

 ISSN 2347–3657

 Volume 10, Issue 2, 2022

https://doi.org/10.62647/ijitce.2022.v10.i2.pp124-128

124

Using Industrial Internet of Things (IoT) Data to Evaluate a

Semantic Method for Service Mapping

Dr.Valiki Vijaya Bhasker1, Professor1, Department of ECE, Siddhartha Institute of Technology &

Sciences,Telangana, India

Farooq Hussain Mohammad2, Assistant Professor2, Department of CSE, Siddhartha Institute of

Technology & Sciences,Telangana, India.
Abstract—

Platforms for the Industrial Internet of Things make it

possible to make better decisions based on the data at hand,

which in turn boosts efficiency in manufacturing and other

commercial proprietary, and coupled with particular IoT gear,

data interchange and provisioning between the data sources

and platform services continue to be an issue. As a result, we

propose and describe in depth an open-source software-based

solution called Thing to Service Matching (TSMatch), which

enables semantic matching at a fine-grained level between

accessible IoT data and services. The report also includes an

assessment of the proposed solution's performance in a testbed

setting and details its deployment in two distinct Aerospace

production scenarios.

Key words

Iot data sources, semantic matching, use cases, and the Iot

application are some of the terms that may be found in an

index.

INTRODUCTION

The ability to use data available in industrial

settings to enhance production and business

operations is only one of the many advantages

offered by Industrial Internet of Things (IoT)

systems. Although data collection has improved, it

is still difficult to analyse and use the information

gained. In order to function properly, IoT systems

need densely populated IoT infrastructures filled

with sensors and actuators. Because IoT platforms

are often vendor-specific, proprietary, and tied to

certain pieces of IoT hardware or cyber-physical

systems, putting them up and ensuring they receive

proper maintenance may be a challenging task.

Carrying the data to the Cloud may be time

consuming, error prone, and/or expensive [1] due

to the necessity for extra, specialised human

intervention. Due to the vendor-based approach, the

current IoT ecosystem is fragmented, making

interoperability a crucial issue to address, whether

from a communication or an application standpoint.

This study is concerned with the second problem

and hopes to develop a solution that will facilitate

the automatic flow of data between IoT Things

(data sources) and the services offered by an IoT

platform. To address this problem, we have

developed a piece of open-source software called

Thing to Service Matching (TSMatch). TSMatch is

able to execute semantic matching between

services and acquired IoT data at a fine granularity.

To that end, TSMatch automates the matching and

provisioning process to reduce the complexity of

connecting preexisting IoT networks to third-party

services. The contributions of this work are I a

description of the open-source TSMatch1 engine,

(ii) proof that deploying TSMatch in manufacturing

scenarios with realistic operating circumstances is

possible, and (iii) an evaluation of TSMatch in a

simulated IIoT setting (testbed). The paper will

proceed as described below. Following this

introductory portion, the associated work is

detailed in section II, and the major software

components of TSMatch are introduced in section

III. Section IV gives a thorough breakdown of the

actual implementation. Additionally, section V of

the article shows that the system may be easily

integrated with other IoT systems as EFPF2. The

additional processing time and time to completion

components of TSMatch are then assessed in an

experimental setting. In section VI, we give the

findings and talk about them. Section VII provides

a summary and directions for moving forward.

WORK IN RELATION

There are a variety of methods used in service

matching, from the logical [2] to the non-logical [3]

semantic based techniques or a hybrid (combining

logical and non-logical techniques) approach [4].

For instance, in order to realise a global semantic

interoperability solution, Kovacs et al. present the

technological approach and the system architecture,

which involves merging the FIWARE NGSI and

the oneM2M context interfaces. Although this is a

potential technique, it is only discussed in theory

and not tested in any real-world or experimental

settings [5]. Even more, Cassar et al. provide a

matching system that incorporates both a semantic

and probabilistic matchmaking. The accuracy and

Normalized Discounted Cumulative Gain of the

suggested method were computed taking into

account a dataset of 1007 Web service descriptions

in OWL-S. The notion has been validated using

simulations, however the suggested strategy shows

better performance than previous approaches [6].

We have introduced the approach and the TSMatch

idea in past work. Our previous work laid the

groundwork for our present effort, which focuses

on validating TSMatch in real-world settings once

it has been specified and implemented [7].

https://doi.org/10.62647/ijitce.2022.v10.i2.pp124-128

 ISSN 2347–3657

 Volume 10, Issue 2, 2022

https://doi.org/10.62647/ijitce.2022.v10.i2.pp124-128

125

ARCHITECTURE THAT IS

APPROPRIATE FOR THE PRODUCT

OR SERVICE BEING PROVIDED

TSMatch is a software platform for semantic

matching of Internet of Things (IoT) data to

services. TSMatch's primary objective is to

automatically deliver data between IoT data

sources and services, while meeting the

requirements of the services. Presently, TSMatch

employs a matching strategy based on semantic

similarity to accomplish this goal. The main players

in TSMatch are shown on Figure 1. Meaningful

representations of the many sensors that make up

the Internet of Things are shown here. At now,

TSMatch's Engine is a server-based component that

may be hosted anywhere from the network's edge

to an IoT gateway or even in the cloud. The Thing

registry is analogous to a database where details on

Things are saved on a regular basis. The TSMatch

Client is the programme that the end user

downloads and instals on their device, such as an

Android phone. The user is synonymous with the

recipient of an Internet of Things service, which

might be a person, a business, or even a piece of

software.

Fig. 1. Sequence diagram of the various actors involved in

TSMatch.

As seen in Figure 1, the first step involves the IoT

Things broadcasting their descriptions when

activated. TSMatch Engine is able to register things

in the Things registry and subscribe to events that

occur inside them. This is not an internal part of the

TSMatch semantic matching engine, but rather is

provided by Coaty3 in this instance. The TSMatch

Engine may also approach a third party, such a

broker, for descriptions of IoT devices. That is to

say, it may be set up in the role of a subscriber if

necessary. The TSMatch client receives a service

request from a user and transmits it to the TSMatch

Engine in a separate process. This may be used, for

example, to take a temperature reading in a

particular room. TSMatch uses similarity matching

to determine which IoT Things in the registry best

fit the request and the available descriptions in

order to provide an appropriate response to the

service request. In the event of a successful match,

the data gleaned is sent to the TSMatch Client.

The TSMATCH Implementation

Considerations

In this section, we'll go through how TSMatch's

various parts and interfaces are currently being

implemented. All of TSMatch's parts are now

dockerized4 since it is built on a micro-service

design. The TSMatch engine in this

implementation is hosted on an Internet of Things

(IoT) gateway, while the client is built for Android.

Wi-Fi is used for all of the interaction between the

TSMatch components and the rest of the IoT

architecture. After that, we'll go through each

individual part.

Devices Connected to the Internet of

Things

The OGC Sensor Thing API [8] has been used to

model the IoT Things. Information on the sensors,

including their attributes and whereabouts, is

included in the description of the Thing. Coaty, an

application-layer communication platform, is used

to spread the word. Coaty allows Internet of Things

devices to broadcast their semantic descriptions via

multicast, and it alerts subscribers when the device

goes offline by broadcasting a "deadvertized"

event. In order to find out what's out there, the

TSMatch Engine sends out a "discover" event and

receives a response with the thing's description.

Semantic representations of cyber physical systems

using heterogeneous hardware, such as a sensor, a

single-board computer (SBC), or a programmable

logic controller (PLC) coupled with sensors via its

Input/output interface, relate to IoT Things. The

sensor driver and a Coati agent are the software

components that make up the IoT cyber-physical

system and are responsible for handling tasks like

publishing information about an IoT Thing.

TSMatch System

Semantic matching between IoT Thing descriptions

and service descriptions is implemented on the

server side via the TSMatch engine. Requests for

services are processed by the engine after being

sent by the TSMatch Client. It also manages the

matching process between the characteristics and

attributes of Things descriptions and the semantic

description of services based on queries sent to the

TSMatch Thing registry. A Sorensen-dice

coefficient and a word frequency-inverse document

frequency are used to determine how similar two

documents are semantically. Once a matched set

has been determined, the accessible Things inside it

https://doi.org/10.62647/ijitce.2022.v10.i2.pp124-128

 ISSN 2347–3657

 Volume 10, Issue 2, 2022

https://doi.org/10.62647/ijitce.2022.v10.i2.pp124-128

126

are gathered together and an aggregated object

representing this new set is again persisted in the

database. The TSMatch Client receives the

matching result and displays it to the user

regardless of whether a match was found. If a

match is detected, the engine will launch an event

that subscribes to data from the chosen sensors and

determines an average value for that data set based

on the chosen location. The TSMatch Client is then

updated with the new information. In the event that

a request is removed, TSMatch will discontinue

subscribing the TSMatch client to get updates on

the IoT Things observations from the broker.

Node.js JavaScript and the Typescript

programming language5 have been used to create

the TSMatch Engine. We have used the string-

similarity and natural packages from the Nebulous

Plasma Muffin (npm) to implement Srensendice

similarity.

Consumer of TSMatch

The TSMatch Client takes care of the service's

semantic description, either by constructing one in

response to a user's request (such as "monitor

temperature") or by retrieving one from a distant

location. With the help of the React Native

JavaScript framework8, we have created a mobile

application called the TSMatch Client. In its

present state, the client only supports Android 4.1

and later. TSMatch subscribes to a MQTT broker

during launch. Users may browse a catalogue of

available Things along with detailed descriptions,

articulate their needs, and watch as their data is

updated in real time.

Information Management, Search, and

Sharing Concerning Things

Coati v2.0 allows IoT Things to register, declare

themselves, be discovered, and communicate with

the end user (the subscriber). An MQTT broker

built on top of Mosquito v2.0.11 facilitates the

conversation. The IoT descriptions are kept in a

database that uses the JSONB data type for binary

storage and retrieval of JSON objects. This

database is built on PostgreSQL 13.2. Docker

images9 built from the official PostgreSQL source

code have been utilised.

Using TSMatch on EFPF Applications

Industry 4.0, the Internet of Things (IoT), artificial

intelligence (AI), big data, and digital

manufacturing are all represented in the European

Connected Factory Platform for Agile

Manufacturing (EFPF) ecosystem. The foundation

of EFPF is an open, standardised "Data Spine" that

allows for the seamless integration of various

systems, platforms, tools, and services. The various

EFPF parts are supplied by different companies and

coordinate their efforts through the system-wide

Data Spine. As a result, the EFPF ecosystem is

built in a SOA fashion. The EFPF is comprised of

the Data Spine, the EFPF Web-based platform

(which provides unified access to various tools and

services through a Web-based portal), the base

digital platforms (four base platforms funded by the

European Commission's Horizon 2020

programme), and the external platforms (platforms

connected to the EFPF ecosystem that addresses

the specific needs of connected smart factories).

Currently, TSMatch is one of EFPF's integrated

components. Together with the EFPF partner

Nextworks10's IoT automation platform Symphony

Factory Edition (one of the External Platforms

within the EFPF federation), its integration has

been tested in production scenarios. Symphony is

an end-to-end IoT platform with a flexible design

that allows it to work with a broad variety of IoT

sensors and actuators, among other types of

heterogeneous hardware. Using the EFPF Data

Spine, the IoT Symphony platform has been

integrated with TSMatch for provisioning and data

exchange with the production environments'

available IoT data. With input from Walter Otto

Muller & Co. KG11 (WOM) and Innovint Aircraft

Interior GmbH12, EFPF has integrated and

deployed TSMatch in three aerospace

manufacturing use-cases (IAI). The applications

include: 1) maintaining a constant temperature and

humidity in a factory to meet component tolerances

(WOM); 2) monitoring raw materials in a freezer to

prevent waste from excessive heat (IAI); and 3)

keeping tabs on a vacuum former from afar to take

corrective action as soon as pressure values deviate

from acceptable ranges (IAI).

 All three scenarios have aimed to protect the

consistency and high quality of manufacturing

operations by keeping tabs on critical process

variables and sounding alerts if certain limits are

breached. By using IoT Things, we are able to

collect data on the relevant environmental

characteristics, which are then sent to the external

platform Symphony by means of TSMatch. As can

be seen in Figure 2, the Symphony Factory

Connector13 makes use of the TSMatch Client to

make service requests for IoT Things. TS Match's

data is consumed by a Cloud instance of the

Symphony IoT automation platform via the EFPF

Data Spine, which provides services with

interoperable security capabilities. The Symphony

HAL (a software module that primarily abstracts

the low-level details of various heterogeneous

fieldbus technologies and provides a common

interface to its users), Symphony Data Storage, and

Symphony Visualization provide the visual

monitoring, sensor data and event storage, signal

https://doi.org/10.62647/ijitce.2022.v10.i2.pp124-128

 ISSN 2347–3657

 Volume 10, Issue 2, 2022

https://doi.org/10.62647/ijitce.2022.v10.i2.pp124-128

127

analysis, and alarm systems for the Things.

Actions, such as control actions on field-level

devices, notifications (emails, SMS), and alarms,

are determined by the Symphony Event Reactor

after merging data from various sources and data

brokers (e.g., TSMatch) (via stack light which

provides visual and audible indications). In the

Cloud deployment of the platform, the real-time

data and the current state of the thresholds and

alerts may be seen and managed using the

Symphony GUI.

Fig. 2. EFPF interconnected components on the

manufacturing use-cases.

 As illustrated in Figure 3, a successful deployment

has been done on production sites. The EFPF

components, including TSMatch, have therefore

been validated based on the defined requirements,

usability aspects, as well as ease of

installation/configuration. After 6 months of

deployment, traceability and detection of

abnormalities has been also achieved, which

increased the reliability of the manufacturing

process, reduced delivery delays, and minimized

rejects/waste occurrences. Fig. 3. Installation of the

use-cases.

 PERFORMANCE EVALUATION

AND RESULTS

TSMatch Testbed

Fig. 3. The TSMatch demonstrator at the forties IIoT Lab.

We have established a TSMatch testbed on the

forties IIoT Lab14 based on the operational

requirements generated from the TSMatch

integration on real-world industrial use-cases, as

shown in Fig. 4. As shown in Figure 3, the testbed

consists of the following parts:

Two real Internet of Things (IoT) devices and ten

simulated IoT devices are available, with the

former sporting a total of five sensors (for

measuring things like temperature, humidity,

sound, air quality, and particles in the air).

According to section IV, each virtual IoT thing is

linked to a virtual IoT sensor, each of which is

housed in its own Docker container.

• TSMatch Engine, Message Broker, and Database:

TS Match Engine is containerized, and the

Mosquito message bus and PostgreSQL database

are also deployed as containers in the forties IoT

gateway.

Using a MQTT client15, the IoT service request

simulator may mimic third-party IoT services.

TSMatch Client was abandoned in favour of the

service request, which allowed for precise

regulation of the inter-request time gap.

Fig. 4. TSMatch components and experimental

interconnections.

The hardware specifications for each of the devices

that is part of the demonstrator are given in Table I.

conclusion

TSMatch is a new approach described in this study

for semantically matching IoT data sources and

service descriptions. We outline the TSMatch

software architecture and discuss its practical

applications in the industrial.

TABLE I MEAN PT AND TTC OF

SEQUENTIAL AND SIMULTANEOUS

SCENARIOS.

https://doi.org/10.62647/ijitce.2022.v10.i2.pp124-128

 ISSN 2347–3657

 Volume 10, Issue 2, 2022

https://doi.org/10.62647/ijitce.2022.v10.i2.pp124-128

128

contexts of the European EFPF project settings.

The report also includes a first performance

assessment of TSMatch and details the existing

open-source TSMatch implementation's processing

time and time to completion of requests. In order to

identify the "most" appropriate collection of IoT

Things whose aggregated data may satisfy a certain

semantic request, future work will concentrate on

enhancing the semantic matching engine by

including a more intelligent parsing and also

learning.

REFERENCES

[1] A. Verma, and S. Kaushal,” Cloud computing security

issues and challenges: a survey,” In International Conference

on Advances in Computing and Communications Springer,

Berlin, pp. 445-454, July. 2011.

 [2] A. Segev and E. Toch, ”Context-Based Matching and

Ranking of Web Services for Composition,” in IEEE

Transactions on Services Computing, vol. 2, no. 3, pp. 210-

222, July-Sept. 2009.

 [3] H. Fethallah, A. Chikh , and A. Belabed. ”Automated

discovery of web services: an interface matching approach

based on similarity measure.” In Proceedings of the 1st

International Conference on Intelligent Semantic Web-

Services and Applications, pp. 1-4, 2010.

 [4] M. Klusch and K. Patrick, ”isem: Approximated reasoning

for adaptive hybrid selection of semantic services,” In

Extended Semantic Web Conference, Springer, Berlin,

Heidelberg pp. 30-44, 2010 .

 [5] E. Kovacs, M. Bauer, J. Kim, J. Yun, F. Le Gall and M.

Zhao, ”Standards-Based Worldwide Semantic Interoperability

for IoT,” in IEEE Communications Magazine, vol. 54, no. 12,

pp. 40-46, December 2016.

[6] G. Cassar, P. Barnaghi, W. Wang and K. Moessner, ”A

Hybrid Semantic Matchmaker for IoT Services,” 2012 IEEE

International Conference on Green Computing and

Communications, pp. 210-216, 2012.

[7] N. Bnouhanna, R. C. Sofia, and A. Pretschner,, ”IoT

Thing To Service Semantic Matching,” 2021 IEEE

International Conference on Pervasive Computing and

Communications Workshops and other Affiliated Events

(PerCom Workshops), pp. 418-419, March 2021.

 [8] S. Liang, C.Y. Huang, and T. Khalafbeigi. ”OGC

SensorThings API Part 1: Sensing, Version 1.0.”, 2016.

[9] I. Martens, D9.1 - Implementation and Validation through

Pilot-1. [Deliverable] https://www.efpf.org/deliverables, 2021.

 [10] I. Martens, D9.2 - Implementation and Validation

through Pilot-2. [Deliverable]

https://www.efpf.org/deliverables, 2021.

[11] I. Martens, D9.3 - Implementation and Validation

through Pilot-3. [Deliverable]

https://www.efpf.org/deliverables, 2021.

https://doi.org/10.62647/ijitce.2022.v10.i2.pp124-128

