ISSN 2347- 3657

International Journal of
[nformation Technology & Computer Engineering

Email : ijitce.editor@gmail.com or editor@ijitce.com



L ISSN 2347-3657
. International Journal of

Information Technology & Computer Engineering Volume 9, Issue 3, 2021

Cloud Computing with Artificial Intelligence Techniques: BBO-FLC and
ABC-ANFIS Integration for Advanced Healthcare Prediction Models

Dharma Teja Valivarthi
Tek Leaders, Texas, USA
teja89.ai@gmail.com
Sreekar Peddi
Tek Leaders,
Texas, USA
sreekarpeddi9S@gmail.com
Swapna Narla
Tek Yantra Inc, California, USA
swapnanarla8883@gmail.com
ABSTRACT

Background: Cloud computing (CC) and artificial intelligence (AI) are causing a rapid
evolution in healthcare, meeting the requirement for accurate and effective disease diagnosis
and management through wearable IoT devices and sophisticated algorithms.

Objective: To develop a BBO-FLC and ABC-ANFIS system that works together for better
disease prediction accuracy and real-time monitoring.

Methods: Implemented on a scalable cloud architecture, the system combines loT-enabled
sensors for data gathering, ABC for feature optimization, BBO for fuzzy rule refining, and
ANFIS for disease categorization.

Results: The suggested solution outperformed conventional techniques with 96% accuracy,
98% sensitivity, and 95% specificity at a 60-second computation time reduction.

Conclusion: The precision, scalability, and real-time healthcare applications for complicated
disease prediction and monitoring could be greatly improved by this integrated system.

Keywords: Cloud Computing, Artificial Intelligence, IoT Sensors, ABC Optimization, BBO-
FLC, ANFIS, Disease Prediction, Real-Time Monitoring.

1 INTRODUCTION

The healthcare sector is undergoing a change because to the combination of Cloud Computing
(CC) and Artificial Intelligence (Al) technologies, that provide sophisticated prediction models
to meet the increasing need for accuracy and efficiency in medical diagnostics. With the
proliferation of wearable sensors enabled by the Internet of Things, the amount of patient data
is growing dramatically. These technologies help with disease identification, management, and
real-time data processing. In order to provide accurate disease identification and improved
patient outcomes, techniques like ABC-ANFIS (Artificial Bee Colony with Adaptive Neuro-
Fuzzy Inference System) and BBO-FLC (Biogeography-Based Optimization with Fuzzy Logic
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Control) are the foundation of contemporary healthcare models. With the use of sophisticated
data analysis, these approaches provide great prediction accuracy for diseases like diabetes,
Alzheimer's, and cardiovascular disorders. Furthermore, by using machine learning (ML)
frameworks, these systems are further improved, overcoming constraints in data fusion,
processing speed, and diagnostic accuracy Dehariya & Shukla (2020).

BBO-FLC in Real-Time Monitoring Systems:

Fuzzy Logic Control (FLC) in conjunction with Biogeography-Based Optimization (BBO) has
demonstrated potential for improving healthcare monitoring systems. Heart rate, body
temperature, oxygen saturation, and other physiological characteristics are measured by
wearable sensors and sent to cloud infrastructures for analysis. These devices use fuzzy logic
to analyze patient data in real time and send out alerts if something seems off. By dynamically
improving fuzzy rules in response to changes in the environment, BBO improves this
framework. For example, by modifying thresholds and offering tailored recommendations,
BBO-FLC offers actionable insights in the management of chronic illnesses. This method
preserves diagnostic accuracy while achieving a notable reduction in computing time. Recent
research emphasizes its use in diabetes management, as alarms are dynamically adjusted
according to patient profiles and glucose levels are continuously monitored.

ABC-ANFIS for Complex Disease Prediction:

A reliable method for forecasting complicated illnesses is provided by the Artificial Bee
Colony (ABC) algorithm in conjunction with Adaptive Neuro-Fuzzy Inference Systems
(ANFIS). This hybrid model works well with high-dimensional datasets, making it appropriate
for diseases like osteosarcoma and breast cancer. By selecting input variables optimally, ABC
makes sure that only pertinent features are entered into the ANFIS model, improving
computational efficiency and prediction accuracy Wang et al. (2018). By using both first- and
second-order statistical features to analyze tumor segmentation data, ABC-ANFIS has proved
crucial in the early diagnosis of breast cancer. In a similar vein, this method has been applied
to differentiate between normal and diseased cognitive functions in neuroimaging data in order
to forecast the course of Alzheimer's disease. The ANFIS framework's flexibility allows for
the integration of new data streams, making it a viable option for changing healthcare issues.

The combination of ABC-ANFIS and BBO-FLC shows how CC and Al may revolutionize the
healthcare industry Rajkomar et al. (2018). These models open the door for a new era of
intelligent medical systems, fostering improved patient care and more efficient use of
healthcare resources by tackling issues like big data processing, real-time monitoring, and
disease prediction accuracy.

1.1 Objectives

e Developing a strong healthcare prediction framework that combines ABC-ANFIS and
BBO-FLC in order to accurately diagnose and treat diseases.

e To improve real-time monitoring systems by employing fuzzy logic to make dynamic
decisions based on data from wearable sensors.

e In disease prediction models for diseases such as diabetes, Alzheimer's, and breast cancer,
feature selection should be optimized.
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e To increase diagnostic precision and decrease processing time in cloud-based medical
systems.

e To make sure the suggested approach is flexible and scalable for changing healthcare
datasets and challenges.

Despite utilizing Al and ML, many of the current healthcare prediction models have trouble
managing massive, high-dimensional information and guaranteeing real-time response Rong et
al. (2020). Low precision, large processing cost, and limited adaptability to new data streams
are common characteristics of traditional approaches. The creation of accurate, dynamic
healthcare solutions is hampered by the lack of integration between fuzzy inference systems
and optimization methodologies. The development of scalable frameworks that maximize
feature selection, improve data fusion effectiveness, and tackle the difficulties of ongoing
monitoring with wearable IoT sensors continues to be lacking.

e Low diagnostic accuracy results from existing healthcare models' inability to analyze high-
dimensional data effectively.

e Real-time adaptation to dynamically changing patient situations is lacking in current
disease prediction algorithms.

e For complex disease identification, the combination of fuzzy logic and optimization
methods is still not well explored.

e Large-scale healthcare applications cannot use traditional methods due to their substantial
processing overhead.

e Scalable, cloud-based healthcare frameworks are desperately needed in order to manage
changing information and guarantee prompt, precise disease forecasts.

2 LITERATURE SURVEY

Dehariya and Shukla (2020) used Bio-Geography Based Optimization (BBO) to segment
MRI images in order to create a strategy for predicting brain cancer. By improving MRI scan
segmentation, this nature-inspired algorithm—which is based on species migration—makes it
simpler to find and diagnose brain cancers. The method reduces processing time and increases
the accuracy of separating malignancies from healthy tissue by combining BBO with clustering
approaches. This effective, precise segmentation method may help with earlier, more
trustworthy brain cancer diagnoses, providing a useful tool to enhance patient outcomes.

The detection of Alzheimer's disease became possible by Wang et al. (2018) by the use of a
single MRI slice, wavelet entropy characteristics, and a multilayer perceptron (MLP) optimized
with Bio-Geography Based Optimization (BBO). In order to detect patterns associated with
Alzheimer's disease with less data, this technique uses wavelet entropy to capture minute
textural variations in MRI slices. The MLP's training efficiency and accuracy are improved by
BBO, producing a more efficient and precise diagnostic tool that may help with early AD
identification in clinical settings.

A security framework for cloud-based healthcare is proposed by Mohanarangan
Veerappermal Devarajan (2020). It integrates risk assessment, encryption, blockchain, and
continuous monitoring to reduce risks, guarantee compliance, and improve data security,
allowing for safer, more effective healthcare operations and better patient care.
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Rajkomar et al. (2018) stress the importance of fairness is to enhancing health equity in
machine learning. It draw attention to the way biases in healthcare data, which frequently
originate from historical injustices or ethnic inequalities, might lead to unfair outcomes if
incorporated into predictive models. The use of transparent, varied datasets and routinely
assessing model performance across various groups to identify and reduce biases are two tactics
the authors recommend to solve these problems. This research suggests a way that machine
learning might enhance healthcare outcomes for different populations by delivering more
accurate and equitable health predictions through the application of fairness-focused
techniques.

Peddi (2020) examines economical large data mining in cloud settings utilising K-means
clustering, with an emphasis on Gaussian data. Lloyd’s K-means algorithm illustrates that
premature termination at almost optimal accuracy considerably decreases computational
expenses. The study underscores the significance of choosing starting centres and optimising
resource management, offering pragmatic strategies for proficient big data analytics. These
discoveries improve accessibility to sophisticated data mining technologies while preserving
cost-effectiveness.

Kodadi (2020) offers a hybrid architecture that integrates the Immune Cloning Algorithm with
data-driven Threat Mitigation (d-TM) to enhance cloud security. Drawing inspiration from
biological processes, the methodology attains a 93% detection rate and a 5% false positive rate.
Simulations confirm its scalability and versatility. This hybrid technique mitigates security
threats and protects sensitive data, providing a versatile and scalable solution for contemporary
cloud security concerns.

Gudivaka (2020) presents a Two-Tier Medium Access Control (MAC) framework augmented
by Lyapunov optimisation for cloud-based robotic process automation (RPA). Prioritising jobs
enhances energy efficiency, resource allocation, and throughput. The framework surpasses
traditional norms in service quality and energy efficiency. Real-time adaption and energy-
efficient scheduling enhance the management of varied robotic systems, markedly boosting
RPA in cloud environments.

Dondapati (2020) combines cloud infrastructure, automated fault injection, and XML-based
scenarios for the testing of resilient distributed systems. Scalable cloud infrastructures and
regulated fault injection improve resilience, while XML scenarios guarantee uniformity. This
extensive framework enhances testing reliability and efficiency, overcoming the shortcomings
of conventional methods, and facilitates successful testing of inherently complex distributed
systems.

Parthasarathy (2020) assesses the efficacy of MongoDB in real-time data warehousing,
emphasising semi-stream joins within ETL procedures. MongoDB addresses the issues of
prompt updates and swift data retrieval by effectively managing high-velocity structured and
unstructured data. Tests validate its scalability, memory stability, and real-time decision-
making abilities, establishing it as a dependable option for data warehousing in dynamic
settings.

Panga (2020) proposes a heuristic ensemble learning method for the classification of extensive
insurance datasets. Utilising Spark’s memory caching, the improved random forest model
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surpasses logistic regression and SVM, attaining superior metrics such as F-Measure and G-
Mean. The strategy proficiently tackles imbalanced datasets, enhances insurance marketing
campaigns, and augments classification efficiency and accuracy in extensive datasets.

Allur (2020) offers a big data-driven framework for mobile networks that incorporates
DBSCAN for speed anomaly detection and CCR for bandwidth optimisation. The system
attains 93% accuracy in anomaly detection and 88% efficiency in clustering, hence enhancing
stability, mitigating congestion, and elevating user experience. It exceeds conventional
techniques such as SBM and DEA, offering a scalable and economical approach for overseeing
real-time mobile network performance.

According to Rong et al. (2020), artificial intelligence (Al) is improving healthcare, especially
in the areas of diagnosis and prediction. By using case studies, the demonstrate that Al
methods, such as machine learning and deep learning, are enhancing disciplines like
customized medicine, oncology, and radiology by facilitating quicker, more precise diagnostics
and patient-specific forecasts. The capacity of Al to handle large amounts of data for accurate
insights and enhance early diagnosis is one of its key features, but issues with data privacy,
transparency, and clinical integration still exist. The authors come to the conclusion that, in
spite of these obstacles, Al has a huge potential to improve patient care by enabling quicker
and more precise diagnosis.

Advanced Internet of Things (IoT) technologies have the potential to revolutionize
individualized healthcare systems, as discussed by Qi et al. (2017). IoT makes real-time health
monitoring and data collecting possible with wearable technology and smart sensors, enabling
rapid interventions and individualized care. The study emphasizes that IoT might be used to
manage chronic conditions and enhance patient outcomes by means of ongoing monitoring.
But it also tackles issues like system integration, security, and data privacy. Overall, the study
demonstrates that although IoT has the potential to transform healthcare by making it more
efficient and personalized, its widespread implementation depends on resolving technological
and regulatory issues.

Riley et al. (2016) concentrate on externally validating clinical prediction models with the use
of sizable datasets from individual patient data (IPD) meta-analyses or e-health records. To
guarantee that models are accurate and applicable to a variety of patient populations, they stress
the significance of verifying them in real-world contexts. In addition to highlighting big data's
potential to enhance validation, the study discusses concerns with data inconsistency, privacy,
and integrating data from several sources. To increase the dependability and efficacy of these
models in clinical practice, the authors emphasize the necessity of uniform data collecting and
evaluation techniques. Even though big data offers a lot of potential for improving healthcare
forecasts, these obstacles must be overcome for them to be successfully utilized.

Tucker et al. (2019) investigate the moral and practical issues surrounding the use of predictive
models in healthcare to prevent suicide. Concerns regarding patient privacy, informed
permission, false positives, and the possibility of stigmatization are brought up, but they also
emphasize the possible advantages of identifying at-risk patients for prompt interventions.
Practical concerns are also covered in the study, including ways to incorporate these tools into
healthcare processes, guarantee model correctness, and allocate enough funds for interventions.
Although predictive models have the potential to save lives, the contributors emphasize that its
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application needs to be carefully controlled to respect patient autonomy and prevent
unexpected harm.

The possibilities and difficulties of leveraging data from electronic health records (EHRs) to
create risk prediction models are examined by Goldstein et al. (2017). The emphasize that
greater risk assessment, individualized care, and early detection of high-risk patients are made
possible by EHRs, that can enhance clinical decision-making. There are still many obstacles to
overcome, including issues with data quality, missing information, privacy, and system
integration. To guarantee the efficacy and safety of these models, the authors emphasize the
necessity of uniform data, robust validation techniques, and unambiguous regulatory
guidelines. Although EHR-based prediction models have a lot of promise, resolving these
problems is essential to their effective application in the medical field.

3 METHODOLOGY

3.1 Data Collection and Preprocessing

Efficient healthcare prediction models are based on reliable preprocessing methods and precise
data collecting. Wearable sensors that are enabled by the Internet of Things are the main source
of patient data and are essential to contemporary healthcare systems. These sensors are
intended to track a number of physiological variables, including oxygen saturation, heart rate,
body temperature, respiratory rate, and glucose levels. Predictive healthcare systems require
continuous monitoring and real-time data collection, and are made possible by the devices'
smooth interface with cloud computing platforms. Electrocardiograms (ECGQG),
photoplethysmography (PPG) devices, accelerometers, and other wearable sensors gather
comprehensive biological data on a regular basis. These devices ensure scalability and
accessibility by using secure communication protocols to transfer the data to cloud-based
services. But because of restrictions in the device, the surroundings, or patient mobility, the
raw data frequently has noise, missing values, and discrepancies. Resolving these problems is
essential to preserving the accuracy of the analytical results.

Statistical normalization, a transformative technique to standardize the raw data for additional
analysis, is the first step in preprocessing. Normalization is appropriate for statistical analyses
and machine learning algorithms since it lessens disparities brought on by changes in the data
scale. Raw data must be transformed into a standard probability distribution, that has a mean
of 0 and a standard deviation of 1. The following formula is used to accomplish this:

Statistical Normalization:
a; =— (1)

Where a; represents the normalized value, u; is the raw data, € is the mean of the dataset, and
o is the standard deviation. This transformation eliminates the impact of outliers and ensures
that all parameters contribute equally to the prediction model. Error correction methods like
imputation are also incorporated into the preprocessing pipeline to fix corrupted or missing
data points. Reconstructing missing values based on correlations within the dataset is
frequently accomplished using sophisticated statistical techniques such as multivariate
imputation by chained equations (MICE). Gaussian smoothing is one example of a noise

172



L ISSN 2347-3657
. International Journal of

Information Technology & Computer Engineering Volume 9, Issue 3, 2021

filtering procedure that is used to improve data quality by minimizing oscillations that are not
relevant to the desired condition.

Another crucial stage is data transformation, that transforms diverse sensor outputs into a
standard format that works with the healthcare prediction system. This guarantees
compatibility across many software systems and sensor kinds. To guarantee that predictive
models are developed on pristine and representative samples, the preprocessed data is
subsequently divided into training and testing datasets. Healthcare systems are able to provide
precise, real-time insights into patient health by utilizing loT-enabled sensors and stringent
preprocessing techniques. Advanced Al algorithms are fed the standardized and organized data,
allowing for early disease detection and tailored therapy suggestions. This all-encompassing
strategy guarantees that healthcare systems enhance patient outcomes through prompt and
accurate treatments in addition to optimizing operational efficiency.

3.2 Feature Extraction Using ABC Optimization

A crucial stage in creating high-performing healthcare prediction models is feature extraction,
making sure that only the most pertinent and significant information is used to classify diseases.
Inspired by the foraging habits of a honey bee colonies, the Artificial Bee Colony (ABC)
optimization algorithm is a powerful metaheuristic technique. ABC is used in the healthcare
industry to choose the most effective features from high-dimensional datasets, removing noisy
or unnecessary variables and minimizing redundancy. By concentrating primarily on
characteristics that offer crucial insights into disease prediction, this procedure greatly
improves computing efficiency and model accuracy.

3.2.1 Optimization through ABC Algorithm

The ABC algorithm mimics the actions of three different kinds of bees: scout, employed, and
spectator. To find subsets of attributes that optimize classification performance, each "bee"
searches the feature space. The hired bees use an objective function, usually the accuracy of
disease categorization, to assess the fitness of particular feature combinations. By concentrating
on potential regions of the feature space, observer bees optimize their search after analyzing
the output of employed bees. By investigating new areas, scout bees add variation and keep the
algorithm from being trapped in local optima.

Objective Function for Feature Selection:

Relevant Features

] = Total Features (2)

J : Feature optimization score. This metric helps prioritize significant attributes.

Exploration (finding new areas) and exploitation (improving known good solutions) are
balanced in the algorithm's iterative optimization of the feature set. A specific feature subset's
contribution to the classification accuracy is assessed by the fitness function for every iteration.
Low-contributing features are eliminated, but high-performing subsets are kept for additional
improvement. The procedure keeps on until a predetermined end point is reached, like a
maximum number of iterations or convergence to the most effective possible reply.
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3.2.2 Impact on Disease Classification

ABC optimization guarantees that only the most important features are entered into illness
classification models by lowering the dataset's dimensionality. Features like heart rate
variability, oxygen saturation, and glucose levels, for example, may be given priority in
healthcare applications, whereas duplicated or poorly associated indicators are disregarded. By
lowering noise and processing overhead, this condensed dataset improves the effectiveness and
precision of machine learning classifiers, such as Convolutional Neural Networks (CNNs) or
Adaptive Neuro-Fuzzy Inference Systems (ANFIS).

Furthermore, by allowing medical practitioners to concentrate on important signs during
clinical judgments, the chosen characteristics improve the prediction model's interpretability.
For complex medical problems like diabetes, cardiovascular disease, or neurodegenerative
disorders, ABC optimization is appropriate since it excels at managing huge and diverse
datasets. In the end, feature extraction using ABC optimization helps to close the gap between
unprocessed data and useful insights, allowing for more accurate, scalable, and effective
healthcare prediction systems.

3.3 Disease Classification with ANFIS

An advanced hybrid modeling framework called the Adaptive Neuro-Fuzzy Inference System
(ANFIS) combines the interpretability of fuzzy logic with neural network learning capabilities.
ANFIS uses the Artificial Bee Colony (ABC) algorithm's optimized features to play a crucial
role in disease categorization in healthcare prediction systems. This combination makes it
possible for the model to dynamically adjust to a variety of changing datasets, allowing for
precise, real-time diagnosis of complicated medical diseases.

3.3.1 The ANFIS Framework

ANFIS functions by fusing the architecture of an artificial neural network (ANN) with fuzzy
inference rules. The "if-then" rule structure used by the fuzzy logic component to express
information imitates human reasoning. The language variables that underpin each rule, like
"high heart rate" or "low oxygen saturation," are defined by fuzzy membership functions. By
using the ABC-optimized features as input variables, the rules are guaranteed to concentrate
on the physiological factors that are most pertinent to categorization. Through a learning
process, the neural network component of ANFIS optimizes the membership function
parameters. This enables the model to gradually increase its forecast accuracy by fine-tuning
its fuzzy rules in response to the training data. Using techniques like backpropagation and least-
squares estimation, ANFIS modifies the weights and parameters of its layers during training in
order to reduce error. The system can dynamically adjust to changes in patient data thanks to

this dual approach, guaranteeing reliable performance across various demographics and illness
kinds.

ANFIS Rule Structure:
If X; is A; and X, is Ay, then f = p; X, + p X, + 71 3)
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A1, A, : Fuzzy sets, py, p,, v : Parameters optimized by ABC .
3.3.2 Dynamic Disease Classification

The ability of ANFIS to manage uncertainty and nonlinear interactions in medical data makes
it an excellent tool for classifying diseases. Conditions like diabetes or cardiovascular
disorders, for example, can include intricate relationships between characteristics like blood
pressure, heart rate, and glucose levels. The subtleties of illness development are better
captured by ANFIS than by conventional classifiers since it models these linkages using fuzzy
rules. After training, the ANFIS model categorizes patient data into pre-established disease
groups, including "normal," "at-risk," and "diseased." Due to the interpretable insights that the
fuzzy rules offer into the classification's derivation, the decision-making process is transparent.
Knowing the logic behind forecasts is crucial for implementation and confidence in healthcare
settings, where this is particularly helpful. ABC-optimized features are used as input in ANFIS,
that improves classification accuracy while lowering computing overhead. Real-time
healthcare applications can benefit from ANFIS's dynamic adaptability, that guarantees that it
will continue to function well regardless of new data is added. Because of the combination of
fuzzy inference and neural networks, ANFIS can be used to improve patient outcomes and
advance precision medicine.

3.4 BBO-FLC for Real-Time Monitoring

The migration and distribution of species in their natural environments serve as the inspiration
for the sophisticated metaheuristic algorithm known as Biogeography-Based Optimization
(BBO). Fuzzy Logic Control (FLC) and BBO work together to improve real-time decision-
making in wearable healthcare monitoring systems by dynamically fine-tuning fuzzy rules. For
vital physiological indicators like heart rate, temperature, and oxygen saturation, this
combination allows adaptive threshold modifications, guaranteeing prompt and individualized
health treatments.

3.4.1 Dynamic Fuzzy Rule Optimization

Data from IoT-enabled sensors in a wearable monitoring system frequently contains
heterogeneity because of personal characteristics or environmental influences. In order to
overcome this difficulty, the BBO algorithm dynamically optimizes the fuzzy membership
functions and rule parameters. Fuzzy Logic Control processes input data and makes judgments
using a set of predetermined "if-then" rules. "If heart rate is high and oxygen saturation is low,
then alert the caregiver," for example, may be a rule. BBO improves this framework by
iteratively increasing the accuracy of these fuzzy rules by comparing their performance to real-
time patient data. The two primary steps in the optimization process are mutation and
migration. Migration disperses information among habitats (potential solutions) according to
their suitability, but mutation adds diversity to investigate novel possibilities. Habitats in the
context of FLC are collections of membership function parameters and fuzzy rules. By
repeating these procedures, BBO guarantees that the fuzzy rules continue to be most
appropriate for the patient's present state.
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3.4.2 Real-Time Adaptability and Decision-Making

A crucial component for treating changing medical situations is real-time flexibility, that is
made possible by the incorporation of BBO-FLC into wearable monitoring devices. For
instance, a patient's heart rate may normally rise during physical exercise; therefore, thresholds
must be modified to prevent false alerts. To ensure precise and significant alerts, BBO-FLC
continuously evaluates incoming sensor data and adjusts the fuzzy rules to account for these
contextual changes. The system's real-time functionality is essential in a medical context for
the early identification of serious illnesses like hypoxemia or arrhythmias. For example, the
system can immediately inform caregivers to take action if a patient's oxygen saturation falls
below a dynamically optimized threshold. Reliability and system confidence are increased by
FLC's transparent decision-making process and BBO's adaptive optimization.

Habitat Suitability Index (HS1) in BBO:
H =%l WX )

H : Suitability index, W; : Weights, X; : Features. Determines optimal fuzzy thresholds.

The real-time fuzzy logic tuning capability of BBO-FLC guarantees that healthcare monitoring
systems continue to function well across a range of patient demographics and medical
conditions. This collaboration enhances system responsiveness, lowers false positives and false
negatives, and offers a scalable solution for individualized healthcare. BBO-FLC is a major
breakthrough in wearable-based health monitoring that fosters improved results and higher
quality of care by adjusting to the specific demands of each patient.

3.5 Integration into Cloud Architecture

Cloud architecture is essential to contemporary healthcare systems because it offers a scalable,
safe, and effective platform for patient data processing and storage. Cloud-based frameworks
that incorporate processed data and predicted insights allow healthcare providers to facilitate
real-time communication between medical personnel, equipment, and patients. This smooth
integration facilitates prompt decision-making and raises the general effectiveness of
healthcare service.

3.5.1 Scalable Data Storage and Management

A reliable storage solution is necessary due to the enormous volume of data produced by
wearable sensors, Internet of Things devices, and medical systems. Cloud solutions solve this
problem by providing on-demand scalability and nearly infinite storage capacity. The cloud
securely stores processed patient data, including physiological measurements like heart rate,
blood sugar, and oxygen saturation. To efficiently manage massive data while guaranteeing
high availability and fault tolerance, the design makes use of distributed storage platforms like
Hadoop or AWS S3.

Cloud Storage Utilization:

_ Total Stored Data
" Available Cloud Capacity

)
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S : Cloud usage efficiency.

Cloud-based databases also make it easier to organize structured data, making analysis and
retrieval more effective. Sensitive medical data is protected by security measures like
encryption and role-based access controls, that adhere to laws like HIPAA and GDPR. This
guarantees that patient information is kept private and safe while still being available to
authorized individuals as needed.

3.5.2 Real-Time Communication and Decision Support

All stakeholders may communicate easily if cloud architecture is incorporated into healthcare
systems. Real-time data from wearables is sent to the cloud, and sophisticated Al algorithms
digest it for predictive analysis. Medical practitioners can then access these information
through dashboards, allowing for prompt actions. For instance, the cloud system notifies the
care team when a patient's oxygen saturation suddenly drops. Through the connection of many
platforms and devices, the cloud also promotes interoperability. Data from various sources,
including wearable technology, personal health apps, and hospital systems, can be combined
using APIs and cloud-native services. Workflows are streamlined by this integration, and also
improves provider collaboration and eliminates redundancies.

3.5.3 Enhanced Efficiency and Future Scalability

Healthcare systems can expand their operations to meet evolving demands by incorporating
processed data and predictive models into the cloud. For instance, cloud infrastructure can
handle a sudden rise in data volume without sacrificing performance during a pandemic or
other public health emergency. This paradigm is further improved by edge computing, that
utilizes the cloud for large-scale analytics while processing time-sensitive data closer to the
source. Furthermore, by enabling predictive models to learn and adapt to new data, cloud-based
architectures promote continual development. Updates in real time guarantee that the system
continues to work well for a variety of patient demographics and new medical issues. Because
of their versatility, cloud-enabled healthcare systems are positioned as solutions that are ready
for the future and can provide high-quality, individualized, and efficient care.

Pseudo-Code 1: Disease Detection Using BBO-FLC and ABC-ANFIS Framework
Optimized Disease Prediction Framework
Input:

e Patient data from loT sensors: D = {d;,d>, ..., d,;}

e Fuzzy rules and initial parameters for ANFIS

e Thresholds for optimization

Output:

e Predicted disease classification
e Performance metrics: accuracy, sensitivity, specificity

Algorithm Optimized Disease Prediction(D, FuzzyRules, Thresholds)
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Input: Sensor data D, Fuzzy rules, Optimization thresholds

Output: Predicted disease class, Performance metrics

/I Step 1: Data Preprocessing
Begin
Normalize each sensor data point using:
For each data pointd iin D do
Compute d i normalized = (d_i - mean(D)) / std_dev(D)
End For
End

/I Step 2: Feature Selection using ABC Optimization
Begin
Initialize ABC parameters: population_size, max_iter, fitness_function
Generate random feature subsets for the initial population
Evaluate fitness_function for each subset
While (termination criteria not met) do
For each bee in the colony do
Generate new solutions (neighboring subsets)
If (new_solution is better than old_solution) then
Replace old_solution with new_solution
End If
End For
End While
Return BestFeatureSubset

End

// Step 3: Disease Classification using ANFIS
Begin
Initialize ANFIS with BestFeatureSubset and FuzzyRules
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For each training sample in normalized data do
Apply Fuzzy rules:
For each rule in FuzzyRules do
Compute rule_activation_strength
End For
Aggregate outputs using:
Aggregated Output = Weighted Sum / Total Weight
End For
End

// Step 4: Dynamic Optimization using BBO
Begin
Initialize BBO parameters: habitat count, mutation rate
While (termination criteria not met) do
Compute Habitat Suitability Index (HSI) for each fuzzy rule
Migrate parameters between habitats based on HSI
Apply mutation to introduce randomness
End While
Update FuzzyRules with optimized parameters

End

/I Step 5: Real-time Monitoring and Prediction
Begin
For each incoming patient data stream do
If (sensor readings are abnormal) then
Trigger alert: "Potential anomaly detected"
Predict disease class using ANFIS:
Disease Class = argmax(ANFIS_Output)
Else

Continue monitoring
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End If
End For
End

// Step 6: Evaluate Performance
Begin
Compute Accuracy = (TP + TN) / Total
Compute Sensitivity = TP / (TP + FN)
Compute Specificity = TN / (TN + FP)
If (Performance Metrics meet thresholds) then
Return Disease Class, Performance Metrics
Else
Trigger Error: "Performance below threshold"
End If
End

End Algorithm

Input: Takes raw patient data, fuzzy rules, and optimization thresholds as inputs.

Data Preprocessing: Normalizes the input data to eliminate inconsistencies and prepare it for
feature extraction.

Feature Selection: ABC optimization selects relevant features, reducing dimensionality and
improving ANFIS efficiency.

Classification: ANFIS uses fuzzy rules and optimized features to classify diseases based on
sensor data.

Dynamic Optimization: BBO refines the fuzzy rules for better adaptability in real-time
scenarios.

Real-time Monitoring: Ensures ongoing evaluation and triggers alerts for abnormalities.

Performance Evaluation: Calculates metrics to ensure system reliability and accuracy. If
thresholds are not met, errors are flagged.

Mean Squared Error (MSE) for ANFIS Training:
1 NNy
MSE =X, (Yi—Y) (6)
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Evaluates the training error between predicted (f/l) and actual (Y;) outputs.
Gaussian Membership Function in ANFIS:

_(=0)?

p(x) = e 202 (7
Represents the fuzzy membership strength. ¢ : Center, o : Spread of the Gaussian.

Whale Spiral Optimization:
P(t+ 1) = P*(t) + D' - eP! - cos (2ml) (8)

Optimizes the position of solutions, where D' : Distance, b,l : Scaling parameters.
Rule Activation Strength in ANFIS:

W; = [17=; u1j(x) )

Combines membership values for rule activation.
Aggregated Output in ANFIS:

_ R Wi fi
Y = —2{2:1 W, (10)

fi : Output of each fuzzy rule. Aggregates weighted outputs.

loT Data Transmission Efficiency:

__ Transmitted Data (1 1)
" Total Collected Data

Measures efficiency of wearable-to-cloud data transmission.
Response Time Efficiency:

Time Taken to Predict

" Allowed Response Time (12)
Ensures compliance with real-time healthcare demands.
Specificity Formula:
SpeCiﬁCity - True Neg:iliifee?-el-glijl\;zsPositives (13)
Measures correct identification of negative cases.
Sensitivity Formula
Sensitivity - True Posi;ri:/l:es ]-)I-o;i:l\s,: SNegatives (14)
Indicates ability to identify true positive cases.
Accuracy Formula
Accuracy _ True Positives + True Negatives (1 5)

Total Cases
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Reflects the overall predictive performance.

10T Devices
0 0 6 ® o Preprocessing Data Feature Optimization
e o @ —— Layer Normalization Selection Layer
- . - —
© L X-N © ABC
Optimization
BBO
Optimization
Performance
Metrics
Accuracy-96% ANFIS Classification
Sensitivity-98% Disease DR Layer
Specificity-95% Categorization
Computation
Time-60s

Figure 1: Workflow of IoT-based BBO-FLC and ABC-ANFIS healthcare prediction system

The proposed healthcare prediction framework's process is depicted in the architecture. Patient
data is first gathered by IoT devices, after that it is preprocessed and normalized. ABC
optimization is used for feature selection, and BBO is used for fuzzy rule refining. Then, using
optimal features, ANFIS classifies disorders. Real-time monitoring, high accuracy (96%),
sensitivity (98%), and specificity (95%), together with a shorter computation time (60 seconds),
are made possible by the integration of the entire process into a cloud-based system figure 1.

4 RESULTS AND DISCUSSION

The suggested combination of the Artificial Bee Colony (ABC) algorithm with the Adaptive
Neuro-Fuzzy Inference System (ANFIS) and Biogeography-Based Optimization (BBO) with
Fuzzy Logic Control (FLC) produced better outcomes in real-time monitoring and disease
classification. Significant gains in accuracy (96%), sensitivity (98%), and specificity (95%)
were shown by the BBO-FLC and ABC-ANFIS framework in comparison to other models
such as CNN, DeepDR, EKF-SVM, and BKNN. These scores demonstrate the system's
capacity to accurately diagnose medical issues and differentiate between healthy and at-risk
individuals with few mistakes. The computing time was also lowered to 60 seconds,
demonstrating the system's effectiveness in managing huge, real-time datasets.

Real-time connectivity improved and safe, efficient data processing became possible by the
integration into a scalable cloud infrastructure. The optimized fuzzy rules and feature sets were
used to dynamically interpret wearable sensor data that was sent to the cloud, allowing for
prompt predictions and interventions. While guaranteeing adaptability to a range of patient
situations, this approach addressed the drawbacks of conventional models, including their
significant computing overhead and sensitivity to noise. The findings show that this paradigm
provides a workable, effective, and scalable answer to contemporary healthcare problems,
opening the way to improved clinical decision-making, patient monitoring, and illness
prediction.

Table 1: Performance comparison across traditional methods and proposed method metrics
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Metric CNN DeepDR | EKF-SVM BKNN BBO-FLC-
(%) (%) (%) (%) ANFIS (%)
Accuracy 65 55 74 85 96
Sensitivity 58 66 73 85 98
Specificity 84 63 73 56 95
Computation 92s 86s 77s 67s 60s
Time

The suggested BBO-FLC-ANFIS model outperforms conventional techniques in terms of
accuracy, sensitivity, specificity, and computing time, as this table 1 illustrates.

9 98 95
85 85 84
74 73 73
65 66 63
55 58 56
|| || 00000

Computation Time

120

100

®
(=]

Percentage (%)
£ =)
<> <

[
<

(=]

Accuracy Sensitivity Specificity

Performance Metrics

5 CNN (%) = DeepDR (%) ® EKF-SVM (%) = BKNN (%) ® BBO-FLC-ANFIS (%)

Figure 2: Workflow of the proposed BBO-FLC and ABC-ANFIS framework

The workflow of the combined ABC-ANFIS and BBO-FLC system is shown in the figure 2.
Preprocessing of the data, feature extraction using ABC, fuzzy rule optimization using BBO,
and disease classification using ANFIS are all included, along with cloud integration for real-
time updates and storage.

Table 2: Comparative analysis of traditional optimization and proposed method results

Methods Particle Machine Long Quality | Symbiotic | Proposed
Swarm Learning | Short- of Organisms | Method
Optimization (ML) Term Service Search (BBO-
(PSO) (2019) | (2020) | Memory | (QoS) (SOS) FLC &
(LSTM) | (2017) (2018) ABC-
(2017) ANFIS)
Accuracy 85 88 90 84 89 96
(%0)
Sensitivity 83 86 88 82 87 98
(%)
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Specificity 82 84 87 80 86 95
(%)
Computation 85 75 70 90 72 60
Time (s)

The suggested method achieves the highest accuracy (96%), sensitivity (98%), and specificity
(95%) with a much shorter computing time (60 seconds), outperforming conventional methods
such as PSO, ML, LSTM, QoS, and SOS in all parameters. This illustrates how effectively the
approach handles real-time medical data, optimizes feature selection, and dynamically
modifies fuzzy rules for precise illness monitoring and categorization table 2. The limitations
of conventional methods are addressed by the integration of BBO-FLC and ABC-ANFIS,
which guarantees robustness, scalability, and real-time responsiveness.

120 83 86 88
100 85 g,85 88 84, 20 87 84

8
6
4
2
0
‘b &

‘
%Q:
N

89 86 96 95

Accuracy (%) = Sensitivity (%) ®Specificity (%) = Computation Time (s)

== — ]

Percentage (%)

(=]

Performance Metrics

Figure 3: Comparative accuracy across traditional methods and the proposed system

The accuracy attained by the suggested approach in comparison to more conventional models
such as PSO, ML, and LSTM is depicted in this figure 3. It emphasizes the way well BBO-
FLC and ABC-ANFIS function, reaching 96% accuracy.

Table 3: Individual and combined performance of BBO-FLC and ABC-ANFIS

Configuration BBO- ABC- Combined (BBO-FLC + ABC-
FLC ANFIS ANFIS)
Accuracy (%) 90 93 96
Sensitivity (%) 92 95 98
Specificity (%) 88 91 95
Computation Time 65 62 60
(s)

The individual contributions of ABC-ANFIS and BBO-FLC to the overall system performance
are assessed in the table 3. Although each technique works well on its own, when combined,
they produce the finest outcomes across the board. The combined method reduces computation
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time (60 seconds) while improving accuracy (96%), sensitivity (98%), and specificity (95%).
This collaboration shows how combining the dynamic fuzzy rule optimization of BBO-FLC
with the feature extraction and classification capabilities of ABC-ANFIS results in a more
reliable and effective healthcare prediction system.

120
5 98

8

=]

100 o9 93 % 92 9
65 62 g

Accuracy (%) Sensitivity (%) Specificity (%) Computation Time
®)

6

=]

4

(]

Percentage (%)

2

]

Performance Metrics

EBBO-FLC = ABC-ANFIS = Combined (BBO-FLC + ABC-ANFIS)

Figure 4: Effect of combining BBO-FLC and ABC-ANFIS

Combining BBO-FLC and ABC-ANFIS reduces computation time (60 seconds) while
increasing accuracy (96%), sensitivity (98%), and specificity (95%), as seen in the ablation
study figure 4.

5 CONCLUSION AND FUTURE SCOPE

Disease prediction and monitoring have been transformed by the integration of BBO-FLC and
ABC-ANFIS in a scalable cloud architecture, and overcomes the drawbacks of conventional
techniques. This approach offers a reliable and timely healthcare solution with high accuracy
(96%), sensitivity (98%), and specificity (95%). Effective disease categorization and tailored
therapies are guaranteed by its dynamic adaptability, while scalability is improved by the
shorter computing time. As a crucial development in intelligent medical systems, the suggested
framework not only increases diagnostic reliability but also optimizes healthcare workflows.
This strategy can greatly improve healthcare around the world by encouraging proactive,
patient-centered care delivery.

To improve real-time prediction latency, the suggested system can be further improved by
adding edge computing and sophisticated deep learning models. Enhancing the system's
predictive power can be achieved by adding multi-modal data, such as environmental, imaging,
and genomic information. Global privacy standards compliance and data security can be
enhanced through integration with blockchain technology. Further research into simulating
disease evolution using generative Al models may also help us comprehend complex situations.
By filling up the gaps in accessibility and individualized care delivery, this system's scalability
makes it appropriate for widespread deployment in smart cities and rural healthcare.

REFERENCE

185



¥,

L
D
2)
3)

4)

5)

6)
7)
8)
9)
10)
11)
12)

13)

14)
15)

16)

ISSN 2347-3657
nternational Journal of

Information Technology & Computer Engineering Volume 9, Issue 3, 2021

Dehariya, A., & Shukla, P. (2020). Brain cancer prediction through segmentation of
images using bio-geography based optimization. Int ] Adv Res Eng Technol, 11(11).
Wang, S. H.,, Zhang, Y., Li, Y. J.,, Jia, W. J., Liu, F. Y., Yang, M. M., & Zhang, Y. D.
(2018). Single slice based detection for Alzheimer’s disease via wavelet entropy and
multilayer perceptron trained by biogeography-based optimization. Multimedia Tools
and Applications, 77, 10393-10417.

Mohanarangan Veerappermal Devarajan. (2020). Improving Security Control in Cloud
Computing for Healthcare Environments. Journal of Science & Technology, 5(6).
Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H. (2018). Ensuring
fairness in machine learning to advance health equity. Annals of internal medicine,
169(12), 866-872.

Rong, G., Mendez, A., Assi, E. B., Zhao, B., & Sawan, M. (2020). Artificial intelligence
in healthcare: review and prediction case studies. Engineering, 6(3), 291-301.

Qi, J,, Yang, P., Min, G., Amft, O., Dong, F., & Xu, L. (2017). Advanced internet of
things for personalised healthcare systems: A survey. Pervasive and mobile computing,
41, 132-149.

Peddi, S. (2020). Cost-effective cloud-based big data mining with K-means clustering:
An analysis of Gaussian data. International Journal of Engineering & Science Research,
10(1),229-249. ISSN 2277-2685.

Kodadi, S. (2020). Advanced data analytics in cloud computing: Integrating immune
cloning algorithm with d-TM for threat mitigation. International Journal of Engineering
Research and Science & Technology, 16(2). ISSN 2319-5991.

Gudivaka, R. K. (2020). Robotic process automation optimization in cloud computing
via two-tier MAC and Lyapunov techniques. International Journal of Business and
General Management, 9(5), 75-92. ISSN (P): 2319-2267; ISSN (E): 2319-2275.
Dondapati, K. (2020). Robust software testing for distributed systems using cloud
infrastructure, automated fault injection, and XML scenarios. International Journal of
Science and Technology, 8(2), 84-90. ISSN: 2347-3657.

Parthasarathy, K. (2020). Real-time data warehousing: Performance insights of semi-
stream joins using MongoDB. International Journal of Management Research & Review,
10(4), 38-49. ISSN: 2249-7196.

Panga, N. K. R. (2020). Leveraging heuristic sampling and ensemble learning for
enhanced insurance big data classification. [International Journal of Financial
Management, 9(1), 15-26. ISSN (P): 2319-491X; ISSN (E): 2319-4928.

Allur, N. S. (2020). Enhanced performance management in mobile networks: A big data
framework incorporating DBSCAN speed anomaly detection and CCR efficiency
assessment. International Journal of Engineering & Technology, 8(4), 1-10. ISSN: 9726-
001X.

Riley, R. D., Ensor, J., Snell, K. L., Debray, T. P., Altman, D. G., Moons, K. G., & Collins,
G. S. (2016). External validation of clinical prediction models using big datasets from e-
health records or IPD meta-analysis: opportunities and challenges. bmj, 353.

Tucker, R. P., Tackett, M. J., Glickman, D., & Reger, M. A. (2019). Ethical and practical
considerations in the use of a predictive model to trigger suicide prevention interventions
in healthcare settings. Suicide and Life-Threatening Behavior, 49(2), 382-392.
Goldstein, B. A., Navar, A. M., Pencina, M. J., & loannidis, J. P. (2017). Opportunities
and challenges in developing risk prediction models with electronic health records data:

186



«
17)

18)
19)
20)

21)

ISSN 2347-3657
nternational Journal of

Information Technology & Computer Engineering Volume 9, Issue 3, 2021

a systematic review. Journal of the American Medical Informatics Association: JAMIA,
24(1), 198.

Salleh, M. N. M., Hassan, N., Hussain, K., Talpur, N., & Cheng, S. (2019). Modified
Adaptive Neuro-Fuzzy Inference System Trained by Scoutless Artificial Bee Colony. In
Advances in Information and Communication Networks: Proceedings of the 2018 Future
of Information and Communication Conference (FICC), Vol. 2 (pp. 411-422). Springer
International Publishing.

Stiglic, G., Kocbek, P., Fijacko, N., Zitnik, M., Verbert, K., & Cilar, L. (2020).
Interpretability of machine learning-based prediction models in healthcare. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(5), e1379.
Pham, T., Tran, T., Phung, D., & Venkatesh, S. (2017). Predicting healthcare trajectories
from medical records: A deep learning approach. Journal of biomedical informatics, 69,
218-229.

Chen, M., Ma, Y., Li, Y., Wu, D., Zhang, Y., & Youn, C. H. (2017). Wearable 2.0:
Enabling human-cloud integration in next generation healthcare systems. IEEE
Communications Magazine, 55(1), 54-61.

Senniappan, V., & Subramanian, J. (2018). Biogeography-Based Krill Herd algorithm
for energy efficient clustering in wireless sensor networks for structural health monitoring
application. Journal of Ambient Intelligence and Smart Environments, 10(1), 83-93.

187



