

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

42

Advance Deep learning for malnutrition assessment

D.Ruthvik, Dr. Narsappa Reddy

UG Student, Department of Electronics and Computer Engineering, JBIET, India.

Assosicate Proffesor, Department of Electronics and Computer Engineering, JBIET, India.

ABSTRACT

Malnutrition remains a critical global health challenge, with profound implications for both physical and

cognitive development across various populations. Its effects are particularly severe in vulnerable groups,

including children, who are at a crucial stage of growth and development, and the elderly, who may face increased

nutritional needs due to age-related health conditions. The World Health Organization highlights that

malnutrition, whether in the form of undernutrition, micronutrient deficiencies, or obesity, contributes to a range

of health issues, including stunted growth, weakened immune systems, and increased mortality rates.

In light of this pressing issue, this project aims to leverage advanced deep learning techniques to enhance the

assessment and identification of malnutrition indicators across diverse demographics. By employing a multi-

faceted approach that integrates both computer vision and natural language processing, we propose a

comprehensive framework that effectively analyzes dietary patterns, anthropometric data (such as height, weight,

and body mass index), and social determinants of health. This analysis will utilize a variety of data sources,

including images of food items, textual dietary reports, and sensor data from wearable devices that track

individual health metrics.

The methodology of this project includes the development of convolutional neural networks (CNNs) specifically

designed for image analysis. These networks will focus on recognizing food items and estimating portion sizes,

which are critical for accurately assessing dietary intake. In parallel, we will implement recurrent neural

networks (RNNs) to process self-reported dietary intake data, allowing for a more comprehensive understanding

of an individual’s nutritional habits over time. This dual approach ensures that both visual and textual data are

utilized to provide a more holistic view of nutritional status.

Moreover, this project will explore the use of transfer learning, a technique that allows models trained on large

datasets to be adapted to smaller, domain-specific datasets. This is particularly relevant in malnutrition research,

where collecting extensive labeled data can be challenging. By enhancing model accuracy in situations with

limited data, we aim to improve the reliability of our assessments and predictions.

Our anticipated outcomes include the creation of a robust and scalable tool tailored for health professionals.

This tool will facilitate real-time assessments of nutritional status and enable the identification of at-risk

individuals, allowing for timely interventions. By integrating these advanced technologies, we aim to improve

public health strategies and interventions, ultimately contributing to better nutrition and health outcomes on a

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

43

global scale. This project seeks not only to address immediate malnutrition issues but also to promote long-term

health and well-being in populations at risk.

INTRODUCTION

The Malnutrition Detection System, leveraging the capabilities of Efficient Net and built on Python's

Django framework with SQLite, marks a significant advancement in health technology. This deep

learning project is meticulously designed with distinct modules for users, administrators, and doctors,

each catering to specific functionalities and user experiences.

User Module: Users can sign up and log in to access a sophisticated malnutrition detection tool. They

input critical data like gender, age, weight, height, and upload images of nails or skin. The system, powered

by Efficient Net, analyzes these inputs to predict malnutrition, classifying results as either 'normal' or

'malnourished.

Post-prediction, users are recommended to local doctors for further consultation if needed. They can also

view their prediction history, with details on result accuracy and health status of the submitted images.

Admin Module: The admin module provides a secure login for administrators who can access a

comprehensive dashboard. This includes an overview of user counts, prediction results, and registered

doctors. Admins can view all user prediction histories, manage registered user, and doctor profiles, and

maintain system security by changing passwords

Doctor Module: Doctors have a dedicated signup and login facility. They can view the prediction histories

of patients from their city, facilitating informed medical interventions. This module also allows doctors

to manage their profiles and credentials, ensuring an efficient and secure system interaction.

In essence, this Malnutrition Detection System stands as a beacon of innovation in healthcare,

providing a crucial tool for early diagnosis and intervention in malnutrition cases, thus paving the way for a

healthier society.

LITERATURE SURVEY

Malnutrition is a multifaceted global health challenge that affects millions of individuals across

various demographics, including children, adolescents, adults, and the elderly. It encompasses both

undernutrition—characterized by deficiencies in essential nutrients, calories, and vitamins—and

overnutrition, which often results in obesity and related non-communicable diseases. The consequences of

malnutrition extend far beyond immediate health concerns; they significantly impact physical and

cognitive development, leading to long-term repercussions for individuals and societies.

In children, undernutrition can hinder growth, impair cognitive function, and increase vulnerability to

infectious diseases. These early-life nutritional deficits can set off a cascade of adverse outcomes,

limiting educational achievements and economic productivity later in life. Conversely, overnutrition,

prevalent in many industrialized nations, contributes to a surge in obesity rates, diabetes, cardiovascular

diseases, and other health complications. Elderly populations are particularly susceptible to malnutrition,

whether due to inadequate intake, absorption issues, or metabolic changes, which can lead to increased

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

44

morbidity, frailty, and a decline in quality of life.

Addressing malnutrition is crucial for achieving global health targets, such as those outlined in the United

Nations Sustainable Development Goals. Effective intervention requires accurate assessment and

monitoring of nutritional status, which has traditionally relied on labor-intensive methods and subjective

evaluations. However, recent advancements in deep learning techniques and artificial intelligence are

revolutionizing this field, enabling healthcare professionals to leverage large datasets for more precise

assessments. These technologies facilitate the identification of at-risk populations and support timely,

evidence-based interventions tailored to individual needs.

By harnessing the power of deep learning, we can not only enhance our understanding of malnutrition

patterns but also improve public health strategies, ultimately leading to better health outcomes across

vulnerable populations. The integration of these advanced methodologies into nutritional monitoring

and intervention frameworks represents a significant step forward in the fight against malnutrition on a

global scale

 HARDWARE AND SOFTWARE

REQUIREMENT

In this chapter we mentioned the software and hardware requirements, which are necessary for

successfully running this system. The major element in building systems is selecting compatible hardware

and software. The system analyst has to determine what software package is best for the "Malnutrition

Detection System" and, where software is not an issue, the kind of hardware and peripherals needed for

the final conversion

System Environment:

After analysis, some resources are required to convert the abstract system into the real one.

The hardware and software selection begins with requirement analysis, followed by a request for proposal

and vendor evaluation.

Software and real system are identified. According to the provided functional specification all the

technologies and its capacities are identified. Basic functions and procedures and methodologies are

prepared to implement. Some of the Basic requirements such as hardware and software are described as

follows: -

Hardware and Software Specification

● Software Requirements:

● Technology: Python Django

● IDE: Pycharm/VSCode

● Client-Side Technologies: HTML, CSS, JavaScript, Bootstrap

● Server-Side Technologies: Python

● Data Base Server: Sqlite

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

45

● Operating System: Microsoft Windows/Linux

Hardware Requirements:

● Processor: Pentium-III (or) Higher

● Ram: 64MB (or) Higher

● Hard disk: 80GB (or) Higher

SYSTEM ANALYSIS

The purpose of the Malnutrition Detection System using Efficient Net is to provide an innovative and user-

friendly platform for early detection and management of malnutrition. This project aims to harness the

power of deep learning and image analysis to assess nutritional health based on user-provided data and

images. By enabling users to quickly identify signs of malnutrition, the system seeks to facilitate

timely medical intervention and connect them with local healthcare providers for further assistance.

Additionally, it serves as a valuable resource for awareness and education about malnutrition, empowering

users with knowledge about their health status. For healthcare professionals, it offers a comprehensive

overview of patient health trends in their area, aiding in effective and targeted medical care. This project

is a step towards bridging the gap between advanced healthcare technologies and everyday health

management, especially in communities where access to healthcare is limited

IMPLEMENTATION ISSUES

HTML-

HTML (Hypertext Markup Language) is the standard markup language used to create web pages. It is a

structured language that allows developers to define the structure of content on a webpage using tags,

attributes, and elements. HTML provides a way for web browsers to interpret and display content in a

structured and organized manner.

CSS-

CSS (Cascading Style Sheets) is a style sheet language used for 'describing the presentation of a document

written in HTML. It enables developers to separate the structure of a webpage from its presentation.

CSS allows developers to define the visual appearance of a webpage, such as font styles, colors, and layout.

JavaScript-

JavaScript is a high-level, interpreted programming language used to create interactive web pages. It is a

client-side scripting language that allows developers to add dynamic elements and behavior to web

pages. JavaScript can manipulate HTML and CSS in real-time, making web pages more responsive and

engaging.

Bootstrap-

Bootstrap is a free and open-source CSS framework that is widely used to create responsive and mobile-

first web pages. It provides pre-built CSS styles and JavaScript plugins that developers can use to

create professional-looking web pages quickly and easily. Bootstrap is compatible with all modern web

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

46

browsers and devices.

Python -

Python is a high-level, general-purpose programming language used to create a wide range of

applications. It is a popular language for web

development, scientific computing, data analysis, artificial intelligence, and many other areas. Python is

known for its simplicity, readability, and easy- to-learn syntax.

Django -

Django is a free and open-source web framework written in Python. It follows the model-view. controller

(MVC) architectural pattern and is designed to help developers build web applications quickly and easily.

Django provides a number of built-in features, such as an object-relational mapper 1 (ORM), automatic

admin interface, and URL, routing, that simplify web application development

Sqlite.

SQLite is a lightweight, serverless, and self-contained relational database management system. It is

widely used in web applications and mobile apps, as it requires minimal configuration and administration.

SQLite is compatible with all major programming languages and provides a simple and efficient way to

store and retrieve data.

Efficient Net

Efficient Net is a highly efficient deep learning architecture designed for computer vision tasks,

including medical image analysis. It optimizes both accuracy and computational efficiency by scaling the

model's depth, width, and resolution. In the context of a lung cancer prediction system, Efficient Net can

analyze medical images such as chest X-rays or CT scans to accurately predict cancerous or non-

cancerous conditions. Its efficiency and effectiveness contribute to improved diagnostic accuracy and

potentially earlier detection of lung cancer

SYSTEM DESIGN

1.1 Use Case Diagram:

* Use case diagram consists of use cases and actors and shows the interaction between them.

The key points are:

* The main purpose is to show the interaction between the use cases and the actor.

* To represent the system requirement from the user's perspective.

* The use cases are the functions that are to be performed in the module.

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

47

Fig 6.1 use case diagram- admin

Fig 6.2 use case diagram -user

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

48

1.2 Data Flow Diagram(DFD) DFD

level 0 :

Fig 6.4 DFD level 0

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

49

Fig 6.5 DFD level 1

1.3 ER diagram

Fig 6.6 ER diagram

1.4 Sequence Diagram

Fig 6.7 Sequence Diagram For Administrator

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

50

Fig 5.8 Sequence Diagram for user

CODINGImport necessary libraries

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense,

Dropout, GlobalAveragePooling2D

from tensorflow.keras.preprocessing.image import ImageDataGenerator from

tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from sklearn.metrics import

classification_report, confusion_matrix import cv2

import os

import matplotlib.pyplot as plt

from keras_tuner import RandomSearch

1. Data Preprocessing and Normalization

def preprocess_images(image_dir, target_size=(128, 128)): processed_images = []

labels = []

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

51

for class_dir in os.listdir(image_dir):

class_path = os.path.join(image_dir, class_dir) if

os.path.isdir(class_path):

for img_name in os.listdir(class_path):

img_path = os.path.join(class_path, img_name) img =

cv2.imread(img_path)

img = cv2.resize(img, target_size)

img = img / 255.0 Normalizing the pixel values

processed_images.append(img) labels.append(class_dir)

return np.array(processed_images), np.array(labels)

Example usage

data_dir = "/path/to/data" Replace with the path to your dataset train_images,

train_labels = preprocess_images(f"{data_dir}/train")

val_images, val_labels = preprocess_images(f"{data_dir}/validation")

Image Data Generators for real-time data augmentation

train_datagen = ImageDataGenerator(rescale=1.0/255, rotation_range=15, width_shift_range=0.1,

height_shift_range=0.1, zoom_range=0.2, horizontal_flip=True)

val_datagen = ImageDataGenerator(rescale=1.0/255)

train_generator = train_datagen.flow_from_directory(directory=f"{data_dir}/train",

target_size=(128, 128),

batch_size=32,

class_mode="binary"

)

val_generator = val_datagen.flow_from_directory(

directory=f"{data_dir}/validation", target_size=(128, 128),

batch_size=32,

class_mode="binary"

)

2. Model Architecture with Transfer Learning

base_model = tf.keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=(128, 128, 3))

for layer in base_model.layers:

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

52

layer.trainable = False

model = Sequential([base_model,

GlobalAveragePooling2D(),

Dense(128, activation='relu'),

Dropout(0.5),

Dense(1, activation='sigmoid')

])

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

Callbacks

early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)

model_checkpoint = ModelCheckpoint("best_model.h5", save_best_only=True)

Training the Model history

= model.fit(

train_generator,

epochs=30,

validation_data=val_generator, callbacks=[early_stopping,

model_checkpoint]

)

3. Hyperparameter Tuning with Keras Tuner def

build_model(hp):

model = Sequential()

model.add(Conv2D(hp.Int('conv_units', min_value=32, max_value=128, step=32),

(3, 3), activation='relu', input_shape=(128, 128, 3)))

model.add(MaxPooling2D(2, 2)) model.add(Flatten())

model.add(Dense(hp.Int('dense_units', min_value=64, max_value=256, step=64), activation='relu'))

model.add(Dropout(0.5)) model.add(Dense(1,

activation='sigmoid'))

model.compile(optimizer=tf.keras.optimizers.Adam(hp.Choice('learning_rate', [1e-2, 1e-3,

1e-4])),

loss='binary_crossentropy',

metrics=['accuracy']

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

53

)

return model

Hyperparameter search tuner =

RandomSearch(

build_model, objective='val_accuracy',

max_trials=5, executions_per_trial=1,

directory='hyperparam_search',

project_name='malnutrition_assessment'

)

tuner.search(train_generator, epochs=10, validation_data=val_generator) best_model =

tuner.get_best_models(num_models=1)[0]

4. Evaluation

val_loss, val_accuracy = model.evaluate(val_generator)

print(f"Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}")

y_true = val_generator.classes

y_pred = (model.predict(val_generator) > 0.5).astype("int32") print(classification_report(y_true, y_pred))

cm = confusion_matrix(y_true, y_pred) print("Confusion Matrix:\n",

cm)

5. Visualization of Training and Validation Performance def

plot_training_history(history):

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)

plt.plot(history.history['accuracy'], label='Train Accuracy')

plt.plot(history.history['val_accuracy'], label='Val Accuracy') plt.title('Model

Accuracy')

plt.xlabel('Epochs')

TESTING

Testing of the Malnutrition Detection System is crucial to ensure its reliability, accuracy, and user-

friendliness. The testing process can be categorized into different types, each addressing specific aspects

of the system:

1. Unit Testing: Involves testing individual components or units of the system to ensure each part

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

54

functions correctly in isolation. This includes testing individual functions. methods, classes, or

modules, especially the algorithms used for malnutrition prediction.

2. Integration Testing: Focuses on testing the interaction between different modules of the system. For

instance, how the user module interacts with the prediction module or how the admin module retrieves data

from the database.

3. System Testing: Encompasses testing the complete and integrated software to evaluate its

compliance with specified requirements. This includes checking the entire application for bugs,

glitches, and other issues

4. Usability Testing: This form of testing is user-centric and aims to ascertain how user- friendly the

application is. It involves subjects from the intended audience using the system to identify navigational

difficulties, user interface issues, and overall user experience.

5. Performance Testing: Tests the system's performance under various conditions, including its

response time, reliability, and resource usage. This is particularly important for ensuring the system's

prediction algorithms perform well under different load conditions.

6. Security Testing: Involves testing the system for vulnerabilities that could potentially be exploited. This

is crucial given the sensitive nature of user data, especially medical information

7. Compatibility Testing: Ensures the system works seamlessly across different devices, browsers,

and operating systems, providing a consistent user experience.

8. Regression Testing: Conducted after any changes or updates to the software, ensuring that new

code changes do not adversely affect the existing functionality of the system.

9. Acceptance Testing: The final phase of testing, often performed by the end-users, to validate the end-

to-end business flow. It works as a verifier to ensure the system meets the business requirements and is

ready for deployment

ADVANTAGES AND LIMITATION

Advantages of "Malnutrition Detection System":

The Malnutrition Detection System, leveraging Efficient Net and developed with Python

Django and SQLite, present numerous advantages, making it a significant contribution to healthcare

technology.

Some of the key benefits include:

1. Early Detection of Malnutrition: By analyzing user-provided data and images, the system can

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

55

identify signs of malnutrition early, enabling timely intervention and treatment.

2. Increased Accessibility: The online platform allows users from remote locations to access

malnutrition detection services without needing to visit healthcare facilities in person.

User-Friendly Interface: Designed with simplicity in mind, the system is accessible to users of all ages

and technical proficiencies, ensuring a broad user base.

3. Cost-Effective Solution: It provides a cost-effective alternative to traditional medical

consultations, which can be expensive and

time-consuming.

4. Enhanced Accuracy: Utilizing Efficient Net, a state-of-the-art deep learning model, enhances the

accuracy of malnutrition detection compared to traditional methods.

5. Data-Driven Recommendations: The system not only detects malnutrition but also recommends local

doctors, facilitating effective follow-up treatment.

6. Privacy and Security: User data is securely managed, ensuring confidentiality and

privacy of sensitive health information.

These advantages make the Malnutrition Detection System a valuable asset in the healthcare sector,

particularly in areas where access to medical services is limited. It stands as a testament to how

technology can be harnessed to address critical health issues effectively.

Limitations of "Malnutrition Detection System":

The Malnutrition Detection System, while innovative and beneficial, also has certain limitations that need to be

considered. Some of these include:

1. Dependency on User-Provided Data: The accuracy of the predictions heavily relies on the quality and

reliability of the data and images provided by users. Inaccurate or low-quality submissions can lead to

incorrect assessments.

2. Limited Scope of Diagnosis: The system focuses on malnutrition detection and may not identify other

nderlying health conditions that might be present.

Technology Accessibility: Users without access to necessary technology or internet connectivity might

not be able to utilize the system effectively.

3. Lack of In-Person Assessment: While the system provides preliminary assessments, it cannot

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

56

replace the comprehensive diagnosis that comes from in-person medical consultations.

4. Data Privacy Concerns: Despite security measures, the collection and storage of personal health

data always carry a risk of privacy breaches and data misuse

5. Potential for Misinterpretation: Users might misinterpret the results without proper medical

guidance, leading to unnecessary anxiety or neglect of serious health issues.

6. Software and Hardware Limitations: The system's performance is dependent on the software

and hardware used, which might limit its functionality or accuracy.

7. Cultural and Language Barriers: The system might not be accessible or user friendly for non-

English speakers or those from different cultural backgrounds.

8. Lack of Holistic Health Analysis: The system does not consider the full medical history or

lifestyle factors of users, which can be crucial in understanding and treating malnutrition.

9. Over-reliance on Technology: There is a risk that users or even healthcare providers might over-rely

on the system's predictions, overshadowing traditional and potentially more reliable medical practices.

Understanding these limitations is crucial for the continued development and improvement of the Malnutrition

Detection System, ensuring it becomes a more effective and reliable tool in healthcare..

CONCLUSION AND FUTURE SCOPE

FUTURE SCOPE

The Malnutrition Detection System, harnessing the power of Efficient Net and Django, holds significant

potential for future development and enhancement. Its future scope includes:

1. Advanced Image Analysis: Integrating more sophisticated image processing techniques to improve

accuracy in detecting malnutrition from skin and nail images.

2. Expansion of Detection Capabilities: Broadening the system's capabilities to identify other nutrition-

relateddisorders or health conditions.

3. Integration with Healthcare Systems: Linking the system with existing healthcare databases and

records for a more comprehensive assessment of a patient's health.

4. Mobile Application Development: Creating a mobile app version of the system to

increase accessibility and ease of use for users across different devices

5. Real-Time Data Analysis: Implementing real-time analytics for immediate feedback and guidance to

users upon uploading their images and data.

6. Enhanced Al Algorithms: Continuously updating and refining the machine learning models to

improve prediction accuracy and efficiency.

7. Global Language Support: Making the system multilingual to cater to a diverse global user base,

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

57

breaking language barriers in healthcare access.

8. User Education and Awareness: Integrating educational resources about malnutrition, its symptoms,

and prevention methods to increase user awareness and self-care.

9. Collaboration with Medical Professionals: Partnering with doctors and healthcare professionals to

validate predictions and provide expert insights.

10. Wearable Device Integration: Exploring possibilities to link the system with

wearable health devices for continuous monitoring of health indicators relevant to

nutrition.

11. Community and Social Features: Adding community-driven features where users can share

experiences, tips, and support each other in managing health.

12. Telemedicine Integration: Facilitating virtual consultations with healthcare professionals based on the

system's predictions, bridging the gap between preliminary assessment and professional medical advice.

13. Research and Development: Using data collected from the system for research purposes to better

understand malnutrition trends and effectiveness of various interventions.

By addressing these areas, the Malnutrition Detection System can evolve into a more holistic, user-

friendly, and medically comprehensive tool, contributing significantly to public health and individual

wellnest

CONCLUSION

The Malnutrition Detection System, developed using EfficientNet and Django, represents a

significant advancement in the intersection of technology and healthcare. This innovative system is

designed to enhance public health initiatives, particularly in the detection and management of

malnutrition, which remains a pressing global health concern. By employing deep learning algorithms,

the system provides a practical and accessible solution for early detection of malnutrition based on

visual indicators observed in skin and nail images.

One of the standout features of this system is its user-friendly interface, which makes it easy for

individuals, regardless of their technical expertise, to conduct preliminary health assessments. Users can

upload images and receive immediate feedback on potential nutritional deficiencies, thereby enabling

timely interventions. This accessibility is crucial, especially in underserved regions where healthcare

resources may be limited.

In addition to serving individual users, the system facilitates a seamless connection between

patients and healthcare providers. By leveraging location-based services, it helps match users

with local healthcare professionals for further consultation and treatment. This not only

streamlines the process of seeking medical advice but also fosters a collaborative environment

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

58

where patients can receive personalized care tailored to their specific needs.

For healthcare administrators, the Malnutrition Detection System provides a comprehensive overview of

user activities, predictive analytics, and health trends. By analyzing aggregated data, administrators can

identify patterns in malnutrition prevalence and monitor the effectiveness of interventions over time. This

insight assists in informed decision-making processes, allowing public health officials to allocate

resources more effectively and implement targeted programs to combat malnutrition.

Furthermore, the integration of advanced machine learning techniques with healthcare underscores the

transformative potential of artificial intelligence in improving health outcomes. The Malnutrition

Detection System not only aids in the early identification of malnutrition but also lays the groundwork for

more informed and proactive health management strategies.

In conclusion, this project exemplifies the vital role of technological innovation in addressing critical

health issues. By bridging the gap between technology and healthcare, the Malnutrition Detection System

enhances the efficiency of medical diagnosis and patient care. As we look to the future, this system sets a

precedent for ongoing advancements in the field, highlighting the importance of continued investment in

digital health solutions to improve global health outcomes. Through initiatives like this, we can foster a

healthier, more informed population, better equipped to tackle the challenges of malnutrition and

beyond.

REFERENCE

1. Django Project. (n.d.). Django Documentation. Retrieved from

https://www.djangeproject.com/ The official documentation for Django, offering detailed guides and tutorials.

2. TensorFlow. (n.d.). Efficient Net. Retrieved from

https://www.tensorflow.org/api docs/python if keras/applications Efficient NetBo/ Official TensorFlow documentation

on Efficient Net, useful for understanding its implementation.

3. World Health Organization. (n.d.). Malnutrition. Retrieved from https://www.who.int news-room/fact-

sheets/detail/malnutrition

Provides detailed information on malnutrition, its effects, and detection methods.

4. Kaggle. (n.d.). Malnutrition Dataset. Retrieved from https://www.kaggle.com/ A resource for

datasets related to malnutrition, useful for model training and testing.

5. Python.org. (n.d.). Python Documentation. Retrieved from https://docs.python.org/3/ Official

Python documentation, essential for understanding Python programming basics and advanced

topics.

REFERENCE BOOKS

1. Lutz, M. (2013). Learning Python. O'Reilly Media.

https://www.djangeproject.com/
http://www.who.intnews-room/fact-sheets/detail/malnutrition
http://www.who.intnews-room/fact-sheets/detail/malnutrition
https://www.kaggle.com/
https://docs.python.org/3/

 ISSN 2347–3657

 Volume 12, Issue 4, 2024

59

This book provides comprehensive coverage of Python programming essential for developing projects

using Django.

2. Mehta, B., & Mehta, S. (2018). Python Django: Web Framework for Perfectionists. BPB

Publications.

Offers insights into Django development, focusing on building robust web applications.

3. Chollet, F. (2017). Deep Learning with Python. Manning Publications.

* Discusses deep leaming principles and practices, relevant to EfficientNet model development. 4.

Goodfellow, 1, Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

A comprehensive guide to deep learning, providing foundational knowledge for projects like malnutrition

detection.

5. Bhattacharya, S. (2020). Healthcare Analytics Made Simple. VIKAS Publishing House.

Provides insights into the application of analytics in healthcare, relevant for projects focusing on malnutrition

detection

