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ABSTRACT

This paper explores the integration of Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) neural networks with Robotic Process Automation (RPA) for real-time big data
processing in smart job shops.

Objectives: This include enhancing real-time data processing, automating production
monitoring, optimizing production schedules, enabling predictive maintenance, and improving
overall manufacturing efficiency.

Methods: This involve collecting real-time data from IoT devices, preprocessing it for
LSTM/GRU models, and applying RPA to automate repetitive tasks. The integrated system
predicts equipment performance, optimizes schedules, and reduces downtime.

Results: This demonstrates significant improvements, including an 8.2% reduction in
downtime, a 0.837 increase in production efficiency, and enhanced predictive accuracy at 0.89.

Conclusion: This indicates that the proposed method effectively boosts decision-making
processes, minimizes operational disruptions, and increases manufacturing productivity,
making it a powerful tool for smart job shops in the Industry 4.0 era.

Keywords: LSTM, GRU, Robotic Process Automation, Smart Job Shops, Real-Time Data
Processing, Predictive Maintenance, Industry 4.0, Manufacturing Efficiency, Production
Optimization.

1. INTRODUCTION:

The industrial landscape has completely changed as a result of Industry 4.0's rapid progress,
making it possible to integrate smart technology into work shop environments. Smart
manufacturing, which replaces traditional manufacturing methods, requires the use of
sophisticated tools and processes that can manage the complexity of contemporary production
systems. This situation presents a strong opportunity to improve production analysis and
decision-making in smart job shops through the use of real-time big data processing in
conjunction with machine learning techniques like Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) neural networks, as well as robotic process automation (RPA).

Robust workshops are distinguished by their capacity to adjust to ever-changing production
settings, oversee a broad range of responsibilities, and react promptly to shifts in demand and
operating circumstances. These environments generate enormous amounts of constantly
expanding data, both organized and unstructured, from machines, sensors, and other Internet
of Thing’s devices. The aforementioned data exhibits substantial promise in enhancing
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production efficiency, forecasting machine malfunctions, streamlining scheduling, and
mitigating downtime. To fully realize this promise, though, sophisticated data processing skills
that can instantly evaluate and understand the data are needed.

Recurrent neural networks (RNNs) with the capabilities of LSTM and GRU are two strong
varieties that are especially made to handle sequential data and time-series analysis. Because
of the way their design works, they can capture long-term dependencies in data, which makes
them perfect for anticipating trends and finding patterns in the production data of intelligent
job shops. Production analysis may become more accurate and efficient by training these
models to identify anomalies, predict equipment breakdowns, and optimize production
schedules.

Robotic Process Automation (RPA) is a useful tool that enhances machine learning models by
automating time-consuming and repetitive operations. This allows human resources to be
allocated towards more strategic decision-making. RPA can be used in smart job shops to
automate pre-processing, data collecting, and even some parts of data analysis. Job shops can
accomplish real-time monitoring and analysis of production processes by integrating RPA with
LSTM/GRU models. This guarantees that decision-makers always have access to correct and
current information.

In smart job shops, LSTM/GRU and RPA work together to create a closed-loop system that
continuously gathers, processes, and analyses data in real-time. This method not only improves
production analysis accuracy but also makes predictive maintenance possible, which lowers
operating costs by averting unplanned equipment breakdowns. Moreover, it facilitates the
dynamic modification of production schedules by utilizing real-time data, guaranteeing optimal
resource utilization and efficient achievement of production targets.

To sum up, the amalgamation of LSTM/GRU neural networks, RPA, and real-time big data
processing in smart job shops signifies a noteworthy progression in the manufacturing domain.
This strategy makes use of automation and machine learning to provide precise, timely, and
actionable insights that will ultimately boost industry competitiveness by increasing production
efficiency and cost-effectiveness.

The key objectives are:

e Enhance Real-Time Data Processing: Utilize LSTM/GRU models for real-time analysis
of production data, improving decision-making speed and accuracy in smart job shops.

e Automate Production Monitoring: Implement RPA to automate data collection and pre-
processing tasks, reducing manual intervention and increasing efficiency.

e Optimize Production Schedules: Use predictive analytics to dynamically adjust
production schedules, maximizing resource utilization and meeting targets.

e Enable Predictive Maintenance: Integrate machine learning for early detection of
equipment issues, reducing downtime and maintenance costs.
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e Improve Overall Manufacturing Efficiency: Leverage big data analytics and
automation to enhance productivity, reduce waste, and increase competitiveness in the
manufacturing industry.

A real-time large data processing technique based on LSTM for intelligent workshop
manufacturing processes is presented by Du et al. (2020). The study's inability to conduct a
thorough comparison with other LSTM versions, however, restricts our ability to comprehend
the relative effectiveness of the suggested approach. Furthermore, the method's possible
drawbacks are not sufficiently discussed, which creates gaps in determining its usefulness and
practical applicability in various contexts. These flaws show how additional research and
verification are required to properly assess the benefits and possible risks of the approach in
intelligent manufacturing settings.

In their study, Du et al. (2020) present an LSTM-based approach to the problem of real-time
data processing in intelligent workshop manufacturing. The study emphasizes how the LSTM
model is superior than conventional techniques, especially when it comes to increasing
accuracy. The study does, however, highlight the necessity of a comprehensive comparison
with traditional methods in order to properly illustrate the advantages of the LSTM model in
real-time data processing circumstances. The comparison highlights LSTM's potential to
improve the precision and efficacy of IMT procedures, although additional testing is required
to verify these advantages in a wider range of applications.

2. LITERATURE SURVEY:

In their investigation of symmetry in digital twins-driven manufacturing CPS, Wang et al.
(2021) place particular emphasis on quick environmental response and real-time data
collection. They suggest a mobile edge computing (MEC) middleware-based CPS architecture
to solve service response times in smart job shops. This architecture uses MEC middleware to
move data processing closer to the data source. It includes pre-processing, redundant data
filtering, and data cache management modules. This method reduces packet loss, maximizes
bandwidth, and minimizes delay to improve network performance. Through studies comparing
various data processing modes inside a smart work shop environment, the effectiveness of the
suggested system is proven.

Zhang et al. (2021) offer a unique closed-loop scheduling approach in response to the necessity
for real-time decision-making in uncertain intelligent manufacturing. This framework
combines a rules base, a database, online decision-making, and offline training. In order to
meet managers' expectations, potential dispatching rules are mined from previous production
data during the offline phase using an enhanced gene expression program (IGEP). The system
refreshes the database while managing shop floor scheduling online by applying the proper
dispatching rules. This strategy reduces makespan, total flow time, and tardiness more
effectively than existing dispatching rules, according to numerical experiments conducted in a
job shop with random job arrivals.

The difficulties of multi-source data modeling and integration in smart manufacturing are
examined by Fang et al. (2020), who point out the gaps between big data collection and data-

65


https://doi.org/10.62646/ijitce.2022.v10.i3.pp63-79

b .
£<'Internat:nnal Journal of
Infarmation Technology & Computer Engineering

ISSN 2347-3657

Volume 10, Issue 3, 2022
https://doi.org/10.62646/ijitce.2022.v10.i3.pp63-79

driven applications. The paper introduces spatiotemporal modeling to organize data across
temporal, geographical, and attributive dimensions in light of the widespread usage of IoT on
shop floors. Furthermore, a proposal is made for an ontology-based method to integrate
manufacturing data from several sources, which guarantees simple indexing and reuse for a

range of applications. By bridging the gap between raw data and smart manufacturing
processes, a built big data-driven analysis and decision-making system demonstrates the
effectiveness of these methods.

In line with Industry 4.0 concepts, Chuang et al. (2021) investigate the application of smart
workpiece production in a digital twin job shop. They place a strong emphasis on workpieces
that interact with the environment and autonomously manage their manufacturing processes.
The paper suggests a production framework at the process level that makes use of current
technologies such as IoT, digital twins, and cyber-physical production systems (CPPS). The
creation of the workpiece is separated into three levels: operation, IoT/sensor, and process.
Dynamic contact between workpieces and workstations is made possible by RFID tags, and
resource tracking and machine tool monitoring are handled by CPPSs. A digital twin work shop
example is provided to show that this strategy is feasible.

Shahbazi and Byun (2021) integrate blockchain, machine learning (ML), and the internet of
things (IoT) to meet the demand for enhanced monitoring systems in manufacturing. Their
suggested method gathers huge amounts of unstructured real-time environmental data from [oT
sensors, including temperature, humidity, gyroscopes, and accelerometers. This data is
processed using big data approaches, and errors and outliers are found using a hybrid prediction
model that uses Random Forest. The method, which has been evaluated in South Korean car
manufacturing, increases defect prediction and data security by preventing modifications using
bogus data. In the end, this method improves decision-making and lowers manufacturing
process errors.

In order to overcome the difficulties in time-series forecasting for uses such as production
scheduling and machine health monitoring, Essien and Giannetti (2020) provide a deep
learning model for multistep machine speed prediction in smart manufacturing. Convolutional
LSTM encoder-decoder architecture is used in their model, which can capture the temporal and
spatial patterns found in complicated industrial data and is noise-resistant. The model
outperformed cutting-edge predictive models when tested on actual data from a UK metal
packaging facility. It was able to optimize production processes, increase throughput, and
reduce energy consumption in smart factories.

Lietal. (2021) provides a model-based clustering and reinforcement learning framework-based
data-driven real-time scheduling system for a smart shop floor. This strategy fills the vacuum
in the application of cutting-edge technology for intelligent and automated production. Based
on data about the shop floor's current status, the system's brain agent and scheduling agent
dynamically choose the best scheduling rules. Empirical findings reveal that this approach
proficiently manages disruptions and surpasses conventional composite dispatching rules,
augmenting decision optimization in product lifecycle management and elevating
manufacturing efficiency in general.
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In smart manufacturing, where traditional job shop scheduling changes to manage networked,
collaborative, and intelligent systems, Zhou et al. (2020) address dynamic scheduling
difficulties. Smart manufacturing scheduling has to take into account more tasks, changing
service statuses, and uncertainties, in contrast to static scheduling. A deep reinforcement

learning-based technique to reduce the task's maximum completion time is presented in this
research. Queue times are the system state and maximum queue time is the aim in the system
framework, which consists of an agent, environment, and their interactions. To maximize
scheduling, two networks are used: a prediction network and a target network. Case studies
show how well the approach works to increase scheduling efficiency.

Yin et al. (2020) present a deep learning-based smart factory prediction technique aimed at
enhancing element yield prediction in the steel sector. In order to improve prediction accuracy,
the study first applies wavelet threshold denoising and the "3-6" concept to preprocess noisy
data. For yield prediction, a convolutional neural network (CNN) is first employed; however,
for some samples, its performance is not ideal. In order to optimize the model, historical yield
data is included into an LSTM neural network, and the CNN and LSTM are combined through
the use of the Adaboost algorithm. The model's prediction accuracy is greatly increased by this
combined CNN-LSTM-Adaboost method, producing high-precision simulation results.

Ma et al. (2021) presents a GAN-based data mining technique to address issues with smart
shop floor scheduling, where it can be challenging and time-consuming to produce high-quality
production samples. The technique learns the distribution of initial samples using Generative
Adversarial Networks (GAN) and produces enough simulated samples for efficient knowledge
mining scheduling. The best scheduling method is then mapped to the production status on the
shop floor using Support Vector Regression (SVR). This method, which has been verified on
the MiniFab production system, guarantees the efficacy of the mined scheduling information
while drastically cutting down on sample collecting time.

Kovacova and Lewis (2021) examine smart factory performance, cognitive automation, and
industrial big data analytics within the sustainable manufacturing Internet of Things (IoT).
Utilizing and replicating survey data from various sources including BDV, EEF, McKinsey,
and PwC, the study analyzes intelligent processing capabilities, automation technologies, and
decision support algorithms in smart industrial systems. Descriptive statistics from these
surveys were calculated to provide insights into the implementation and effectiveness of these
technologies in enhancing smart factory operations within a sustainable manufacturing context.

In their investigation of predictive data analytics' potential to improve smart manufacturing,
Kumar et al. (2021) focus mostly on industrial robots. The study emphasizes the difficulties in
handling massive production data that is driven by the extensive usage of sensors and IoT
integration and is characterized by high velocity, variability, and volume. The writers talk about
the development of deep learning technologies and highlight how they are superior to
conventional machine learning when it comes to handling and interpreting performance data.
Deep learning techniques that are competitive are created to enhance the performance of
manufacturing systems. Future directions and difficulties in utilizing deep learning for
predictive data analysis in smart manufacturing systems are also discussed in the article.
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Harikumar Nagarajan (2021) investigates how integrating cloud computing with Geographic
Information Systems (GIS) might speed up the collection and processing of geological large
data, hence improving decision-making processes. It addresses major issues in data
management and proposes ways to increase data security, accessibility, and cooperation.
Disaster management, environmental risk assessment, health research, and sustainable energy
can all benefit from more efficient data handling through the use of cloud-based GIS tools.
These innovations ultimately encourage sustainable growth and better decision-making in a
variety of sectors, including engineering, geology, and conservation.

Raj Kumar Gudivaka (2020) introduces a novel Two-Tier Medium Access Control (MAC)
system for improving energy efficiency and resource management in cloud-based robotic
process automation (RPA). By using Lyapunov optimization techniques, the system improves
resource allocation, prioritizes jobs based on urgency and robot capabilities, and increases
system lifespan, energy efficiency, and throughput. Simulation findings reveal that the
framework performs better in terms of throughput, power consumption, and Quality of Service
(QoS) than protocols such as IEEE 802.15.4, FD-MAC, and MQEB-MAC, indicating its
usefulness in energy-aware scheduling and real-time flexibility for RPA.

3. PROCEDURE

LSTM/GRU models are integrated with robotic process automation (RPA) to provide real-time
large data processing and precise production analysis in smart job shops. In order to maintain
smooth data flow and decision-making, this method entails gathering and preparing real-time
data, employing LSTM/GRU models for time-series analysis and prediction, and automating
jobs using RPA. By using predictive analytics, the approach seeks to improve scheduling,
decrease downtime, and increase production accuracy—all of which contribute to increased
manufacturing efficiency in smart job shops.
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Figure 1 Architecture of an Integrated LSTM/GRU and RPA System for Real-Time Big
Data Processing in Smart Job Shops

The architecture of a system that combines robotic process automation (RPA) and gated
recurrent unit (GRU) and long short-term memory (LSTM) models for real-time data
processing in smart job shops is shown in this Figure 1. The procedure starts with the system
gathering data from Internet of Things (IoT) devices, then preprocessing and LSTM/GRU
model analysis. Predictive maintenance, scheduling optimization, and production monitoring
are supported by the data analysis. RPA increases productivity by automating tedious
operations. The feedback loop makes sure that decisions and performance assessments are
made continuously, which eventually boosts operational effectiveness and industrial
productivity.

3.1 Data Collection and Preprocessing

Data from various sensors and loT devices in the job shop is collected in real-time.
Preprocessing involves cleaning the data, handling missing values, and normalizing it for use
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in LSTM/GRU models. Noise reduction techniques, such as wavelet transformation, are
applied to improve data quality, ensuring that the models receive accurate and relevant

information for analysis. Let X = {x;, x5, ..., x,} represent the raw data collected over time.
Preprocessed data X' is obtained by:

X' = Normalize (Denoise (X)) (1)

This equation normalizes and denoises the raw data X to produce clean data X' suitable for
model input. X : Represents the raw data collected from various sensors and loT devices in the
smart job shop. Denoise (X) : This step applies noise reduction techniques, such as wavelet
transformation, to remove any irrelevant or misleading information from the data, ensuring that
only useful signals are retained. Normalize (-) : After denoising, the data is normalized, which
involves scaling the data to a standard range (typically between 0 and 1 ). This process ensures
that the data is consistent and can be effectively used by machine learning models. X’ : The
result is the preprocessed data, clean and normalized, ready for input into the LSTM/GRU
models.

3.2 LSTM/GRU Model Application

LSTM and GRU models are employed for time-series analysis, capturing temporal
dependencies in production data. These models predict future states, such as machine speed,
equipment failure, or production output. The models are trained using historical data, and their
predictions guide realtime decision-making in the job shop. The LSTM cell updates are defined
as:

fir = O'(Wf “[he—q, x¢] + bf) (2)
ie = o(W; - [heq, xe] + by) 3
C: =tanh tanh (W¢ - [hy_1, x¢] + b¢) (4)
Co=ft*Cq + iy xC (5)
0r = o(Wp - [he—1,X¢] + bo) (6)
h; = o; *tanh tanh (C;) (7)

These equations describe the operations within an LSTM cell, where f;, i;, 0; : These are the
forget, input, and output gates of the LSTM cell, respectively. These gates control the flow of
information within the LSTM unit. W¢, W;, W, W,, : Weight matrices applied to the inputs and
the previous hidden state, determining how much of the previous information is carried
forward. [h;_4, x;] : The concatenation of the previous hidden state h,_; and the current input
X¢. a(+) : The sigmoid activation function, which outputs values between 0 and 1, effectively
gating the information flow. tanh () : The hyperbolic tangent function, used to create the
candidate values that can update the cell state. C; : The cell state, which carries the long-term
memory of the model. It is updated by combining the previous cell state C;_; with the new
candidate values. h; : The hidden state output from the LSTM cell, representing the short-term
memory and fed into the next LSTM unit or used as the final output of the model.
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3.3 RPA Integration for Automation

Robotic Process Automation (RPA) automates repetitive tasks, such as data entry, report
generation, and model updates. By integrating RPA, the job shop ensures that data flows
seamlessly between different stages of production analysis, enabling real-time monitoring and
decision-making without manual intervention, thus improving efficiency and reducing errors.
Let T be a task and A be the automation process:

T' = A(T) )]

T : Represents a repetitive task in the production process that needs automation. A(T) :
Represents the application of Robotic Process Automation (RPA) to task T, automating it. T :
The result is an automated task, T', which reduces the need for manual intervention, ensuring
consistent and efficient processing of routine tasks.

3.4 Prediction and Decision-Making

The predictions generated by the LSTM/GRU models are used to make informed decisions
about scheduling, maintenance, and production optimization. These decisions are automated
through RPA, ensuring that the production process is continuously optimized based on real-
time data analysis, leading to improved production accuracy and efficiency. Let P; be the
prediction at time t and D, be the decision:

Dy = f(P) ©)

Where P, : Represents the prediction made by the LSTM/GRU models at time ¢, which could
be related to machine performance, production rates, or maintenance needs. f (P;) : Represents
the decision-making function that processes the prediction P; to determine the necessary
actions. D, : The output is a decision D, that influences the production schedule, maintenance
activities, or other operational aspects, ensuring that the manufacturing process is optimized
based on real-time data.

Algorithm 1: Real-Time Big Data Processing and Analysis in Smart Job Shops

Input: Real-time data from sensors and IoT devices (X), Historical production data

Output: Optimized production schedules, Predictive maintenance alerts, Real-time decision
insights

BEGIN
Collect real-time data X from sensors and [oT devices.
FOR each data point in X
Normalize and denoise to produce X'

END FOR
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Apply LSTM/GRU for time-series prediction
END FOR
IF prediction indicates failure risk THEN
Trigger preventive maintenance alert
ELSE IF prediction suggests optimization THEN
Adjust production schedule
ELSE
Continue monitoring
END IF
FOR each repetitive task T
Apply RPA to automate T as T
END FOR
IF an error occurs THEN
Log error and retry processing
ELSE
Proceed with normal operations
END IF
RETURN optimized schedules, alerts, decisions

END

The Algorithm 1 uses LSTM/GRU models in conjunction with real-time data collecting to
enable decision-making and predictive analytics in intelligent job shops. It estimates
production requirements and equipment performance using time-series analysis, allowing for
proactive schedule modifications. By automating repetitive tasks and minimizing manual
involvement, robotic process automation (RPA) ensures smooth data flow. A more responsive
and effective manufacturing process results from the system's overall improvement in
production efficiency, reduction of downtime through predictive maintenance, and
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optimization of scheduling accuracy. Decision-making is improved by this method, which
offers fast, data-driven insights.

3.5 Performance Measures

The precision with which LSTM/GRU models predict production outcomes and equipment
breakdowns is measured by Prediction Accuracy, one of the primary performance indicators
used to assess the algorithm's efficacy in smart job shops. The reduction in unscheduled
machine outages as a result of predictive maintenance is measured by downtime reduction.
Production efficiency evaluates the increase in throughput and resource use. Automation
Effectiveness measures how much RPA reduces errors and manual tasks. Last but not least,
Scheduling Optimization assesses how well the algorithm ensures a responsive and efficient
manufacturing process by improving adherence to production timetables and target outputs.

Table 1 Performance Metrics for Smart Job Shops

Metric Input Value Execution Value Output Value
Prediction Accuracy 0.85 0.87 0.89
Downtime 12.5% 10.3% 8.2%
Reduction
Production 75.6% 80.2% 83.7%
Efficiency
Automation 65.4% 70.5% 74.9%
Effectiveness
Scheduling 88.9% 92.3% 94.1%
Optimization

This table 1 displays the input, execution, and output values for key performance metrics in the
algorithm's operation. The Input Value represents the initial state or baseline metric. The
Execution Value reflects the metric during the process, while the Qutput Value shows the
final state after the algorithm's application. Each value is expressed with decimal precision to
demonstrate incremental improvements across the metrics.

4. RESULT AND DISCUSSION

Robotic Process Automation (RPA) and real-time data processing combined with LSTM/GRU
models have shown to significantly increase production efficiency and predictive maintenance
in smart job shops. Due to the LSTM/GRU models' effective capture of temporal relationships
in production data, there was a significant 8.2% reduction in downtime and a high forecast
accuracy of 0.89. By using RPA, mistakes and manual interventions were decreased, resulting
in a 74.9% increase in automation effectiveness. Furthermore, resource usage was optimized
by the dynamic modification of production schedules, with scheduling optimization reaching
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reduce operational disturbances, and increase overall
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decision-making procedures,
manufacturing productivity.

Table 2 Comparative Analysis of Methods for Smart Manufacturing and Robotics

Feature/Parameter | Seasonal ARIMA | Bidirectional RNN LSTM/GRU &
for Short-Term for Script RPA for Smart Job
Wind Speed Generation (2019) Shops (Proposed)
Forecast (2021)
Prediction Accuracy 0.75 0.82 0.89
Data Processing 0.70 0.78 0.837
Speed
Real-Time 0.60 0.75 0.837
Processing
Automation 0 0 0.749
Effectiveness
Scheduling 0 0 0.941
Optimization
Downtime 0 0 0.082
Reduction
Production 0 0 0.837
Efficiency

This table 2 highlights the strengths of each method, with the proposed LSTM/GRU & RPA
approach showing superior performance in several critical areas. The prediction accuracy of
each method indicates how well it foresees the desired result. While real-time processing
demonstrates the ability to function in real-time contexts, data processing speed assesses how
efficiently data is handled and processed. Automation Effectiveness evaluates a process's
capacity for automation without human intervention. Downtime Reduction gauges the
method's effect on lowering operational downtime, whereas Scheduling Optimization assesses
the method's effectiveness in scheduling work optimally. The method's contribution to total
production is taken into account by production efficiency. The strengths of each strategy are
shown in the table, where the LSTM/GRU & RPA system performs better in a number of
crucial areas.
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Figure 2 System Architecture of Integrated LSTM/GRU and Robotic Process
Automation (RPA) for Real-Time Big Data Processing in Smart Job Shops

The architecture of a system that combines robotic process automation (RPA) and LSTM/GRU
neural networks is shown in Figure 2, enabling real-time large data processing in smart job
shops. Real-time data from IoT devices and sensors is first gathered by the architecture,
preprocessed, and then fed into LSTM/GRU models for time-series analysis. RPA is used to
automate real-time decision-making based on the predictions produced by these models.
Predictive maintenance, scheduling optimization, and continuous production monitoring are
made easier by this closed-loop technology, which improves resource efficiency and boosts
manufacturing productivity.

Table 3 Ablation Study for LSTM/GRU & RPA in Smart Job Shops

Component Predictio | Downtim | Productio | Automation | Scheduling
Configuration n e n Effectivenes | Optimizatio
Accuracy | Reductio | Efficiency |s n
n

LSTM Only 0.75 15.6% 0.752 0.680 0.845

GRU Only 0.78 14.3% 0.760 0.685 0.860

RPA Only 0.70 18.2% 0.730 0.749 0.820

PRP Only 0.68 20.1% 0.720 0.665 0.800
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LSTM & GRU 0.81 11.8% 0.785 0.735 0.879
LSTM & RPA 0.83 10.4% 0.815 0.749 0.910
LSTM & PRP 0.79 13.5% 0.780 0.720 0.870
GRU & RPA 0.82 11.2% 0.800 0.745 0.890
GRU & PRP 0.80 13.8% 0.785 0.715 0.872
RPA & PRP 0.74 17.0% 0.740 0.740 0.830
LSTM+GRU+RP | 0.85 9.5% 0.820 0.749 0.930
A

GRU+RPA+PRP | 0.82 11.0% 0.805 0.740 0.895
RPA+PRP+LSTM | 0.84 9.9% 0.825 0.745 0.925
Full Model 0.89 8.2% 0.837 0.749 0.941

The performance of several configurations involving LSTM, GRU, RPA, and PRP components
is compared in this table 3 with respect to important criteria like production efficiency,
automation effectiveness, scheduling optimization, downtime reduction, and prediction
accuracy. The best results are obtained by the entire model, which combines all of the
component parts. It has the best forecast accuracy (0.89), the largest downtime reduction
(8.2%), the best production efficiency (0.837), and the best schedule optimization (0.941).
While LSTM, GRU, or RPA alone perform only marginally, these components combined
gradually improve the overall efficacy of the system, illustrating the synergistic benefits of

combining various technologies in smart work shops.
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Performance Comparison Across Various Models
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Figure 3 Workflow Diagram of the Proposed LSTM/GRU and RPA-Based Production
Analysis System

The suggested method's workflow is shown in Figure 3, which shows how various system
components—LSTM, GRU, RPA, and data preprocessing—interact with one another. From
initial data collection and preprocessing to model training and prediction, it illustrates the data
flow. Combining RPA with LSTM/GRU models makes it easier to automate repetitive
processes and guarantees smooth data processing and analysis. This figure illustrates how well
the system manages intricate manufacturing processes, allowing for real-time production
schedule optimization and predictive maintenance, which improves overall operational
efficiency in smart job shops.

5. CONCLUSION

For real-time big data processing in smart job shops, the combination of LSTM/GRU models
with Robotic Process Automation (RPA) greatly improves predictive maintenance and
production efficiency. The suggested method successfully extracts temporal dependencies
from production data, allowing for precise forecasts and dynamic schedule modifications. The
system maximizes resource use, eliminates downtime, and lowers manual intervention by
automating repetitive processes. This methodology enhances decision-making procedures and
boosts overall operational effectiveness, which makes it a useful option for contemporary
production settings that prioritize Industry 4.0 developments. In order to improve decision-
making in smart job shops even further, future research can investigate the incorporation of
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for continuous improvement and system expansion to handle increasingly complex
manufacturing settings could greatly increase overall efficiency and adaptability.
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