YOLOvV3 and Mask-RCNN Performance: Test the performance of both
architectures in a wide variety of IoT-enhanced RPA scenarios, comparing these two
models to better understand their pros and cons across different use cases.

» Localize in Hybrid: Develop a hybrid localization framework to combine the
advantages of Mask-RCNN and YOLOV3, which will provide an effective approach
for object localization at complex IoT environment.

The phrase "Robotic Process Automation in IoT: Enhancing Object Localization Using
YOLOvV3-Based Class Algorithms" in this context refers to the application of cutting-edge deep
learning techniques to raise the precision and effectiveness of object localization in RPA
systems that are enabled by the Internet of Things. YOLOV3, a deep learning technique, is
well-suited for dynamic IoT contexts where speed is of the essence, as it excels in real-time
object detection. This study intends to improve the efficiency of RPA systems that depend on
precise object localization for jobs like assembly automation, inventory control, and package
tracking by utilizing the capabilities of YOLOV3.

The investigation of class algorithms—machine learning methods for categorizing items into
groups—is also hinted at by the title. YOLOV3 incorporates these class techniques into its
object detection pipeline, enabling the model to locate things and determine their class (e.g.,
parcel, car, person). This dual functionality is especially useful for automating procedures in
IoT-enabled RPA systems, where item identity and location are critical information.

One of the main obstacles to IoT and RPA integration is the necessity for accurate and effective
object tracking and identification in complex and dynamic contexts, which is addressed by the
study's focus on object localization. The results of this study could greatly improve the
functionality of IoT-enabled RPA systems in several sectors, including smart cities,
manufacturing, and logistics.

2. LITERATURE SURVEY:

The HDCNN-UODT model, which combines data augmentation and hybridizes RetinaNet and
EfficientNet as feature extractors, was introduced by Krishnan et al. (2022) for underwater
object detection and tracking. The model, which is improved by a kernel extreme learning
machine (KELM), employs SVR for bounding box prediction. Tests on the UOT32 dataset
showed better results than previous approaches with an average precision of 51.27%, success
rate of 43.19%, and frame rate of 310.25. Additionally, the HDCNN-UODT model
demonstrated superior performance to YOLO-based methods on brackish and URPC datasets,
obtaining peak accuracies of 94.85% for 'Crab' and 88.34% for 'Scallop,' indicating its
usefulness for object tracking and detection.

The difficulty of examining transmission lines—which is impeded by intricate environments
and delays in manual repairs—is tackled by Li et al. (2022). They provide a simple model that
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The model achieves significant parameter size reduction by using depthwise separable
convolutions in the detection head and substituting MobileNetv2 for Darknet-53 as the
backbone. To make the network simpler, it uses an encoding system akin to FCOS. Any

Volume 12, Issue 3, 2024

accuracy loss is offset by gains in learning rate, loss functions, and data augmentation. The
outcomes demonstrate how their refined YOLOv3 model strikes a compromise between high
accuracy, quick detection, and lower size.

For multi-class pitaya recognition in densely planted orchards, Nan et al. (2023) developed a
new WGB-YOLO network that addresses issues including branch occlusion and light variance.
The WGB-YOLO network replaces the Darknet53 backbone of YOLOv3 with a WFE-C4
module that improves feature extraction by combining Bottleneck and MetaAconC structures.
Additionally, it has GF-SPP, which enhances multi-scale feature fusion through the use of
average and global average pooling. According to test results, WGB-YOLO outperformed
YOLOv7 and other networks, achieving an 86.0% mAP for multi-class pitaya. It also
significantly improved at identifying certain fruit varieties, offering a reliable option for robotic
fruit picking.

Jiao et al. (2019) suggest a novel way to detect forest fires by combining YOLOv3 with
unmanned aerial vehicles (UAVs). The mobility and affordability of UAVs make them ideal
for covering wide areas. Conventional fire detection methods frequently suffer from speed and
accuracy issues since they rely on RGB colour models. To improve detection performance, a
UAV-based system that combines YOLOv3 with a convolutional neural network (CNN) is
presented in this paper. The approach shows promise for monitoring forest fires in real-time,
as seen by its 83% recognition rate and over 3.2 frames per second detection frame rate. This
strategy, which makes use of sophisticated YOLOvV3 technology and UAV capabilities,
constitutes a major improvement over conventional fire detection techniques.

Yuan et al. (2019) describe a unique approach that combines AdaBoost-SVM with Binarized
Normed Gradients (BING) for QR code identification. Due to their affordability, QR codes
continue to be a popular option in Industry 4.0, even though smart tags are more expensive. By
improving BING, which is renowned for its speed but constrained by a rapid decline in recall
rate at higher Intersection-over-Union (IoU) thresholds, the suggested approach tackles the
difficulties associated with real-time location. To get over BING's drawbacks, the technique
uses AdaBoost-SVM along with Contrast Limited Adaptive Histogram Equalization (CLAHE)
for image augmentation. For low-quality photos, this method drastically decreases training
time and increases precision. Its lack of GPU acceleration, in contrast to neural network-based
techniques, lowers hardware costs and increases its applicability to applications with modest
hardware needs.

The OTL-Classifier, a deep learning model for checking overhead transmission wires with
unmanned drones or robots, is presented by Zhang et al. (2019). Efficient inspection
techniques are crucial to avert outages as the world's electricity consumption grows and power
infrastructure develops. A binary classifier built on the Inception architecture and an auxiliary
marker method combining ResNet and Faster-RCNN are aspects of the OTL-Classifier. No

915


https://doi.org/10.62646/ijitce.2024.v12.i3.pp912-927

W, . ISSN 2347-3657
£<'Internatmnal Journal of
Infarmation Technology & Computer Engineering

https://doi.org/10.62646/ijitce.2024.v12.i3.pp912-927

matter how big or little, it recognizes photos containing foreign items like balloons or kites as
abnormalities. The additional marker enhances the ability to find hidden objects. The model
demonstrates its efficacy for line maintenance with a 95% recall rate and 10.7% mistake rate
in normal mode and 100% recall with a 35.9% error rate in Warning-Review mode.

Volume 12, Issue 3, 2024

A machine vision system for identifying apples in orchards was created by Kuznetsova et al.
(2020) and was designed to be used with harvesting robots. To improve performance, the
system uses YOLOv3 with certain pre- and post-processing methods. With this modification,
the YOLOv3 algorithm can detect apples on average in 19 ms, with 7.8% of objects
misidentified and 9.2% of apples going unnoticed. These measures are better than those of the
current systems. The system proves its adaptability and efficiency in fruit detection and
harvesting applications not only with apple-harvesting robots but also with orange-harvesting
robots.

Bergies et al. (2021) present a novel vision system for autonomous indoor cleaning using a
modified YOLOv3-based deep learning algorithm. This system enhances an auto-guided
cleaning vehicle’s ability to identify trash and soiled areas efficiently. By utilizing an RGBD
camera and a dataset of various uncleaned floors, the system addresses different types of waste,
including solid, liquid, and reflective trash. Experimental results demonstrate that this approach
significantly reduces energy and time consumption compared to other cleaning systems,
proving its effectiveness for managing uncleaned areas in indoor environments.

In their analysis of computer vision technologies for automated object detection, Wiem et al.
(2021) combine software, cameras, edge or cloud computing, artificial intelligence (Al), and
edge computing. Real-time object identification algorithms are reviewed and compared
bibliographically in this work, which is important for applications like home help robots and
self-driving cars in smart cities. Convolutional neural networks (CNNs), R-CNN, Fast R-CNN,
Faster R-CNN, YOLO and its variations (Tiny-YOLO, Nano-YOLO, Mini-YOLO, Slim-
YOLO), MobileNet, SSD, and RetinaNet are among the methods it looks at. The paper
addresses the application of Al in both software and hardware architectures, stressing a co-
design approach for maximum performance, and it draws attention to algorithmic contrasts and
commonalities.

A lightweight hand gesture detection model utilizing YOLOv3 and DarkNet-53 convolutional
neural networks is presented by Mujahid et al. (2021). This model attains great accuracy
without the need for extra image augmentation or preprocessing. It recognizes movements well
in both low-resolution photos and complicated situations. The model performed admirably
when tested on hand gesture datasets in the Pascal VOC and YOLO formats, with accuracy,
precision, recall, and F1 scores of 96.70%, 94.88%, 98.66%, and 96.78%, respectively. For
real-time applications, the YOLOv3-based model outperforms Single Shot Detector (SSD) and
VGG16, which achieved 82-85% accuracy in both static and dynamic gesture detection.

Using Tiny-YOLOvV3 and Convolutional Neural Networks (CNNs) on an IoT edge platform—
specifically, the Sipeed MAIX with K210-KPU—Saouli et al. (2021) demonstrate a real-time
traffic sign identification system. Utilizing the first RISC-V 64 Al module, this system provides
excellent performance at a low power consumption. The strategy makes use of the KMeans
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algorithm for efficient target box identification and training set grouping. The approach strikes
a compromise between speed and accuracy when tested on the BTSD (Belgium Traffic Sign
Detection) dataset. It processes a frame in around 112 ms and operates at 9 frames per second
for video streams. Real-time gesture recognition for both static and dynamic scenarios.

IWSCR, an intelligent robot made to remove floating plastic debris from water surfaces, is
presented by Kong et al. (2020). The three primary autonomous activities that the robot carries
out are cruising and detecting, tracking and steering, and grasping and collecting. The system
uses YOLOV3 for precise real-time detection, a sliding-mode controller for enhanced
disturbance resistance, and a grasping strategy inspired by the stability of floating objects to
address challenges like accurate garbage detection, resistance to disturbances during vision-
based steering, and reliable garbage grasping in turbulent water. The outcomes of the
experiments demonstrate that IWSCR is capable of collecting garbage since it cleans water
surfaces effectively.

An extensive overview of Al methods for masked facial detection is given by Wang et al.
(2021), which is essential for tracking and managing COVID-19. They provide academics with
links to thirteen publicly available datasets for evaluation. The research divides detection
techniques into two categories: neural network-based methods, which are further subdivided
by processing steps, and conventional techniques, which employ hand-crafted features with
boosting algorithms. The survey covers method and dataset restrictions, presents a summary
of current benchmarking results, and describes many typical algorithms and methods. This poll,
which identifies ten areas for future investigation, is an invaluable tool for scientists and
engineers working on efficient pandemic management systems.

To preserve power grid stability, Ma et al. (2021) suggest a low-weight, clever way to monitor
insulator icing on power transmission lines. By merging shallow and deep features, the
technique improves multi-scale feature extraction and target recognition accuracy by
combining a Residual Network (ResNet) with a Feature Pyramid Network (FPN). It makes use
of a Fully Convolutional Network (FCN) for accurate icing thickness regression and
classification. To make the model more manageable for edge devices with constrained
resources, model quantization is utilized to decrease the model's size and parameters. Using an
edge intelligent chip, this solution is evaluated against classical approaches, answering the
urgent requirement for efficient icing condition monitoring.

In their assessment of developments in machine learning algorithms for computer vision,
Innocenti and Vizzarri (2021) show how deep learning has outperformed conventional
methods in challenging tasks. In addition to a historical background and a synopsis of cutting-
edge methods for object identification and picture classification, the paper offers an overview
of machine learning applications in computer vision. The article examines how deep learning
models have enhanced performance and accuracy, transforming the field of computer vision,
while highlighting the noteworthy advancements made in these domains. This thorough
analysis provides an overview of contemporary approaches and how they affect artificial
intelligence.
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According to Gudivaka (2021), the Al-powered Smart Comrade Robot integrates robots and
artificial intelligence to offer individualized daily support, health monitoring, and emergency
response, with the goal of revolutionizing aged care. Designed with the unique requirements

of senior citizens in mind, it guarantees security, company, and lessens caregiver strain. The
robot provides proactive care with capabilities including fall detection, emergency warnings,
and real-time health monitoring. By utilizing cutting-edge technology like Google Cloud Al
and IBM Watson Health, it improves the quality of life for the elderly and gives their families
peace of mind.

Gudivaka (2020) have presented a system that combines cloud computing and Robotic Process
Automation (RPA) to improve the usefulness of social robots, especially for the elderly and
people with cognitive impairments. The system ensures real-time object and behavior
identification, rapid user engagement, and effective task scheduling by utilizing the vast
processing capacity of cloud computing. Deep learning models installed in the cloud power
essential components such as the Semantic Localization System (SLS), Object Recognition
Engine (ORE), and Behavior Recognition Engine (BRE). This method greatly increases
caregiver support and user autonomy by addressing connectivity requirements and raising
system accuracy to 97.3%.

3. Methodology for developing Hybrid Object Localization in IoT: YOLOv3 and Mask-
RCNN Integration:

By combining the YOLOv3 and Mask-RCNN algorithms, the methodology aims to improve
object localization in Internet of Things (IoT)-enabled Robotic Process Automation (RPA)
systems. Creating a hybrid model that maximizes the benefits of both techniques, pixel-level
localization accuracy, and object detection optimization are the steps in the process. The
methodology encompasses training, validation, and assessment steps to guarantee resilience in
a range of IoT scenarios. Computational efficiency and localization accuracy are measured
using mathematical expressions and algorithmic techniques.
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Figure 1. Data Acquisition and Preprocessing Workflow for Object Localization

The procedure for gathering and getting ready data for loT-enabled RPA systems is shown in
Figure 1. The process entails obtaining large datasets of pertinent objects, improving,
standardizing, and resizing the pictures. This preprocessing stage makes sure that the
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consistency and quality of the data are preserved, mimicking real-world fluctuations to enhance
the object localization models' capacity for generalization, such as YOLOvV3 and Mask-RCNN.

3.1 Data Acquisition and Preprocessing

Extensive datasets of objects pertinent to the loT-enabled RPA system are gathered as part of
the data gathering process. Next, preprocessing is done on these datasets to guarantee quality
and consistency. Preprocessing involves resizing, normalizing, and enhancing images to
simulate real-world fluctuations and enhance the model's generalization.

x =Xt (1)

g

In this case, X stands for the image's original pixel values, u for the dataset mean, and o for the
standard deviation. In order to consistently train models, this equation normalizes the image
input by putting the pixel values into a regular range.

3.2 Model Training and Validation

The preprocessed data is utilized for training the YOLOv3 and Mask-RCNN models. In order
to minimize the loss function, the model weights are optimized during the training phase via
gradient descent and backpropagation. A different dataset is used for validation in order to
track the model's performance and avoid overfitting.

3.3 YOLOv3-Based Object Detection

The input image is divided into a SxS grid by YOLOv3, which then forecasts the bounding
boxes and class probabilities for each grid cell. Localization, objectness, and classification
mistakes are all balanced by the algorithm's loss function. For dynamic IoT contexts,
YOLOV3's real-time detection is achieved by analyzing the full image in a single pass.

2 gy o bi . 2
LoSS = Acoora Dimp it Xieg i 17} [(xl- —x)?+(i—y") ] +

Weights (1) are used in the loss function to balance localization (x, y), classification errors,
and confidence ratings (C).

Algorithm 1: YOLOv3-Based Detection Algorithm

Input: Image |
Output: Detected objects with bounding boxes B and classes C
Divide image I into SxS grid
For each grid cell:
Predict B bounding boxes and class probabilities
If confidence score > threshold:

Retain bounding box and class label
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Else:

Discard bounding box
Apply Non-Maximum Suppression (NMS) to remove overlapping boxes
Return final bounding boxes B and class labels C

End

When processing incoming photos, the YOLOv3 algorithm divides them into grid cells. It
forecasts bounding boxes and class probabilities for every cell. Bounding boxes are deleted if
their confidence ratings fall below a predetermined level. To ensure the most accurate object
detection, overlapping boxes are then removed using Non-Maximum Suppression (NMS).
Real-time detection, which is essential in dynamic Internet of Things scenarios, is optimized
into Algorithm 1.

3.4 Mask-RCNN for Soft Parcel Localization

By including a branch for pixel-level segmentation masks, Mask-RCNN expands on Faster-
RCNN and provides accurate object localization. Regions of interest (Rols) are first suggested
by the network, which then classifies, regresses, and masks them. Bounding boxes, classes, and
binary masks are included in the final output, which is perfect for applications that need precise
package identification.

Total Loss = L¢s + Lpox + Linask 3)

To ensure accuracy in object classification, localization, and segmentation, the total loss is the
sum of the classification loss (L.;s), bounding box regression loss (L, ), and mask prediction
loss (Lmask)-

Algorithm 2: Mask-RCNN Segmentation Algorithm

Input: Image I, Rols from YOLOV3
Output: Refined bounding boxes B', masks M, classes C'
For each Rol from YOLOvV3:
Extract feature map using ResNet
Apply Rol Align to align Rols
Classify Rols into classes C' and regress bounding boxes B'
If Rol classified as object:
Generate segmentation mask M
Else:
Ignore Rol

Return refined bounding boxes B', masks M, and class labels C'
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End

By creating pixel-level segmentation masks for every Region of Interest (Rol), Mask-RCNN
improves object localization. Algorithm 2 uses ResNet to extract feature maps first, and then
Rol Align is used for alignment. Segmentation masks are created, bounding boxes are
improved, and ROIs are categorized. A mask is formed if a ROI is recognized as an object;
otherwise, it is disregarded. Precise localization is provided by this technique, which is
necessary for applications such as package identification.

3.5 Hybrid YOLOv3-Mask RCNN Model

The hybrid model makes use of the pixel-level accuracy of Mask-RCNN and the real-time
detection of YOLOv3. YOLOV3 detects objects first, and then Mask-RCNN uses segmentation
masks to fine-tune the location. Using a speed-accuracy balance, this method optimizes item
localization for intricate IoT contexts.

Final Localization = a X YOLOv3 Output + X Mask — RCNN Output 4)

The outputs of Mask-RCNN and YOLOv3 are weighted together to get the final localization,
where a and S trade off speed and accuracy.

3.6 Performance Evaluation

Metrics like precision, recall, mean average precision (mAP), and intersection over union (IoU)
are used to assess the models once they have been trained. These metrics evaluate how well
the model locates and detects items in actual Internet of Things environments.

3.6.1 Intersection over Union (loU):

__|AnB|
IoU = \AUB| ®)

The overlap of the ground truth bounding box B and the anticipated bounding box A, divided
by the area of their union, is measured by the IoU metric. A greater [oU denotes a more accurate
localization.

3.6.2 Mean Average Precision (mAP):

mAP = ~Y1L i AP, (6)
The average precision (AP) score for each class is called mAP (mean of the AP scores); AP is
the area under the accuracy-recall curve. It offers a solitary figure that encapsulates the model's
accuracy and recall for every class.

Table 1. Performance Metrics for YOLOvV3 and Mask-RCNN in IoT-Enabled RPA
Systems

Metric YOLOvV3 Mask-RCNN Hybrid Model

Precision 0.85 0.90 0.92
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Recall 0.80 0.88 0.91
Mean Average 0.82 0.89 0.93
Precision (mAP)

Intersection over 0.75 0.85 0.88
Union (IoU)

Processing Time 25 50 35
(ms)

The Hybrid Model, Mask-RCNN, and YOLOv3 are compared in Table 1 based on several
different measures. Because of Mask-RCNN's capacity to segment data in great depth, its
precision, recall, mAP, and IoU are higher. For real-time applications, YOLOV3 excels in
processing time. For complicated loT-enabled RPA applications where speed and precision are
crucial, the Hybrid Model strikes a balance between high accuracy and appropriate processing
time.

4. RESULT AND DISCUSSION:

Enhancing object localization in Internet of Things (IoT) applications with a hybrid technique
combining Mask-RCNN and YOLOV3 algorithms is the main goal of the research. These
algorithms provide precise and fast object detection, which is essential for industries like
manufacturing, logistics, and smart cities, intending to enhance robotic process automation
(RPA).

The suggested hybrid model uses Mask-pixel-level precision and YOLOv3's real-time
detection capabilities for object localization. With an intersection over union (IoU) of 0.88 and
a mean average precision (mAP) of 0.93, the model outperformed conventional techniques
including HDCNN-UODT, FCOS, and WGB-YOLO. The hybrid model's processing time was
optimized to 35 milliseconds, striking a balance between the accuracy and speed needed in
dynamic Internet of Things scenarios. The hybrid technique has shown its promise in
complicated IoT-enabled RPA systems, improving total accuracy to 0.91 when compared to
solo implementations.

By utilizing the advantages of both approaches, the integration of YOLOv3 and Mask-RCNN
in a hybrid framework greatly improves object localization. For real-time applications,
YOLOV3 gives the quick detection required, and Mask-RCNN offers deep segmentation for
high precision. In situations when items may shift in size, shape, or orientation or become
partially concealed, this dual approach is especially helpful. Applications such as assembly line
automation, inventory management, and package tracking in logistics might benefit from the
hybrid model's ability to retain high accuracy without sacrificing processing speed. To increase
the system's scalability and resilience, future research may investigate other optimization
strategies and the incorporation of more deep learning models.

Table 2. Comparison of Hybrid YOLOv3-Mask RCNN vs. Traditional Methods
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Method HDCNN- FCOS [2022] WGB-YOLO Hybrid
UODT [2022] [2023] YOLOV3-
Mask RCNN
(Proposed)
Precision 0.72 0.80 0.86 0.92
Recall 0.68 0.75 0.82 0.91
mAP 0.77 0.82 0.88 0.93
IoU 0.70 0.78 0.81 0.88
Processing 310 45 40 35
Time (ms)
Overall 0.72 0.79 0.84 0.91
Accuracy

The proposed Hybrid YOLOv3-Mask RCNN beats previous models in terms of precision,
recall, mean average precision (mAP), intersection over union (IoU), and overall accuracy,
according to the comparison Table 2 that highlights the performance of several object
identification techniques. Combining the comprehensive localization capabilities of Mask-
RCNN with the real-time detection speed of YOLOV3, it achieves high accuracy (0.91) and
efficient processing time (35 ms). For loT-enabled robotic process automation (RPA)
applications, this makes it extremely appropriate. 0.75, 0.82, and 0.91.

0.92

0.86

m HDCNN-UODT [2022] H FCOS [2022]
WGB-YOLO [2023] Hybrid YOLOv3-Mask RCNN (Proposed)

Figure 2. Model Training and Validation Phases of YOLOv3 and Mask-RCNN

The training and validation stages for the Mask-RCNN and YOLOv3 models are shown in
Figure 2. Using gradient descent and backpropagation, the preprocessed data is used to
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optimize the model weights and minimize the loss function. In order to prevent overfitting and

make sure the models work effectively when applied to previously unseen data in a variety of
IoT settings, separate validation datasets are utilized to track the models' performance.

Table 3. Impact of Different Components on Performance

Configuration | Precision | Recall mAP IoU Processin | Overall
g Time | Accuracy
(ms)

YOLOv3 0.85 0.80 0.82 0.75 25 0.80

Mask-RCNN 0.90 0.88 0.89 0.85 50 0.88

YOLOv3 + 0.87 0.86 0.88 0.82 40 0.87

Mask-RCNN

Hybrid 0.92 0.91 0.93 0.88 35 0.91

YOLOv3-

Mask RCNN

(Proposed)

The effect of various setups on object detection ability is evaluated in this ablation research
Table 3. Although it has less accuracy, the "YOLOvV3 Only" configuration has the fastest
processing time (25 ms). At the expense of longer processing times, the "Mask-RCNN Only"
strategy increases recall and precision. Moderate improvement is seen when YOLOvV3 and
Mask-RCNN are combined without refining. With an overall accuracy of 0.91, the suggested
"Hybrid YOLOv3-Mask RCNN" setup strikes the optimal speed-accuracy balance, proving the
value of combining the two techniques.

60
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0 —

Precision

YOLOv3
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YOLOv3 + Mask-RCNN

loU Processing
Time (ms)
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Overall
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Figure 3. Performance Evaluation Metrics for Hybrid YOLOv3-Mask RCNN

The Hybrid YOLOv3-Mask RCNN model's performance evaluation is displayed in Figure 3
utilizing measures including recall, precision, mean average precision (mAP), and intersection
over union (IoU). These metrics evaluate how well the model locates and detects items. The
picture also shows the processing time needed for each configuration, demonstrating how the
hybrid approach in real-time IoT applications strikes a balance between accuracy and speed.

5. CONCLUSION AND FUTURE SCOPE:

The Hybrid YOLOv3-Mask RCNN model combines the best features of Mask-RCNN's
accurate segmentation with YOLOv3's real-time detection to greatly improve object
localization for loT-enabled RPA systems. With a precision of 0.92 and a recall of 0.91, the
model performs exceptionally well and requires only 35 milliseconds of processing time, which
makes it ideal for real-time applications. The difficulties posed by different object sizes,
orientations, and partial occlusions in intricate loT contexts are addressed by this hybrid
technique. The suggested approach demonstrates its potential for wide-scale implementation
in industries including manufacturing, logistics, and smart cities by outperforming
conventional object identification techniques like HDCNN-UODT, FCOS, and WGB-YOLO.
Subsequent investigations may concentrate on enhancing the model's computational
effectiveness and investigating its suitability for a wider array of Internet of Things situations.
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