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ABSTRACT 

Background: Cloud computing (CC) and artificial intelligence (AI) are causing a rapid 

evolution in healthcare, meeting the requirement for accurate and effective disease diagnosis 

and management through wearable IoT devices and sophisticated algorithms. 

Objective: To develop a BBO-FLC and ABC-ANFIS system that works together for better 

disease prediction accuracy and real-time monitoring. 

Methods: Implemented on a scalable cloud architecture, the system combines IoT-enabled 

sensors for data gathering, ABC for feature optimization, BBO for fuzzy rule refining, and 

ANFIS for disease categorization. 

Results: The suggested solution outperformed conventional techniques with 96% accuracy, 

98% sensitivity, and 95% specificity at a 60-second computation time reduction. 

Conclusion: The precision, scalability, and real-time healthcare applications for complicated 

disease prediction and monitoring could be greatly improved by this integrated system. 

Keywords: Cloud Computing, Artificial Intelligence, IoT Sensors, ABC Optimization, BBO-

FLC, ANFIS, Disease Prediction, Real-Time Monitoring. 

1 INTRODUCTION 

The healthcare sector is undergoing a change because to the combination of Cloud Computing 

(CC) and Artificial Intelligence (AI) technologies, that provide sophisticated prediction models 

to meet the increasing need for accuracy and efficiency in medical diagnostics. With the 

proliferation of wearable sensors enabled by the Internet of Things, the amount of patient data 

is growing dramatically. These technologies help with disease identification, management, and 

real-time data processing. In order to provide accurate disease identification and improved 

patient outcomes, techniques like ABC-ANFIS (Artificial Bee Colony with Adaptive Neuro-

Fuzzy Inference System) and BBO-FLC (Biogeography-Based Optimization with Fuzzy Logic 
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Control) are the foundation of contemporary healthcare models. With the use of sophisticated 

data analysis, these approaches provide great prediction accuracy for diseases like diabetes, 

Alzheimer's, and cardiovascular disorders. Furthermore, by using machine learning (ML) 

frameworks, these systems are further improved, overcoming constraints in data fusion, 

processing speed, and diagnostic accuracy Dehariya & Shukla (2020). 

BBO-FLC in Real-Time Monitoring Systems: 

Fuzzy Logic Control (FLC) in conjunction with Biogeography-Based Optimization (BBO) has 

demonstrated potential for improving healthcare monitoring systems. Heart rate, body 

temperature, oxygen saturation, and other physiological characteristics are measured by 

wearable sensors and sent to cloud infrastructures for analysis. These devices use fuzzy logic 

to analyze patient data in real time and send out alerts if something seems off. By dynamically 

improving fuzzy rules in response to changes in the environment, BBO improves this 

framework. For example, by modifying thresholds and offering tailored recommendations, 

BBO-FLC offers actionable insights in the management of chronic illnesses. This method 

preserves diagnostic accuracy while achieving a notable reduction in computing time. Recent 

research emphasizes its use in diabetes management, as alarms are dynamically adjusted 

according to patient profiles and glucose levels are continuously monitored. 

ABC-ANFIS for Complex Disease Prediction: 

A reliable method for forecasting complicated illnesses is provided by the Artificial Bee 

Colony (ABC) algorithm in conjunction with Adaptive Neuro-Fuzzy Inference Systems 

(ANFIS). This hybrid model works well with high-dimensional datasets, making it appropriate 

for diseases like osteosarcoma and breast cancer. By selecting input variables optimally, ABC 

makes sure that only pertinent features are entered into the ANFIS model, improving 

computational efficiency and prediction accuracy Wang et al. (2018). By using both first- and 

second-order statistical features to analyze tumor segmentation data, ABC-ANFIS has proved 

crucial in the early diagnosis of breast cancer. In a similar vein, this method has been applied 

to differentiate between normal and diseased cognitive functions in neuroimaging data in order 

to forecast the course of Alzheimer's disease. The ANFIS framework's flexibility allows for 

the integration of new data streams, making it a viable option for changing healthcare issues. 

The combination of ABC-ANFIS and BBO-FLC shows how CC and AI may revolutionize the 

healthcare industry Rajkomar et al. (2018). These models open the door for a new era of 

intelligent medical systems, fostering improved patient care and more efficient use of 

healthcare resources by tackling issues like big data processing, real-time monitoring, and 

disease prediction accuracy. 

1.1 Objectives 

• Developing a strong healthcare prediction framework that combines ABC-ANFIS and 

BBO-FLC in order to accurately diagnose and treat diseases. 

• To improve real-time monitoring systems by employing fuzzy logic to make dynamic 

decisions based on data from wearable sensors. 

• In disease prediction models for diseases such as diabetes, Alzheimer's, and breast cancer, 

feature selection should be optimized. 
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• To increase diagnostic precision and decrease processing time in cloud-based medical 

systems. 

• To make sure the suggested approach is flexible and scalable for changing healthcare 

datasets and challenges. 

Despite utilizing AI and ML, many of the current healthcare prediction models have trouble 

managing massive, high-dimensional information and guaranteeing real-time response Rong et 

al. (2020). Low precision, large processing cost, and limited adaptability to new data streams 

are common characteristics of traditional approaches. The creation of accurate, dynamic 

healthcare solutions is hampered by the lack of integration between fuzzy inference systems 

and optimization methodologies. The development of scalable frameworks that maximize 

feature selection, improve data fusion effectiveness, and tackle the difficulties of ongoing 

monitoring with wearable IoT sensors continues to be lacking. 

• Low diagnostic accuracy results from existing healthcare models' inability to analyze high-

dimensional data effectively. 

• Real-time adaptation to dynamically changing patient situations is lacking in current 

disease prediction algorithms. 

• For complex disease identification, the combination of fuzzy logic and optimization 

methods is still not well explored. 

• Large-scale healthcare applications cannot use traditional methods due to their substantial 

processing overhead. 

• Scalable, cloud-based healthcare frameworks are desperately needed in order to manage 

changing information and guarantee prompt, precise disease forecasts. 

2 LITERATURE SURVEY 

Dehariya and Shukla (2020) used Bio-Geography Based Optimization (BBO) to segment 

MRI images in order to create a strategy for predicting brain cancer. By improving MRI scan 

segmentation, this nature-inspired algorithm—which is based on species migration—makes it 

simpler to find and diagnose brain cancers. The method reduces processing time and increases 

the accuracy of separating malignancies from healthy tissue by combining BBO with clustering 

approaches. This effective, precise segmentation method may help with earlier, more 

trustworthy brain cancer diagnoses, providing a useful tool to enhance patient outcomes. 

The detection of Alzheimer's disease became possible by Wang et al. (2018) by the use of a 

single MRI slice, wavelet entropy characteristics, and a multilayer perceptron (MLP) optimized 

with Bio-Geography Based Optimization (BBO). In order to detect patterns associated with 

Alzheimer's disease with less data, this technique uses wavelet entropy to capture minute 

textural variations in MRI slices. The MLP's training efficiency and accuracy are improved by 

BBO, producing a more efficient and precise diagnostic tool that may help with early AD 

identification in clinical settings. 

A security framework for cloud-based healthcare is proposed by Mohanarangan 

Veerappermal Devarajan (2020). It integrates risk assessment, encryption, blockchain, and 

continuous monitoring to reduce risks, guarantee compliance, and improve data security, 

allowing for safer, more effective healthcare operations and better patient care. 
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Rajkomar et al. (2018) stress the importance of fairness is to enhancing health equity in 

machine learning. It draw attention to the way biases in healthcare data, which frequently 

originate from historical injustices or ethnic inequalities, might lead to unfair outcomes if 

incorporated into predictive models. The use of transparent, varied datasets and routinely 

assessing model performance across various groups to identify and reduce biases are two tactics 

the authors recommend to solve these problems. This research suggests a way that machine 

learning might enhance healthcare outcomes for different populations by delivering more 

accurate and equitable health predictions through the application of fairness-focused 

techniques. 

Peddi (2020) examines economical large data mining in cloud settings utilising K-means 

clustering, with an emphasis on Gaussian data. Lloyd’s K-means algorithm illustrates that 

premature termination at almost optimal accuracy considerably decreases computational 

expenses. The study underscores the significance of choosing starting centres and optimising 

resource management, offering pragmatic strategies for proficient big data analytics. These 

discoveries improve accessibility to sophisticated data mining technologies while preserving 

cost-effectiveness. 

Kodadi (2020) offers a hybrid architecture that integrates the Immune Cloning Algorithm with 

data-driven Threat Mitigation (d-TM) to enhance cloud security. Drawing inspiration from 

biological processes, the methodology attains a 93% detection rate and a 5% false positive rate. 

Simulations confirm its scalability and versatility. This hybrid technique mitigates security 

threats and protects sensitive data, providing a versatile and scalable solution for contemporary 

cloud security concerns. 

Gudivaka (2020) presents a Two-Tier Medium Access Control (MAC) framework augmented 

by Lyapunov optimisation for cloud-based robotic process automation (RPA). Prioritising jobs 

enhances energy efficiency, resource allocation, and throughput. The framework surpasses 

traditional norms in service quality and energy efficiency. Real-time adaption and energy-

efficient scheduling enhance the management of varied robotic systems, markedly boosting 

RPA in cloud environments. 

Dondapati (2020) combines cloud infrastructure, automated fault injection, and XML-based 

scenarios for the testing of resilient distributed systems. Scalable cloud infrastructures and 

regulated fault injection improve resilience, while XML scenarios guarantee uniformity. This 

extensive framework enhances testing reliability and efficiency, overcoming the shortcomings 

of conventional methods, and facilitates successful testing of inherently complex distributed 

systems. 

Parthasarathy (2020) assesses the efficacy of MongoDB in real-time data warehousing, 

emphasising semi-stream joins within ETL procedures. MongoDB addresses the issues of 

prompt updates and swift data retrieval by effectively managing high-velocity structured and 

unstructured data. Tests validate its scalability, memory stability, and real-time decision-

making abilities, establishing it as a dependable option for data warehousing in dynamic 

settings. 

Panga (2020) proposes a heuristic ensemble learning method for the classification of extensive 

insurance datasets. Utilising Spark’s memory caching, the improved random forest model 
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surpasses logistic regression and SVM, attaining superior metrics such as F-Measure and G-

Mean. The strategy proficiently tackles imbalanced datasets, enhances insurance marketing 

campaigns, and augments classification efficiency and accuracy in extensive datasets. 

Allur (2020) offers a big data-driven framework for mobile networks that incorporates 

DBSCAN for speed anomaly detection and CCR for bandwidth optimisation. The system 

attains 93% accuracy in anomaly detection and 88% efficiency in clustering, hence enhancing 

stability, mitigating congestion, and elevating user experience. It exceeds conventional 

techniques such as SBM and DEA, offering a scalable and economical approach for overseeing 

real-time mobile network performance. 

According to Rong et al. (2020), artificial intelligence (AI) is improving healthcare, especially 

in the areas of diagnosis and prediction. By using case studies, the demonstrate that AI 

methods, such as machine learning and deep learning, are enhancing disciplines like 

customized medicine, oncology, and radiology by facilitating quicker, more precise diagnostics 

and patient-specific forecasts. The capacity of AI to handle large amounts of data for accurate 

insights and enhance early diagnosis is one of its key features, but issues with data privacy, 

transparency, and clinical integration still exist. The authors come to the conclusion that, in 

spite of these obstacles, AI has a huge potential to improve patient care by enabling quicker 

and more precise diagnosis. 

Advanced Internet of Things (IoT) technologies have the potential to revolutionize 

individualized healthcare systems, as discussed by Qi et al. (2017). IoT makes real-time health 

monitoring and data collecting possible with wearable technology and smart sensors, enabling 

rapid interventions and individualized care. The study emphasizes that IoT might be used to 

manage chronic conditions and enhance patient outcomes by means of ongoing monitoring. 

But it also tackles issues like system integration, security, and data privacy. Overall, the study 

demonstrates that although IoT has the potential to transform healthcare by making it more 

efficient and personalized, its widespread implementation depends on resolving technological 

and regulatory issues. 

Riley et al. (2016) concentrate on externally validating clinical prediction models with the use 

of sizable datasets from individual patient data (IPD) meta-analyses or e-health records. To 

guarantee that models are accurate and applicable to a variety of patient populations, they stress 

the significance of verifying them in real-world contexts. In addition to highlighting big data's 

potential to enhance validation, the study discusses concerns with data inconsistency, privacy, 

and integrating data from several sources. To increase the dependability and efficacy of these 

models in clinical practice, the authors emphasize the necessity of uniform data collecting and 

evaluation techniques. Even though big data offers a lot of potential for improving healthcare 

forecasts, these obstacles must be overcome for them to be successfully utilized. 

Tucker et al. (2019) investigate the moral and practical issues surrounding the use of predictive 

models in healthcare to prevent suicide. Concerns regarding patient privacy, informed 

permission, false positives, and the possibility of stigmatization are brought up, but they also 

emphasize the possible advantages of identifying at-risk patients for prompt interventions. 

Practical concerns are also covered in the study, including ways to incorporate these tools into 

healthcare processes, guarantee model correctness, and allocate enough funds for interventions. 

Although predictive models have the potential to save lives, the contributors emphasize that its 
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application needs to be carefully controlled to respect patient autonomy and prevent 

unexpected harm. 

The possibilities and difficulties of leveraging data from electronic health records (EHRs) to 

create risk prediction models are examined by Goldstein et al. (2017). The emphasize that 

greater risk assessment, individualized care, and early detection of high-risk patients are made 

possible by EHRs, that can enhance clinical decision-making. There are still many obstacles to 

overcome, including issues with data quality, missing information, privacy, and system 

integration. To guarantee the efficacy and safety of these models, the authors emphasize the 

necessity of uniform data, robust validation techniques, and unambiguous regulatory 

guidelines. Although EHR-based prediction models have a lot of promise, resolving these 

problems is essential to their effective application in the medical field. 

3 METHODOLOGY 

3.1 Data Collection and Preprocessing 

Efficient healthcare prediction models are based on reliable preprocessing methods and precise 

data collecting. Wearable sensors that are enabled by the Internet of Things are the main source 

of patient data and are essential to contemporary healthcare systems. These sensors are 

intended to track a number of physiological variables, including oxygen saturation, heart rate, 

body temperature, respiratory rate, and glucose levels. Predictive healthcare systems require 

continuous monitoring and real-time data collection, and are made possible by the devices' 

smooth interface with cloud computing platforms. Electrocardiograms (ECG), 

photoplethysmography (PPG) devices, accelerometers, and other wearable sensors gather 

comprehensive biological data on a regular basis. These devices ensure scalability and 

accessibility by using secure communication protocols to transfer the data to cloud-based 

services. But because of restrictions in the device, the surroundings, or patient mobility, the 

raw data frequently has noise, missing values, and discrepancies. Resolving these problems is 

essential to preserving the accuracy of the analytical results. 

Statistical normalization, a transformative technique to standardize the raw data for additional 

analysis, is the first step in preprocessing. Normalization is appropriate for statistical analyses 

and machine learning algorithms since it lessens disparities brought on by changes in the data 

scale. Raw data must be transformed into a standard probability distribution, that has a mean 

of 0 and a standard deviation of 1. The following formula is used to accomplish this: 

Statistical Normalization: 

𝑎𝑖 =
𝑢𝑖−𝜖

𝜎
                                                                  (1) 

Where 𝑎𝑖 represents the normalized value, 𝑢𝑖 is the raw data, 𝜖 is the mean of the dataset, and 

𝜎 is the standard deviation. This transformation eliminates the impact of outliers and ensures 

that all parameters contribute equally to the prediction model. Error correction methods like 

imputation are also incorporated into the preprocessing pipeline to fix corrupted or missing 

data points. Reconstructing missing values based on correlations within the dataset is 

frequently accomplished using sophisticated statistical techniques such as multivariate 

imputation by chained equations (MICE). Gaussian smoothing is one example of a noise 
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filtering procedure that is used to improve data quality by minimizing oscillations that are not 

relevant to the desired condition.  

Another crucial stage is data transformation, that transforms diverse sensor outputs into a 

standard format that works with the healthcare prediction system. This guarantees 

compatibility across many software systems and sensor kinds. To guarantee that predictive 

models are developed on pristine and representative samples, the preprocessed data is 

subsequently divided into training and testing datasets. Healthcare systems are able to provide 

precise, real-time insights into patient health by utilizing IoT-enabled sensors and stringent 

preprocessing techniques. Advanced AI algorithms are fed the standardized and organized data, 

allowing for early disease detection and tailored therapy suggestions. This all-encompassing 

strategy guarantees that healthcare systems enhance patient outcomes through prompt and 

accurate treatments in addition to optimizing operational efficiency. 

3.2 Feature Extraction Using ABC Optimization 

A crucial stage in creating high-performing healthcare prediction models is feature extraction, 

making sure that only the most pertinent and significant information is used to classify diseases. 

Inspired by the foraging habits of a honey bee colonies, the Artificial Bee Colony (ABC) 

optimization algorithm is a powerful metaheuristic technique. ABC is used in the healthcare 

industry to choose the most effective features from high-dimensional datasets, removing noisy 

or unnecessary variables and minimizing redundancy. By concentrating primarily on 

characteristics that offer crucial insights into disease prediction, this procedure greatly 

improves computing efficiency and model accuracy. 

3.2.1 Optimization through ABC Algorithm 

The ABC algorithm mimics the actions of three different kinds of bees: scout, employed, and 

spectator. To find subsets of attributes that optimize classification performance, each "bee" 

searches the feature space. The hired bees use an objective function, usually the accuracy of 

disease categorization, to assess the fitness of particular feature combinations. By concentrating 

on potential regions of the feature space, observer bees optimize their search after analyzing 

the output of employed bees. By investigating new areas, scout bees add variation and keep the 

algorithm from being trapped in local optima. 

Objective Function for Feature Selection: 

𝐽 =
 Relevant Features 

 Total Features 
                                                            (2) 

𝐽 : Feature optimization score. This metric helps prioritize significant attributes. 

Exploration (finding new areas) and exploitation (improving known good solutions) are 

balanced in the algorithm's iterative optimization of the feature set. A specific feature subset's 

contribution to the classification accuracy is assessed by the fitness function for every iteration. 

Low-contributing features are eliminated, but high-performing subsets are kept for additional 

improvement. The procedure keeps on until a predetermined end point is reached, like a 

maximum number of iterations or convergence to the most effective possible reply. 
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3.2.2 Impact on Disease Classification 

ABC optimization guarantees that only the most important features are entered into illness 

classification models by lowering the dataset's dimensionality. Features like heart rate 

variability, oxygen saturation, and glucose levels, for example, may be given priority in 

healthcare applications, whereas duplicated or poorly associated indicators are disregarded. By 

lowering noise and processing overhead, this condensed dataset improves the effectiveness and 

precision of machine learning classifiers, such as Convolutional Neural Networks (CNNs) or 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS). 

Furthermore, by allowing medical practitioners to concentrate on important signs during 

clinical judgments, the chosen characteristics improve the prediction model's interpretability. 

For complex medical problems like diabetes, cardiovascular disease, or neurodegenerative 

disorders, ABC optimization is appropriate since it excels at managing huge and diverse 

datasets. In the end, feature extraction using ABC optimization helps to close the gap between 

unprocessed data and useful insights, allowing for more accurate, scalable, and effective 

healthcare prediction systems. 

3.3 Disease Classification with ANFIS 

An advanced hybrid modeling framework called the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) combines the interpretability of fuzzy logic with neural network learning capabilities. 

ANFIS uses the Artificial Bee Colony (ABC) algorithm's optimized features to play a crucial 

role in disease categorization in healthcare prediction systems. This combination makes it 

possible for the model to dynamically adjust to a variety of changing datasets, allowing for 

precise, real-time diagnosis of complicated medical diseases. 

3.3.1 The ANFIS Framework 

ANFIS functions by fusing the architecture of an artificial neural network (ANN) with fuzzy 

inference rules. The "if-then" rule structure used by the fuzzy logic component to express 

information imitates human reasoning. The language variables that underpin each rule, like 

"high heart rate" or "low oxygen saturation," are defined by fuzzy membership functions. By 

using the ABC-optimized features as input variables, the rules are guaranteed to concentrate 

on the physiological factors that are most pertinent to categorization. Through a learning 

process, the neural network component of ANFIS optimizes the membership function 

parameters. This enables the model to gradually increase its forecast accuracy by fine-tuning 

its fuzzy rules in response to the training data. Using techniques like backpropagation and least-

squares estimation, ANFIS modifies the weights and parameters of its layers during training in 

order to reduce error. The system can dynamically adjust to changes in patient data thanks to 

this dual approach, guaranteeing reliable performance across various demographics and illness 

kinds. 

ANFIS Rule Structure: 

 

If 𝑋1 is 𝐴1 and 𝑋2 is 𝐴2, then 𝑓 = 𝑝1𝑋1 + 𝑝2𝑋2 + 𝑟         (3) 
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𝐴1, 𝐴2 : Fuzzy sets, 𝑝1, 𝑝2, 𝑟 : Parameters optimized by ABC . 

3.3.2 Dynamic Disease Classification 

The ability of ANFIS to manage uncertainty and nonlinear interactions in medical data makes 

it an excellent tool for classifying diseases. Conditions like diabetes or cardiovascular 

disorders, for example, can include intricate relationships between characteristics like blood 

pressure, heart rate, and glucose levels. The subtleties of illness development are better 

captured by ANFIS than by conventional classifiers since it models these linkages using fuzzy 

rules. After training, the ANFIS model categorizes patient data into pre-established disease 

groups, including "normal," "at-risk," and "diseased." Due to the interpretable insights that the 

fuzzy rules offer into the classification's derivation, the decision-making process is transparent. 

Knowing the logic behind forecasts is crucial for implementation and confidence in healthcare 

settings, where this is particularly helpful. ABC-optimized features are used as input in ANFIS, 

that improves classification accuracy while lowering computing overhead. Real-time 

healthcare applications can benefit from ANFIS's dynamic adaptability, that guarantees that it 

will continue to function well regardless of new data is added. Because of the combination of 

fuzzy inference and neural networks, ANFIS can be used to improve patient outcomes and 

advance precision medicine. 

3.4 BBO-FLC for Real-Time Monitoring 

The migration and distribution of species in their natural environments serve as the inspiration 

for the sophisticated metaheuristic algorithm known as Biogeography-Based Optimization 

(BBO). Fuzzy Logic Control (FLC) and BBO work together to improve real-time decision-

making in wearable healthcare monitoring systems by dynamically fine-tuning fuzzy rules. For 

vital physiological indicators like heart rate, temperature, and oxygen saturation, this 

combination allows adaptive threshold modifications, guaranteeing prompt and individualized 

health treatments. 

3.4.1 Dynamic Fuzzy Rule Optimization 

Data from IoT-enabled sensors in a wearable monitoring system frequently contains 

heterogeneity because of personal characteristics or environmental influences. In order to 

overcome this difficulty, the BBO algorithm dynamically optimizes the fuzzy membership 

functions and rule parameters. Fuzzy Logic Control processes input data and makes judgments 

using a set of predetermined "if-then" rules. "If heart rate is high and oxygen saturation is low, 

then alert the caregiver," for example, may be a rule. BBO improves this framework by 

iteratively increasing the accuracy of these fuzzy rules by comparing their performance to real-

time patient data. The two primary steps in the optimization process are mutation and 

migration. Migration disperses information among habitats (potential solutions) according to 

their suitability, but mutation adds diversity to investigate novel possibilities. Habitats in the 

context of FLC are collections of membership function parameters and fuzzy rules. By 

repeating these procedures, BBO guarantees that the fuzzy rules continue to be most 

appropriate for the patient's present state. 
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3.4.2 Real-Time Adaptability and Decision-Making 

A crucial component for treating changing medical situations is real-time flexibility, that is 

made possible by the incorporation of BBO-FLC into wearable monitoring devices. For 

instance, a patient's heart rate may normally rise during physical exercise; therefore, thresholds 

must be modified to prevent false alerts. To ensure precise and significant alerts, BBO-FLC 

continuously evaluates incoming sensor data and adjusts the fuzzy rules to account for these 

contextual changes. The system's real-time functionality is essential in a medical context for 

the early identification of serious illnesses like hypoxemia or arrhythmias. For example, the 

system can immediately inform caregivers to take action if a patient's oxygen saturation falls 

below a dynamically optimized threshold. Reliability and system confidence are increased by 

FLC's transparent decision-making process and BBO's adaptive optimization. 

Habitat Suitability Index (HSI) in BBO: 

𝐻 = ∑  𝑁
𝑖=1 𝑊𝑖𝑋𝑖                                                         (4) 

𝐻 : Suitability index, 𝑊𝑖 : Weights, 𝑋𝑖 : Features. Determines optimal fuzzy thresholds. 

The real-time fuzzy logic tuning capability of BBO-FLC guarantees that healthcare monitoring 

systems continue to function well across a range of patient demographics and medical 

conditions. This collaboration enhances system responsiveness, lowers false positives and false 

negatives, and offers a scalable solution for individualized healthcare. BBO-FLC is a major 

breakthrough in wearable-based health monitoring that fosters improved results and higher 

quality of care by adjusting to the specific demands of each patient. 

3.5 Integration into Cloud Architecture 

Cloud architecture is essential to contemporary healthcare systems because it offers a scalable, 

safe, and effective platform for patient data processing and storage. Cloud-based frameworks 

that incorporate processed data and predicted insights allow healthcare providers to facilitate 

real-time communication between medical personnel, equipment, and patients. This smooth 

integration facilitates prompt decision-making and raises the general effectiveness of 

healthcare service. 

3.5.1 Scalable Data Storage and Management 

A reliable storage solution is necessary due to the enormous volume of data produced by 

wearable sensors, Internet of Things devices, and medical systems. Cloud solutions solve this 

problem by providing on-demand scalability and nearly infinite storage capacity. The cloud 

securely stores processed patient data, including physiological measurements like heart rate, 

blood sugar, and oxygen saturation. To efficiently manage massive data while guaranteeing 

high availability and fault tolerance, the design makes use of distributed storage platforms like 

Hadoop or AWS S3. 

Cloud Storage Utilization: 

𝑆 =
 Total Stored Data 

 Available Cloud Capacity 
                                                 (5) 
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𝑆 : Cloud usage efficiency. 

Cloud-based databases also make it easier to organize structured data, making analysis and 

retrieval more effective. Sensitive medical data is protected by security measures like 

encryption and role-based access controls, that adhere to laws like HIPAA and GDPR. This 

guarantees that patient information is kept private and safe while still being available to 

authorized individuals as needed. 

3.5.2 Real-Time Communication and Decision Support 

All stakeholders may communicate easily if cloud architecture is incorporated into healthcare 

systems. Real-time data from wearables is sent to the cloud, and sophisticated AI algorithms 

digest it for predictive analysis. Medical practitioners can then access these information 

through dashboards, allowing for prompt actions. For instance, the cloud system notifies the 

care team when a patient's oxygen saturation suddenly drops. Through the connection of many 

platforms and devices, the cloud also promotes interoperability. Data from various sources, 

including wearable technology, personal health apps, and hospital systems, can be combined 

using APIs and cloud-native services. Workflows are streamlined by this integration, and also 

improves provider collaboration and eliminates redundancies. 

3.5.3 Enhanced Efficiency and Future Scalability 

Healthcare systems can expand their operations to meet evolving demands by incorporating 

processed data and predictive models into the cloud. For instance, cloud infrastructure can 

handle a sudden rise in data volume without sacrificing performance during a pandemic or 

other public health emergency. This paradigm is further improved by edge computing, that 

utilizes the cloud for large-scale analytics while processing time-sensitive data closer to the 

source. Furthermore, by enabling predictive models to learn and adapt to new data, cloud-based 

architectures promote continual development. Updates in real time guarantee that the system 

continues to work well for a variety of patient demographics and new medical issues. Because 

of their versatility, cloud-enabled healthcare systems are positioned as solutions that are ready 

for the future and can provide high-quality, individualized, and efficient care. 

Pseudo-Code 1: Disease Detection Using BBO-FLC and ABC-ANFIS Framework 

Optimized Disease Prediction Framework 

Input: 

• Patient data from loT sensors: 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛} 

• Fuzzy rules and initial parameters for ANFIS 

• Thresholds for optimization 

Output: 

• Predicted disease classification 

• Performance metrics: accuracy, sensitivity, specificity 

Algorithm Optimized_Disease_Prediction(D, FuzzyRules, Thresholds) 
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    Input: Sensor data D, Fuzzy rules, Optimization thresholds 

    Output: Predicted disease class, Performance metrics 

 

    // Step 1: Data Preprocessing 

    Begin 

        Normalize each sensor data point using: 

        For each data point d_i in D do 

            Compute d_i_normalized = (d_i - mean(D)) / std_dev(D) 

        End For 

    End 

 

    // Step 2: Feature Selection using ABC Optimization 

    Begin 

        Initialize ABC parameters: population_size, max_iter, fitness_function 

        Generate random feature subsets for the initial population 

        Evaluate fitness_function for each subset 

        While (termination criteria not met) do 

            For each bee in the colony do 

                Generate new solutions (neighboring subsets) 

                If (new_solution is better than old_solution) then 

                    Replace old_solution with new_solution 

                End If 

            End For 

        End While 

        Return BestFeatureSubset 

    End 

 

    // Step 3: Disease Classification using ANFIS 

    Begin 

        Initialize ANFIS with BestFeatureSubset and FuzzyRules 



          ISSN 2347–3657 

         Volume 9, Issue 3, 2021 
 

 
 

179 
 

        For each training sample in normalized data do 

            Apply Fuzzy rules: 

                For each rule in FuzzyRules do 

                    Compute rule_activation_strength 

                End For 

            Aggregate outputs using: 

                Aggregated_Output = Weighted_Sum / Total_Weight 

        End For 

    End 

 

    // Step 4: Dynamic Optimization using BBO 

    Begin 

        Initialize BBO parameters: habitat_count, mutation_rate 

        While (termination criteria not met) do 

            Compute Habitat Suitability Index (HSI) for each fuzzy rule 

            Migrate parameters between habitats based on HSI 

            Apply mutation to introduce randomness 

        End While 

        Update FuzzyRules with optimized parameters 

    End 

 

    // Step 5: Real-time Monitoring and Prediction 

    Begin 

        For each incoming patient data stream do 

            If (sensor readings are abnormal) then 

                Trigger alert: "Potential anomaly detected" 

                Predict disease class using ANFIS: 

                    Disease_Class = argmax(ANFIS_Output) 

            Else 

                Continue monitoring 
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            End If 

        End For 

    End 

 

    // Step 6: Evaluate Performance 

    Begin 

        Compute Accuracy = (TP + TN) / Total 

        Compute Sensitivity = TP / (TP + FN) 

        Compute Specificity = TN / (TN + FP) 

        If (Performance_Metrics meet thresholds) then 

            Return Disease_Class, Performance_Metrics 

        Else 

            Trigger Error: "Performance below threshold" 

        End If 

    End 

 

End Algorithm 

 

Input: Takes raw patient data, fuzzy rules, and optimization thresholds as inputs. 

Data Preprocessing: Normalizes the input data to eliminate inconsistencies and prepare it for 

feature extraction. 

Feature Selection: ABC optimization selects relevant features, reducing dimensionality and 

improving ANFIS efficiency. 

Classification: ANFIS uses fuzzy rules and optimized features to classify diseases based on 

sensor data. 

Dynamic Optimization: BBO refines the fuzzy rules for better adaptability in real-time 

scenarios. 

Real-time Monitoring: Ensures ongoing evaluation and triggers alerts for abnormalities. 

Performance Evaluation: Calculates metrics to ensure system reliability and accuracy. If 

thresholds are not met, errors are flagged. 

Mean Squared Error (MSE) for ANFIS Training: 

MSE =
1

N
∑  N
i=1 (Yi − Ŷi)

2
                                               (6) 
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Evaluates the training error between predicted (𝑌̂𝑖) and actual (𝑌𝑖) outputs. 

Gaussian Membership Function in ANFIS: 

𝜇(𝑥) = 𝑒
−
(𝑥−𝑐)2

2𝜎2                                                                (7) 

Represents the fuzzy membership strength. 𝑐 : Center, 𝜎 : Spread of the Gaussian. 

Whale Spiral Optimization: 

P(t + 1) = P∗(t) + D′ ⋅ ebl ⋅ cos⁡(2πl)                          (8) 

Optimizes the position of solutions, where 𝐷′ : Distance, 𝑏, 𝑙 : Scaling parameters. 

Rule Activation Strength in ANFIS: 

𝑊𝑖 = ∏  𝑛
𝑗=1 𝜇𝑗(𝑥𝑗)                                                         (9) 

Combines membership values for rule activation. 

Aggregated Output in ANFIS: 

𝑌 =
∑  𝑅
𝑖=1  𝑊𝑖⋅𝑓𝑖

∑  𝑅
𝑖=1  𝑊𝑖

                                                              (10) 

𝑓𝑖 : Output of each fuzzy rule. Aggregates weighted outputs. 

loT Data Transmission Efficiency: 

E =
 Transmitted Data 

 Total Collected Data 
                                                   (11) 

Measures efficiency of wearable-to-cloud data transmission. 

Response Time Efficiency: 

𝑇 =
 Time Taken to Predict 

 Allowed Response Time 
                                               (12) 

Ensures compliance with real-time healthcare demands. 

Specificity Formula: 

 Specificity =
 True Negatives 

 True Negatives + False Positives 
                       (13) 

Measures correct identification of negative cases. 

Sensitivity Formula 

 Sensitivity =
 True Positives 

 True Positives + False Negatives 
                         (14) 

Indicates ability to identify true positive cases. 

Accuracy Formula 

 Accuracy =
 True Positives + True Negatives 

 Total Cases 
                          (15) 
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Reflects the overall predictive performance. 

 

Figure 1: Workflow of IoT-based BBO-FLC and ABC-ANFIS healthcare prediction system 

The proposed healthcare prediction framework's process is depicted in the architecture. Patient 

data is first gathered by IoT devices, after that it is preprocessed and normalized. ABC 

optimization is used for feature selection, and BBO is used for fuzzy rule refining. Then, using 

optimal features, ANFIS classifies disorders. Real-time monitoring, high accuracy (96%), 

sensitivity (98%), and specificity (95%), together with a shorter computation time (60 seconds), 

are made possible by the integration of the entire process into a cloud-based system figure 1. 

4 RESULTS AND DISCUSSION  

The suggested combination of the Artificial Bee Colony (ABC) algorithm with the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) and Biogeography-Based Optimization (BBO) with 

Fuzzy Logic Control (FLC) produced better outcomes in real-time monitoring and disease 

classification. Significant gains in accuracy (96%), sensitivity (98%), and specificity (95%) 

were shown by the BBO-FLC and ABC-ANFIS framework in comparison to other models 

such as CNN, DeepDR, EKF-SVM, and BKNN. These scores demonstrate the system's 

capacity to accurately diagnose medical issues and differentiate between healthy and at-risk 

individuals with few mistakes. The computing time was also lowered to 60 seconds, 

demonstrating the system's effectiveness in managing huge, real-time datasets. 

Real-time connectivity improved and safe, efficient data processing became possible by the 

integration into a scalable cloud infrastructure. The optimized fuzzy rules and feature sets were 

used to dynamically interpret wearable sensor data that was sent to the cloud, allowing for 

prompt predictions and interventions. While guaranteeing adaptability to a range of patient 

situations, this approach addressed the drawbacks of conventional models, including their 

significant computing overhead and sensitivity to noise. The findings show that this paradigm 

provides a workable, effective, and scalable answer to contemporary healthcare problems, 

opening the way to improved clinical decision-making, patient monitoring, and illness 

prediction. 

Table 1: Performance comparison across traditional methods and proposed method metrics 
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Metric CNN 

(%) 

DeepDR 

(%) 

EKF-SVM 

(%) 

BKNN 

(%) 

BBO-FLC-

ANFIS (%) 

Accuracy 65 55 74 85 96 

Sensitivity 58 66 73 85 98 

Specificity 84 63 73 56 95 

Computation 

Time 

92s 86s 77s 67s 60s 

The suggested BBO-FLC-ANFIS model outperforms conventional techniques in terms of 

accuracy, sensitivity, specificity, and computing time, as this table 1 illustrates. 

 

Figure 2: Workflow of the proposed BBO-FLC and ABC-ANFIS framework 

The workflow of the combined ABC-ANFIS and BBO-FLC system is shown in the figure 2. 

Preprocessing of the data, feature extraction using ABC, fuzzy rule optimization using BBO, 

and disease classification using ANFIS are all included, along with cloud integration for real-

time updates and storage. 

Table 2: Comparative analysis of traditional optimization and proposed method results 

Methods Particle 

Swarm 

Optimization 

(PSO) (2019) 

Machine 

Learning 

(ML) 

(2020) 

Long 

Short-

Term 

Memory 

(LSTM) 

(2017) 

Quality 

of 

Service 

(QoS) 

(2017) 

Symbiotic 

Organisms 

Search 

(SOS) 

(2018) 

Proposed 

Method 

(BBO-

FLC & 

ABC-

ANFIS) 

Accuracy 

(%) 

85 88 90 84 89 96 

Sensitivity 

(%) 

83 86 88 82 87 98 
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Specificity 

(%) 

82 84 87 80 86 95 

Computation 

Time (s) 

85 75 70 90 72 60 

The suggested method achieves the highest accuracy (96%), sensitivity (98%), and specificity 

(95%) with a much shorter computing time (60 seconds), outperforming conventional methods 

such as PSO, ML, LSTM, QoS, and SOS in all parameters. This illustrates how effectively the 

approach handles real-time medical data, optimizes feature selection, and dynamically 

modifies fuzzy rules for precise illness monitoring and categorization table 2. The limitations 

of conventional methods are addressed by the integration of BBO-FLC and ABC-ANFIS, 

which guarantees robustness, scalability, and real-time responsiveness. 

 

Figure 3: Comparative accuracy across traditional methods and the proposed system 

The accuracy attained by the suggested approach in comparison to more conventional models 

such as PSO, ML, and LSTM is depicted in this figure 3. It emphasizes the way well BBO-

FLC and ABC-ANFIS function, reaching 96% accuracy. 

Table 3: Individual and combined performance of BBO-FLC and ABC-ANFIS 

Configuration BBO-

FLC 

ABC-

ANFIS 

Combined (BBO-FLC + ABC-

ANFIS) 

Accuracy (%) 90 93 96 

Sensitivity (%) 92 95 98 

Specificity (%) 88 91 95 

Computation Time 

(s) 

65 62 60 

The individual contributions of ABC-ANFIS and BBO-FLC to the overall system performance 

are assessed in the table 3. Although each technique works well on its own, when combined, 

they produce the finest outcomes across the board. The combined method reduces computation 
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time (60 seconds) while improving accuracy (96%), sensitivity (98%), and specificity (95%). 

This collaboration shows how combining the dynamic fuzzy rule optimization of BBO-FLC 

with the feature extraction and classification capabilities of ABC-ANFIS results in a more 

reliable and effective healthcare prediction system. 

 

Figure 4: Effect of combining BBO-FLC and ABC-ANFIS 

Combining BBO-FLC and ABC-ANFIS reduces computation time (60 seconds) while 

increasing accuracy (96%), sensitivity (98%), and specificity (95%), as seen in the ablation 

study figure 4. 

5 CONCLUSION AND FUTURE SCOPE 

Disease prediction and monitoring have been transformed by the integration of BBO-FLC and 

ABC-ANFIS in a scalable cloud architecture, and overcomes the drawbacks of conventional 

techniques. This approach offers a reliable and timely healthcare solution with high accuracy 

(96%), sensitivity (98%), and specificity (95%). Effective disease categorization and tailored 

therapies are guaranteed by its dynamic adaptability, while scalability is improved by the 

shorter computing time. As a crucial development in intelligent medical systems, the suggested 

framework not only increases diagnostic reliability but also optimizes healthcare workflows. 

This strategy can greatly improve healthcare around the world by encouraging proactive, 

patient-centered care delivery. 

To improve real-time prediction latency, the suggested system can be further improved by 

adding edge computing and sophisticated deep learning models. Enhancing the system's 

predictive power can be achieved by adding multi-modal data, such as environmental, imaging, 

and genomic information. Global privacy standards compliance and data security can be 

enhanced through integration with blockchain technology. Further research into simulating 

disease evolution using generative AI models may also help us comprehend complex situations. 

By filling up the gaps in accessibility and individualized care delivery, this system's scalability 

makes it appropriate for widespread deployment in smart cities and rural healthcare. 
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