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ABSTRACT 

This paper explores the integration of Long Short-Term Memory (LSTM) and Gated Recurrent 

Unit (GRU) neural networks with Robotic Process Automation (RPA) for real-time big data 

processing in smart job shops. 

Objectives: This include enhancing real-time data processing, automating production 

monitoring, optimizing production schedules, enabling predictive maintenance, and improving 

overall manufacturing efficiency.  

Methods: This involve collecting real-time data from IoT devices, preprocessing it for 

LSTM/GRU models, and applying RPA to automate repetitive tasks. The integrated system 

predicts equipment performance, optimizes schedules, and reduces downtime.  

Results: This demonstrates significant improvements, including an 8.2% reduction in 

downtime, a 0.837 increase in production efficiency, and enhanced predictive accuracy at 0.89. 

Conclusion: This indicates that the proposed method effectively boosts decision-making 

processes, minimizes operational disruptions, and increases manufacturing productivity, 

making it a powerful tool for smart job shops in the Industry 4.0 era. 

Keywords: LSTM, GRU, Robotic Process Automation, Smart Job Shops, Real-Time Data 

Processing, Predictive Maintenance, Industry 4.0, Manufacturing Efficiency, Production 

Optimization. 

1. INTRODUCTION: 

The industrial landscape has completely changed as a result of Industry 4.0's rapid progress, 

making it possible to integrate smart technology into work shop environments. Smart 

manufacturing, which replaces traditional manufacturing methods, requires the use of 

sophisticated tools and processes that can manage the complexity of contemporary production 

systems. This situation presents a strong opportunity to improve production analysis and 

decision-making in smart job shops through the use of real-time big data processing in 

conjunction with machine learning techniques like Long Short-Term Memory (LSTM) and 

Gated Recurrent Unit (GRU) neural networks, as well as robotic process automation (RPA). 

Robust workshops are distinguished by their capacity to adjust to ever-changing production 

settings, oversee a broad range of responsibilities, and react promptly to shifts in demand and 

operating circumstances. These environments generate enormous amounts of constantly 

expanding data, both organized and unstructured, from machines, sensors, and other Internet 

of Thing’s devices. The aforementioned data exhibits substantial promise in enhancing 
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production efficiency, forecasting machine malfunctions, streamlining scheduling, and 

mitigating downtime. To fully realize this promise, though, sophisticated data processing skills 

that can instantly evaluate and understand the data are needed. 

Recurrent neural networks (RNNs) with the capabilities of LSTM and GRU are two strong 

varieties that are especially made to handle sequential data and time-series analysis. Because 

of the way their design works, they can capture long-term dependencies in data, which makes 

them perfect for anticipating trends and finding patterns in the production data of intelligent 

job shops. Production analysis may become more accurate and efficient by training these 

models to identify anomalies, predict equipment breakdowns, and optimize production 

schedules. 

Robotic Process Automation (RPA) is a useful tool that enhances machine learning models by 

automating time-consuming and repetitive operations. This allows human resources to be 

allocated towards more strategic decision-making. RPA can be used in smart job shops to 

automate pre-processing, data collecting, and even some parts of data analysis. Job shops can 

accomplish real-time monitoring and analysis of production processes by integrating RPA with 

LSTM/GRU models. This guarantees that decision-makers always have access to correct and 

current information. 

In smart job shops, LSTM/GRU and RPA work together to create a closed-loop system that 

continuously gathers, processes, and analyses data in real-time. This method not only improves 

production analysis accuracy but also makes predictive maintenance possible, which lowers 

operating costs by averting unplanned equipment breakdowns. Moreover, it facilitates the 

dynamic modification of production schedules by utilizing real-time data, guaranteeing optimal 

resource utilization and efficient achievement of production targets. 

To sum up, the amalgamation of LSTM/GRU neural networks, RPA, and real-time big data 

processing in smart job shops signifies a noteworthy progression in the manufacturing domain. 

This strategy makes use of automation and machine learning to provide precise, timely, and 

actionable insights that will ultimately boost industry competitiveness by increasing production 

efficiency and cost-effectiveness. 

The key objectives are: 

● Enhance Real-Time Data Processing: Utilize LSTM/GRU models for real-time analysis 

of production data, improving decision-making speed and accuracy in smart job shops. 

● Automate Production Monitoring: Implement RPA to automate data collection and pre-

processing tasks, reducing manual intervention and increasing efficiency. 

● Optimize Production Schedules: Use predictive analytics to dynamically adjust 

production schedules, maximizing resource utilization and meeting targets. 

● Enable Predictive Maintenance: Integrate machine learning for early detection of 

equipment issues, reducing downtime and maintenance costs. 
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● Improve Overall Manufacturing Efficiency: Leverage big data analytics and 

automation to enhance productivity, reduce waste, and increase competitiveness in the 

manufacturing industry. 

A real-time large data processing technique based on LSTM for intelligent workshop 

manufacturing processes is presented by Du et al. (2020). The study's inability to conduct a 

thorough comparison with other LSTM versions, however, restricts our ability to comprehend 

the relative effectiveness of the suggested approach. Furthermore, the method's possible 

drawbacks are not sufficiently discussed, which creates gaps in determining its usefulness and 

practical applicability in various contexts. These flaws show how additional research and 

verification are required to properly assess the benefits and possible risks of the approach in 

intelligent manufacturing settings. 

In their study, Du et al. (2020) present an LSTM-based approach to the problem of real-time 

data processing in intelligent workshop manufacturing. The study emphasizes how the LSTM 

model is superior than conventional techniques, especially when it comes to increasing 

accuracy. The study does, however, highlight the necessity of a comprehensive comparison 

with traditional methods in order to properly illustrate the advantages of the LSTM model in 

real-time data processing circumstances. The comparison highlights LSTM's potential to 

improve the precision and efficacy of IMT procedures, although additional testing is required 

to verify these advantages in a wider range of applications. 

2. LITERATURE SURVEY: 

In their investigation of symmetry in digital twins-driven manufacturing CPS, Wang et al. 

(2021) place particular emphasis on quick environmental response and real-time data 

collection. They suggest a mobile edge computing (MEC) middleware-based CPS architecture 

to solve service response times in smart job shops. This architecture uses MEC middleware to 

move data processing closer to the data source. It includes pre-processing, redundant data 

filtering, and data cache management modules. This method reduces packet loss, maximizes 

bandwidth, and minimizes delay to improve network performance. Through studies comparing 

various data processing modes inside a smart work shop environment, the effectiveness of the 

suggested system is proven. 

Zhang et al. (2021) offer a unique closed-loop scheduling approach in response to the necessity 

for real-time decision-making in uncertain intelligent manufacturing. This framework 

combines a rules base, a database, online decision-making, and offline training. In order to 

meet managers' expectations, potential dispatching rules are mined from previous production 

data during the offline phase using an enhanced gene expression program (IGEP). The system 

refreshes the database while managing shop floor scheduling online by applying the proper 

dispatching rules. This strategy reduces makespan, total flow time, and tardiness more 

effectively than existing dispatching rules, according to numerical experiments conducted in a 

job shop with random job arrivals. 

The difficulties of multi-source data modeling and integration in smart manufacturing are 

examined by Fang et al. (2020), who point out the gaps between big data collection and data-
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driven applications. The paper introduces spatiotemporal modeling to organize data across 

temporal, geographical, and attributive dimensions in light of the widespread usage of IoT on 

shop floors. Furthermore, a proposal is made for an ontology-based method to integrate 

manufacturing data from several sources, which guarantees simple indexing and reuse for a 

range of applications. By bridging the gap between raw data and smart manufacturing 

processes, a built big data-driven analysis and decision-making system demonstrates the 

effectiveness of these methods. 

In line with Industry 4.0 concepts, Chuang et al. (2021) investigate the application of smart 

workpiece production in a digital twin job shop. They place a strong emphasis on workpieces 

that interact with the environment and autonomously manage their manufacturing processes. 

The paper suggests a production framework at the process level that makes use of current 

technologies such as IoT, digital twins, and cyber-physical production systems (CPPS). The 

creation of the workpiece is separated into three levels: operation, IoT/sensor, and process. 

Dynamic contact between workpieces and workstations is made possible by RFID tags, and 

resource tracking and machine tool monitoring are handled by CPPSs. A digital twin work shop 

example is provided to show that this strategy is feasible. 

Shahbazi and Byun (2021) integrate blockchain, machine learning (ML), and the internet of 

things (IoT) to meet the demand for enhanced monitoring systems in manufacturing. Their 

suggested method gathers huge amounts of unstructured real-time environmental data from IoT 

sensors, including temperature, humidity, gyroscopes, and accelerometers. This data is 

processed using big data approaches, and errors and outliers are found using a hybrid prediction 

model that uses Random Forest. The method, which has been evaluated in South Korean car 

manufacturing, increases defect prediction and data security by preventing modifications using 

bogus data. In the end, this method improves decision-making and lowers manufacturing 

process errors. 

In order to overcome the difficulties in time-series forecasting for uses such as production 

scheduling and machine health monitoring, Essien and Giannetti (2020) provide a deep 

learning model for multistep machine speed prediction in smart manufacturing. Convolutional 

LSTM encoder-decoder architecture is used in their model, which can capture the temporal and 

spatial patterns found in complicated industrial data and is noise-resistant. The model 

outperformed cutting-edge predictive models when tested on actual data from a UK metal 

packaging facility. It was able to optimize production processes, increase throughput, and 

reduce energy consumption in smart factories. 

Li et al. (2021) provides a model-based clustering and reinforcement learning framework-based 

data-driven real-time scheduling system for a smart shop floor. This strategy fills the vacuum 

in the application of cutting-edge technology for intelligent and automated production. Based 

on data about the shop floor's current status, the system's brain agent and scheduling agent 

dynamically choose the best scheduling rules. Empirical findings reveal that this approach 

proficiently manages disruptions and surpasses conventional composite dispatching rules, 

augmenting decision optimization in product lifecycle management and elevating 

manufacturing efficiency in general. 
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In smart manufacturing, where traditional job shop scheduling changes to manage networked, 

collaborative, and intelligent systems, Zhou et al. (2020) address dynamic scheduling 

difficulties. Smart manufacturing scheduling has to take into account more tasks, changing 

service statuses, and uncertainties, in contrast to static scheduling. A deep reinforcement 

learning-based technique to reduce the task's maximum completion time is presented in this 

research. Queue times are the system state and maximum queue time is the aim in the system 

framework, which consists of an agent, environment, and their interactions. To maximize 

scheduling, two networks are used: a prediction network and a target network. Case studies 

show how well the approach works to increase scheduling efficiency. 

Yin et al. (2020) present a deep learning-based smart factory prediction technique aimed at 

enhancing element yield prediction in the steel sector. In order to improve prediction accuracy, 

the study first applies wavelet threshold denoising and the "3-σ" concept to preprocess noisy 

data. For yield prediction, a convolutional neural network (CNN) is first employed; however, 

for some samples, its performance is not ideal. In order to optimize the model, historical yield 

data is included into an LSTM neural network, and the CNN and LSTM are combined through 

the use of the Adaboost algorithm. The model's prediction accuracy is greatly increased by this 

combined CNN-LSTM-Adaboost method, producing high-precision simulation results. 

Ma et al. (2021) presents a GAN-based data mining technique to address issues with smart 

shop floor scheduling, where it can be challenging and time-consuming to produce high-quality 

production samples. The technique learns the distribution of initial samples using Generative 

Adversarial Networks (GAN) and produces enough simulated samples for efficient knowledge 

mining scheduling. The best scheduling method is then mapped to the production status on the 

shop floor using Support Vector Regression (SVR). This method, which has been verified on 

the MiniFab production system, guarantees the efficacy of the mined scheduling information 

while drastically cutting down on sample collecting time. 

Kovacova and Lewis (2021) examine smart factory performance, cognitive automation, and 

industrial big data analytics within the sustainable manufacturing Internet of Things (IoT). 

Utilizing and replicating survey data from various sources including BDV, EEF, McKinsey, 

and PwC, the study analyzes intelligent processing capabilities, automation technologies, and 

decision support algorithms in smart industrial systems. Descriptive statistics from these 

surveys were calculated to provide insights into the implementation and effectiveness of these 

technologies in enhancing smart factory operations within a sustainable manufacturing context. 

In their investigation of predictive data analytics' potential to improve smart manufacturing, 

Kumar et al. (2021) focus mostly on industrial robots. The study emphasizes the difficulties in 

handling massive production data that is driven by the extensive usage of sensors and IoT 

integration and is characterized by high velocity, variability, and volume. The writers talk about 

the development of deep learning technologies and highlight how they are superior to 

conventional machine learning when it comes to handling and interpreting performance data. 

Deep learning techniques that are competitive are created to enhance the performance of 

manufacturing systems. Future directions and difficulties in utilizing deep learning for 

predictive data analysis in smart manufacturing systems are also discussed in the article. 
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Harikumar Nagarajan (2021) investigates how integrating cloud computing with Geographic 

Information Systems (GIS) might speed up the collection and processing of geological large 

data, hence improving decision-making processes. It addresses major issues in data 

management and proposes ways to increase data security, accessibility, and cooperation. 

Disaster management, environmental risk assessment, health research, and sustainable energy 

can all benefit from more efficient data handling through the use of cloud-based GIS tools. 

These innovations ultimately encourage sustainable growth and better decision-making in a 

variety of sectors, including engineering, geology, and conservation. 

Raj Kumar Gudivaka (2020) introduces a novel Two-Tier Medium Access Control (MAC) 

system for improving energy efficiency and resource management in cloud-based robotic 

process automation (RPA). By using Lyapunov optimization techniques, the system improves 

resource allocation, prioritizes jobs based on urgency and robot capabilities, and increases 

system lifespan, energy efficiency, and throughput. Simulation findings reveal that the 

framework performs better in terms of throughput, power consumption, and Quality of Service 

(QoS) than protocols such as IEEE 802.15.4, FD-MAC, and MQEB-MAC, indicating its 

usefulness in energy-aware scheduling and real-time flexibility for RPA. 

3. PROCEDURE 

LSTM/GRU models are integrated with robotic process automation (RPA) to provide real-time 

large data processing and precise production analysis in smart job shops. In order to maintain 

smooth data flow and decision-making, this method entails gathering and preparing real-time 

data, employing LSTM/GRU models for time-series analysis and prediction, and automating 

jobs using RPA. By using predictive analytics, the approach seeks to improve scheduling, 

decrease downtime, and increase production accuracy—all of which contribute to increased 

manufacturing efficiency in smart job shops. 
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Figure 1 Architecture of an Integrated LSTM/GRU and RPA System for Real-Time Big 

Data Processing in Smart Job Shops 

The architecture of a system that combines robotic process automation (RPA) and gated 

recurrent unit (GRU) and long short-term memory (LSTM) models for real-time data 

processing in smart job shops is shown in this Figure 1. The procedure starts with the system 

gathering data from Internet of Things (IoT) devices, then preprocessing and LSTM/GRU 

model analysis. Predictive maintenance, scheduling optimization, and production monitoring 

are supported by the data analysis. RPA increases productivity by automating tedious 

operations. The feedback loop makes sure that decisions and performance assessments are 

made continuously, which eventually boosts operational effectiveness and industrial 

productivity. 

3.1 Data Collection and Preprocessing  

Data from various sensors and loT devices in the job shop is collected in real-time. 

Preprocessing involves cleaning the data, handling missing values, and normalizing it for use 
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in LSTM/GRU models. Noise reduction techniques, such as wavelet transformation, are 

applied to improve data quality, ensuring that the models receive accurate and relevant 

information for analysis. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} represent the raw data collected over time. 

Preprocessed data 𝑋′ is obtained by: 

𝑋′ = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒⁡(𝐷𝑒𝑛𝑜𝑖𝑠𝑒⁡(𝑋))                                                   (1) 

This equation normalizes and denoises the raw data 𝑋 to produce clean data 𝑋′ suitable for 

model input. 𝑋 : Represents the raw data collected from various sensors and loT devices in the 

smart job shop. Denoise (𝑋) : This step applies noise reduction techniques, such as wavelet 

transformation, to remove any irrelevant or misleading information from the data, ensuring that 

only useful signals are retained. Normalize (⋅) : After denoising, the data is normalized, which 

involves scaling the data to a standard range (typically between 0 and 1 ). This process ensures 

that the data is consistent and can be effectively used by machine learning models. 𝑋′ : The 

result is the preprocessed data, clean and normalized, ready for input into the LSTM/GRU 

models. 

3.2 LSTM/GRU Model Application  

LSTM and GRU models are employed for time-series analysis, capturing temporal 

dependencies in production data. These models predict future states, such as machine speed, 

equipment failure, or production output. The models are trained using historical data, and their 

predictions guide realtime decision-making in the job shop. The LSTM cell updates are defined 

as: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

𝐶˜𝑡 =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ⁡(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶˜𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

ℎ𝑡 = 𝑜𝑡 ∗𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ⁡(𝐶𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

These equations describe the operations within an LSTM cell, where 𝑓𝑡 , 𝑖𝑡, 𝑜𝑡 : These are the 

forget, input, and output gates of the LSTM cell, respectively. These gates control the flow of 

information within the LSTM unit. 𝑊𝑓 ,𝑊𝑖,𝑊𝐶 ,𝑊𝑜 : Weight matrices applied to the inputs and 

the previous hidden state, determining how much of the previous information is carried 

forward. [ℎ𝑡−1, 𝑥𝑡] : The concatenation of the previous hidden state ℎ𝑡−1 and the current input 

𝑥𝑡. 𝜎(⋅) : The sigmoid activation function, which outputs values between 0 and 1, effectively 

gating the information flow. 𝑡𝑎𝑛ℎ⁡(⋅) : The hyperbolic tangent function, used to create the 

candidate values that can update the cell state. 𝐶𝑡 : The cell state, which carries the long-term 

memory of the model. It is updated by combining the previous cell state 𝐶𝑡−1 with the new 

candidate values. ℎ𝑡 : The hidden state output from the LSTM cell, representing the short-term 

memory and fed into the next LSTM unit or used as the final output of the model. 
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3.3 RPA Integration for Automation  

Robotic Process Automation (RPA) automates repetitive tasks, such as data entry, report 

generation, and model updates. By integrating RPA, the job shop ensures that data flows 

seamlessly between different stages of production analysis, enabling real-time monitoring and 

decision-making without manual intervention, thus improving efficiency and reducing errors. 

Let 𝑇 be a task and 𝐴 be the automation process: 

𝑇′ = 𝐴(𝑇)                                                                         (8) 

𝑇 : Represents a repetitive task in the production process that needs automation. 𝐴(𝑇) : 

Represents the application of Robotic Process Automation (RPA) to task 𝑇, automating it. 𝑇′ : 

The result is an automated task, 𝑇′, which reduces the need for manual intervention, ensuring 

consistent and efficient processing of routine tasks. 

3.4 Prediction and Decision-Making  

The predictions generated by the LSTM/GRU models are used to make informed decisions 

about scheduling, maintenance, and production optimization. These decisions are automated 

through RPA, ensuring that the production process is continuously optimized based on real-

time data analysis, leading to improved production accuracy and efficiency. Let 𝑃𝑡 be the 

prediction at time 𝑡 and 𝐷𝑡 be the decision: 

𝐷𝑡 = 𝑓(𝑃𝑡)                                                                  (9)  

Where 𝑃𝑡 : Represents the prediction made by the LSTM/GRU models at time 𝑡, which could 

be related to machine performance, production rates, or maintenance needs. 𝑓(𝑃𝑡) : Represents 

the decision-making function that processes the prediction 𝑃𝑡 to determine the necessary 

actions. 𝐷𝑡 : The output is a decision 𝐷𝑡 that influences the production schedule, maintenance 

activities, or other operational aspects, ensuring that the manufacturing process is optimized 

based on real-time data. 

Algorithm 1: Real-Time Big Data Processing and Analysis in Smart Job Shops 

Input: Real-time data from sensors and IoT devices (X), Historical production data 

Output: Optimized production schedules, Predictive maintenance alerts, Real-time decision 

insights 

BEGIN 

   Collect real-time data X from sensors and IoT devices. 

   FOR each data point in X 

      Normalize and denoise to produce X' 

   END FOR 
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   FOR each data point in X' 

      Apply LSTM/GRU for time-series prediction 

   END FOR 

   IF prediction indicates failure risk THEN 

      Trigger preventive maintenance alert 

   ELSE IF prediction suggests optimization THEN 

      Adjust production schedule 

   ELSE 

      Continue monitoring 

   END IF 

   FOR each repetitive task T 

      Apply RPA to automate T as T' 

   END FOR 

   IF an error occurs THEN 

      Log error and retry processing 

   ELSE 

      Proceed with normal operations 

   END IF 

RETURN optimized schedules, alerts, decisions 

END 

The Algorithm 1 uses LSTM/GRU models in conjunction with real-time data collecting to 

enable decision-making and predictive analytics in intelligent job shops. It estimates 

production requirements and equipment performance using time-series analysis, allowing for 

proactive schedule modifications. By automating repetitive tasks and minimizing manual 

involvement, robotic process automation (RPA) ensures smooth data flow. A more responsive 

and effective manufacturing process results from the system's overall improvement in 

production efficiency, reduction of downtime through predictive maintenance, and 
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optimization of scheduling accuracy. Decision-making is improved by this method, which 

offers fast, data-driven insights. 

3.5 Performance Measures 

The precision with which LSTM/GRU models predict production outcomes and equipment 

breakdowns is measured by Prediction Accuracy, one of the primary performance indicators 

used to assess the algorithm's efficacy in smart job shops. The reduction in unscheduled 

machine outages as a result of predictive maintenance is measured by downtime reduction. 

Production efficiency evaluates the increase in throughput and resource use. Automation 

Effectiveness measures how much RPA reduces errors and manual tasks. Last but not least, 

Scheduling Optimization assesses how well the algorithm ensures a responsive and efficient 

manufacturing process by improving adherence to production timetables and target outputs. 

Table 1 Performance Metrics for Smart Job Shops 

Metric Input Value Execution Value Output Value 

Prediction Accuracy 0.85 0.87 0.89 

Downtime 

Reduction 

12.5% 10.3% 8.2% 

Production 

Efficiency 

75.6% 80.2% 83.7% 

Automation 

Effectiveness 

65.4% 70.5% 74.9% 

Scheduling 

Optimization 

88.9% 92.3% 94.1% 

This table 1 displays the input, execution, and output values for key performance metrics in the 

algorithm's operation. The Input Value represents the initial state or baseline metric. The 

Execution Value reflects the metric during the process, while the Output Value shows the 

final state after the algorithm's application. Each value is expressed with decimal precision to 

demonstrate incremental improvements across the metrics. 

4. RESULT AND DISCUSSION 

Robotic Process Automation (RPA) and real-time data processing combined with LSTM/GRU 

models have shown to significantly increase production efficiency and predictive maintenance 

in smart job shops. Due to the LSTM/GRU models' effective capture of temporal relationships 

in production data, there was a significant 8.2% reduction in downtime and a high forecast 

accuracy of 0.89. By using RPA, mistakes and manual interventions were decreased, resulting 

in a 74.9% increase in automation effectiveness. Furthermore, resource usage was optimized 

by the dynamic modification of production schedules, with scheduling optimization reaching 
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94.1%. These results demonstrate how well the algorithm works in smart job shops to improve 

decision-making procedures, reduce operational disturbances, and increase overall 

manufacturing productivity. 

Table 2 Comparative Analysis of Methods for Smart Manufacturing and Robotics 

Feature/Parameter Seasonal ARIMA 

for Short-Term 

Wind Speed 

Forecast (2021) 

Bidirectional RNN 

for Script 

Generation (2019) 

LSTM/GRU & 

RPA for Smart Job 

Shops (Proposed) 

Prediction Accuracy 0.75 0.82 0.89 

Data Processing 

Speed 

0.70 0.78 0.837 

Real-Time 

Processing 

0.60 0.75 0.837 

Automation 

Effectiveness 

0 0 0.749 

Scheduling 

Optimization 

0 0 0.941 

Downtime 

Reduction 

0 0 0.082 

Production 

Efficiency 

0 0 0.837 

This table 2 highlights the strengths of each method, with the proposed LSTM/GRU & RPA 

approach showing superior performance in several critical areas. The prediction accuracy of 

each method indicates how well it foresees the desired result. While real-time processing 

demonstrates the ability to function in real-time contexts, data processing speed assesses how 

efficiently data is handled and processed. Automation Effectiveness evaluates a process's 

capacity for automation without human intervention. Downtime Reduction gauges the 

method's effect on lowering operational downtime, whereas Scheduling Optimization assesses 

the method's effectiveness in scheduling work optimally. The method's contribution to total 

production is taken into account by production efficiency. The strengths of each strategy are 

shown in the table, where the LSTM/GRU & RPA system performs better in a number of 

crucial areas. 
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Figure 2 System Architecture of Integrated LSTM/GRU and Robotic Process 

Automation (RPA) for Real-Time Big Data Processing in Smart Job Shops 

The architecture of a system that combines robotic process automation (RPA) and LSTM/GRU 

neural networks is shown in Figure 2, enabling real-time large data processing in smart job 

shops. Real-time data from IoT devices and sensors is first gathered by the architecture, 

preprocessed, and then fed into LSTM/GRU models for time-series analysis. RPA is used to 

automate real-time decision-making based on the predictions produced by these models. 

Predictive maintenance, scheduling optimization, and continuous production monitoring are 

made easier by this closed-loop technology, which improves resource efficiency and boosts 

manufacturing productivity. 

Table 3 Ablation Study for LSTM/GRU & RPA in Smart Job Shops 

Component 

Configuration 

Predictio

n 

Accuracy 

Downtim

e 

Reductio

n 

Productio

n 

Efficiency 

Automation 

Effectivenes

s 

Scheduling 

Optimizatio

n 

LSTM Only 0.75 15.6% 0.752 0.680 0.845 

GRU Only 0.78 14.3% 0.760 0.685 0.860 

RPA Only 0.70 18.2% 0.730 0.749 0.820 

PRP Only 0.68 20.1% 0.720 0.665 0.800 
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LSTM & GRU 0.81 11.8% 0.785 0.735 0.879 

LSTM & RPA 0.83 10.4% 0.815 0.749 0.910 

LSTM & PRP 0.79 13.5% 0.780 0.720 0.870 

GRU & RPA 0.82 11.2% 0.800 0.745 0.890 

GRU & PRP 0.80 13.8% 0.785 0.715 0.872 

RPA & PRP 0.74 17.0% 0.740 0.740 0.830 

LSTM+GRU+RP

A 

0.85 9.5% 0.820 0.749 0.930 

GRU+RPA+PRP 0.82 11.0% 0.805 0.740 0.895 

RPA+PRP+LSTM 0.84 9.9% 0.825 0.745 0.925 

Full Model 0.89 8.2% 0.837 0.749 0.941 

The performance of several configurations involving LSTM, GRU, RPA, and PRP components 

is compared in this table 3 with respect to important criteria like production efficiency, 

automation effectiveness, scheduling optimization, downtime reduction, and prediction 

accuracy. The best results are obtained by the entire model, which combines all of the 

component parts. It has the best forecast accuracy (0.89), the largest downtime reduction 

(8.2%), the best production efficiency (0.837), and the best schedule optimization (0.941). 

While LSTM, GRU, or RPA alone perform only marginally, these components combined 

gradually improve the overall efficacy of the system, illustrating the synergistic benefits of 

combining various technologies in smart work shops. 
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Figure 3 Workflow Diagram of the Proposed LSTM/GRU and RPA-Based Production 

Analysis System 

The suggested method's workflow is shown in Figure 3, which shows how various system 

components—LSTM, GRU, RPA, and data preprocessing—interact with one another. From 

initial data collection and preprocessing to model training and prediction, it illustrates the data 

flow. Combining RPA with LSTM/GRU models makes it easier to automate repetitive 

processes and guarantees smooth data processing and analysis. This figure illustrates how well 

the system manages intricate manufacturing processes, allowing for real-time production 

schedule optimization and predictive maintenance, which improves overall operational 

efficiency in smart job shops. 

5. CONCLUSION 

For real-time big data processing in smart job shops, the combination of LSTM/GRU models 

with Robotic Process Automation (RPA) greatly improves predictive maintenance and 

production efficiency. The suggested method successfully extracts temporal dependencies 

from production data, allowing for precise forecasts and dynamic schedule modifications. The 

system maximizes resource use, eliminates downtime, and lowers manual intervention by 

automating repetitive processes. This methodology enhances decision-making procedures and 

boosts overall operational effectiveness, which makes it a useful option for contemporary 

production settings that prioritize Industry 4.0 developments. In order to improve decision-

making in smart job shops even further, future research can investigate the incorporation of 
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sophisticated AI techniques like reinforcement learning. Moreover, real-time feedback loops 

for continuous improvement and system expansion to handle increasingly complex 

manufacturing settings could greatly increase overall efficiency and adaptability. 

REFERENCE: 

1. Wang, C., Lv, Y., Wang, Q., Yang, D., & Zhou, G. (2021). Service-oriented real-time 

smart job shop symmetric CPS based on edge computing. Symmetry, 13(10), 1839. 

2. Zhang, L., Hu, Y., Tang, Q., Li, J., & Li, Z. (2021). Data-driven dispatching rules 

mining and real-time decision-making methodology in intelligent manufacturing shop 

floor with uncertainty. Sensors, 21(14), 4836. 

3. Fang, W., Guo, Y., Liao, W., Huang, S., Yang, C., & Cui, K. (2020, April). The spatio-

temporal modeling and integration of manufacturing big data in job shop: an ontology-

based approach. In 2020 IEEE 7th International Conference on Industrial Engineering 

and Applications (ICIEA) (pp. 394-398). IEEE. 

4. Chuang, W., Guanghui, Z., & Junsheng, W. (2021). Smart cyber-physical production 

system enabled workpiece production in digital twin job shop. Advances in Mechanical 

Engineering, 13(9), 16878140211040888. 

5. Shahbazi, Z., & Byun, Y. C. (2021). Smart manufacturing real-time analysis based on 

blockchain and machine learning approaches. Applied Sciences, 11(8), 3535. 

6. Essien, A., & Giannetti, C. (2020). A deep learning model for smart manufacturing 

using convolutional LSTM neural network autoencoders. IEEE Transactions on 

Industrial Informatics, 16(9), 6069-6078. 

7. Harikumar Nagarajan (2021) Streamlining Geological Big Data Collection and 

Processing for Cloud, Journal of current science,Volume 9 Issue 04. 

8. Li, Y., Gu, W., Wang, X., & Chen, Z. (2021, June). Data-driven scheduling for smart 

shop floor via reinforcement learning with model-based clustering algorithm. In 2021 

IEEE 4th Advanced Information Management, Communicates, Electronic and 

Automation Control Conference (IMCEC) (Vol. 4, pp. 1310-1314). IEEE. 

9. Zhou, L., Zhang, L., & Horn, B. K. (2020). Deep reinforcement learning-based dynamic 

scheduling in smart manufacturing. Procedia Cirp, 93, 383-388. 

10. Yin, X., Zuo, J., Huang, X., Liu, Z., & Sang, G. (2020, October). A smart factory 

prediction method combining big data experience feedback and deep learning. In 2020 

International Conference on Artificial Intelligence and Computer Engineering 

(ICAICE) (pp. 310-314). IEEE. 

11. Ma, Y., Li, S., Lu, X., & Liu, J. (2021, August). GAN based data analysis and mining 

for smart shop floor scheduling. In 2021 IEEE 17th International Conference on 

Automation Science and Engineering (CASE) (pp. 651-656). IEEE. 

12. Kovacova, M., & Lewis, E. (2021). Smart factory performance, cognitive automation, 

and industrial big data analytics in sustainable manufacturing internet of things. Journal 

of Self-Governance and Management Economics, 9(3), 9-21. 

https://doi.org/10.62646/ijitce.2022.v10.i3.pp63-79


          ISSN 2347–3657 

         Volume 10, Issue 3, 2022 

 
 
 
https://doi.org/10.62646/ijitce.2022.v10.i3.pp63-79 

79 

13. Kumar, M., Shenbagaraman, V. M., Shaw, R. N., & Ghosh, A. (2021). Digital 

transformation in smart manufacturing with industrial robot through predictive data 

analysis. Machine Learning for Robotics Applications, 85-105. 

14. Du, W., Zhu, Z., Wang, C., & Yue, Z. (2020, May). The real-time big data processing 

method based on LSTM for the intelligent workshop production process. In 2020 5th 

IEEE International Conference on Big Data Analytics (ICBDA) (pp. 63-67). IEEE. 

15. Raj Kumar Gudivaka (2020) ROBOTIC PROCESS AUTOMATION 

OPTIMIZATION IN CLOUD COMPUTING VIA TWO-TIER MAC AND 

LYAPUNOV TECHNIQUES, International Journal of Business and General 

Management (IJBGM),Vol. 9, Issue 5, Jul–Dec 2020; 75–92. 

 

 

 

https://doi.org/10.62646/ijitce.2022.v10.i3.pp63-79

