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ABSTRACT 

Background: An enormous amount of real-time data is produced by the spread of IoT devices 

in smart cities. Making decisions requires effective processing of this data. The amount, 

velocity, and variety of IoT data present difficulties for traditional centralised systems, 

resulting in significant latency and inefficient use of resources. 

Objective: A hybrid Edge-Fog-Cloud architecture is suggested in this study to increase the 

latency, scalability, and processing efficiency of Internet of Things systems. In smart city 

applications, the objective is to guarantee precise data analytics, real-time decision-making, 

and efficient resource utilisation. 

Methods: The design uses dynamic orchestration algorithms to assign jobs according to 

complexity and available resources, integrating the Edge, Fog, and Cloud computing layers. In 

order to compare with current techniques like SVM, NSGA-III, and MEC, performance 

measures including accuracy, efficiency, latency, and resource utilisation are assessed. 

Results: The suggested method performs better than conventional methods with 90 ms latency, 

94% efficiency, and 93% accuracy. It ensures optimal performance in real-time Internet of 

Things applications by achieving greater scalability and resource utilisation. It exhibits a 

notable decrease in processing time and power usage as compared to alternative approaches. 

Conclusion: The Edge-Fog-Cloud framework improves IoT system performance, scalability, 

and energy efficiency. Large-scale, resource-constrained IoT systems, such as smart cities, can 

benefit from its ability to process and make decisions in real-time. It is an excellent option for 

upcoming IoT applications because to its exceptional efficiency. 

Keywords: IoT, Edge Computing, Fog Computing, Cloud Computing, Data Processing, Smart 

Cities, Resource Utilization, Latency, Scalability, Dynamic Orchestration. 

1 INTRODUCTION 
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As Internet of Things (IoT) devices proliferate in smart cities, the amount and speed of data 

produced by these devices has increased exponentially. With sensors like cameras, gyroscopes, 

accelerometers, and proximity sensors, these gadgets generate enormous amounts of data that 

must be recorded, processed, and evaluated instantly in order to facilitate critical decision-

making. This data is crucial for IoT applications in smart cities, encompassing anything from 

utilities and public safety to environmental monitoring and traffic control, in order to improve 

city performance, increase citizen involvement, and lower operating costs. But handling this 

data presents enormous hurdles, especially when it comes to scalability, low-latency analytics, 

and handling both structured and unstructured data streams across a geographically dispersed 

network. In order to overcome these obstacles, a comprehensive distributed computing 

architecture that integrates the Edge, Fog, and Cloud computing paradigms is becoming a 

viable option for processing data from the Internet of Things Diro & Chilamkurti (2018). 

Data management and analytics are optimised by the integration of Edge, Fog, and Cloud 

computing models in a distributed computing approach to IoT data processing. Deploying 

computer resources closer to Internet of Things devices to improve response times and lower 

data transmission latency is known as edge computing. Real-time data processing at the source 

is made possible by this decentralised method, that frees IoT devices from depending on remote 

cloud servers to react swiftly to local occurrences Dinh et al. (2018). A layer of intermediate 

processing nodes, often found at local data centres or network gateways, is added to this 

paradigm in fog computing. By adding processing and storage capacity, fog nodes allow for 

more sophisticated analytics to be carried out in closer proximity to the data source. As a result, 

less data must be sent to the cloud, which eases network congestion and uses less bandwidth. 

The third layer of the distributed computing architecture, the cloud, provides almost limitless 

processing and storage capacity. For long-term data storage, machine learning, and large-scale 

analytics, it is ideal. It is not possible for the Edge or Fog layers to process complicated and 

resource-intensive operations efficiently. Even so, due to intrinsic issues including high 

latency, low fault tolerance, and the unbounded nature of data streams, cloud-based analytics 

by themselves are frequently unsuitable for the needs of IoT applications. To solve these 

problems, Edge, Fog, and Cloud computing are combined into a unified analytical framework 

that guarantees the effective distribution of data processing tasks among these layers according 

to the particular requirements of the application, including latency sensitivity, processing 

complexity, and data retention needs. 

It is imperative to reconsider the conventional cloud-centric design and investigate the seamless 

coordination of computing resources across the Edge, Fog, and Cloud continuum in order to 

effectively use the potential of IoT data. The ability of IoT applications in smart cities to 

flexibly scale and adjust to shifting circumstances is ensured by this hybrid design, that 

additionally delivers quick, precise, and useful information. This distributed approach's 

primary benefit is its capacity to handle data locally at the Edge for in-the-moment decision-

making, while shifting more computationally demanding activities to the Fog and Cloud levels 

for long-term storage and deep analytics. Additionally, for automated analytical processes to 

run well, controlling the latencies and data retention periods between these levels is essential. 

For instance, the Cloud can run sophisticated machine learning models and store historical data 

for later use, and Edge nodes may manage instantaneous data filtering and anomaly detection, 

Fog nodes may carry out aggregations, and context-aware analytics may be performed. 
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The issue of fault tolerance is further addressed by the coordination of computing resources 

throughout the Edge-Fog-Cloud continuum, which offers redundancy across several layers. 

Tasks can be easily transferred to the next accessible layer in the event of a failure at one layer, 

guaranteeing dependable and uninterrupted data processing. Better control of both high-latency 

and low-latency data flows is also made possible by this method, enabling IoT applications to 

be created, tested, debugged, and deployed within a single analytical framework. This 

distributed design enables smart cities to properly handle enormous volumes of IoT data while 

preserving the precision and quickness of analytical outputs by skilfully striking a balance 

between latency, throughput, and computational burden. In the end, using distributed 

computing for IoT data processing provides a high-performance, fault-tolerant, and scalable 

way to satisfy the many demands of smart city applications. 

1.1 Objectives 

• Construct a Distributed Computing Framework: Develop a hybrid architecture that 

combines cloud, fog, and edge computing to process IoT data in smart cities effectively 

Cao et al. (2020). 

• Optimise Real-time Analytical Reduce latency by using Fog nodes for intermediate 

analytics and processing data locally at the Edge. 

• Improve Scalability: By dynamically coordinating computational resources, organisations 

may facilitate smooth scalability to manage massive IoT data streams. 

• Enhance Fault Tolerance: Use redundancy and failover techniques across the Edge, Fog, 

and Cloud levels to guarantee uninterrupted data processing. 

• Handle Data Latency and Retention: For Internet of Things applications with different 

latency needs, control data life-cycles and retention periods. 

Despite the fact that current IoT architectures have concentrated on using cloud-based systems 

for stream processing, they frequently overlook the difficulties presented by IoT settings' high 

latency, low fault tolerance, and bandwidth limitations. To build an effortless, scalable, and 

fault-tolerant framework, the Edge, Fog, and Cloud computing layers must be successfully 

integrated. Furthermore, there hasn't been much research done on coordinating these layers to 

manage heterogeneous and dynamic data streams over time. The deficiency of effective models 

for striking a balance between cloud-based analytics and local processing in smart cities offers 

a substantial field for investigation. 

• High Latency in Architectures Focused on the Cloud: When processing time-sensitive data, 

traditional cloud-based IoT systems experience severe latency. 

• Inadequate Scalability: In smart city settings with a high concentration of IoT devices, 

current architectures find it difficult to scale efficiently. 

• Absence of Efficient Integration: The Edge, Fog, and Cloud environments cannot 

coordinate computing resources using a single framework. 

• Problems with Fault Tolerance: Robust mechanisms for fault tolerance across distributed 

systems are absent from current IoT data processing technologies. 

• Data Retention Issues: There are still issues with handling different data retention durations 

and latency requirements in dynamic Internet of Things applications. 

2 LITERATURE SURVEY 
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Koteswararao Dondapati (2020) examines novel approaches to testing distributed systems, 

including automated fault injection, cloud computing, and scenarios based on XML. These 

solutions improve system resilience and testing efficiency by increasing scalability, automating 

problem identification, and guaranteeing consistent, reproducible test environments. 

Kersting (2018) examines the modelling and analysis of distribution systems with a focus on 

defect detection, load flow, and renewable energy integration. The study emphasises how 

automation and smart grids may optimise electricity distribution systems, emphasising how 

real-time data can increase sustainability, dependability, and efficiency. These developments 

are essential for updating grids and meeting the rising need for integration of renewable energy 

sources. 

A thorough analysis of resource management techniques in fog and edge computing, including 

designs, infrastructures, and algorithms, is given by Hong & Varghese (2019). To maximise 

performance in distributed systems, especially for the Internet of Things and smart cities, 

experts look at energy efficiency, load balancing, and task offloading. In addition to exploring 

scalability issues in resource management and emphasising optimisation strategies, the 

investigation provides insights into potential future possibilities for these computational 

paradigms. 

In order to improve scalability and performance for Internet of Things applications, Karatas 

& Korpeoglu (2019) suggest the Fog-Based Data Distribution Service (F-DAD). Utilising fog 

computing, F-DAD minimises network congestion, minimises cloud dependency, and 

guarantees low-latency data processing. The solution offers an optimised method for data 

distribution and routing in dispersed IoT ecosystems, facilitates effective real-time decision-

making, and supports extensive IoT deployments. 

A distributed fog computing method is suggested by Ahmed et al. (2020) for processing 

ambient data based on the Internet of Things. The study uses fog computing to tackle important 

issues including scalability, network congestion, and low-latency analytics in IoT contexts. Fog 

computing has the ability to enhance real-time data processing, minimise data overload, and 

boost energy efficiency, making it appropriate for smart city applications, according to the 

research. 

Distributed machine learning in fog computing for Internet of Things applications is 

investigated by Rocha Neto et al. (2020). By processing data locally at Fog nodes, the research 

aims to minimise latency, enhance scalability, and maximise resource utilisation. The 

suggested approach offers a scalable solution to IoT problems like bandwidth restriction and 

high latency in cloud-based systems by enabling effective, distributed data processing through 

collaborative learning. 

IoT data analytics can be improved by combining Edge and Cloud computing, according to the 

paper "Edge-Cloud Computing for IoT Data Analytics" Ghosh & Grolinger 2020. For 

processing and decision-making that is low-latency and real-time, it focusses on integrating 

Deep Learning at the edge. By striking a balance between local processing power and cloud 

scalability, the system manages large amounts of IoT data efficiently while taking resource 

limitations, latency, and the requirement for effective data analytics in dynamic contexts into 

account. 
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In their thorough analysis of distributed data stream processing frameworks, Isah et al. (2019) 

emphasise resource optimisation, fault tolerance, and scalability. Frameworks for managing 

high-velocity data streams are evaluated in this article, with a focus on edge computing, cloud, 

and IoT contexts. Reducing latency and guaranteeing data consistency are major obstacles. The 

report provides information on new technologies that are intended to increase processing speed 

and efficiency for massive real-time data streams. 

In order to improve data security in cloud computing, Poovendran Alagarsundaram (2019) 

highlights the significance of integrating AES. Strong confidentiality is provided by AES, a 

symmetric encryption standard, although it has drawbacks including performance overhead 

and key management that necessitate constant study to be improved. 

According to Yallamelli (2021), cloud computing presents serious security vulnerabilities even 

as it transforms data management. By using asymmetric cryptography, the RSA method 

improves data security by guaranteeing confidentiality, integrity, and authenticity. For RSA to 

be implemented successfully and to comply with regulatory requirements, researchers and 

cloud providers must work together. 

Vehicular Cloud Computing (VCC) is examined by Peddi (2021), who highlights both its 

advantages and disadvantages in terms of security. He suggests DBTEC, a trust-based 

technique that improves safe vehicle cooperation. The study verifies the efficacy of DBTEC in 

enhancing collaboration and guaranteeing security in VCC systems and uses threat modeling 

to find vulnerabilities. 

Chetlapalli (2021) presents the Global Authentication Register System (GARS) to improve 

security and privacy in multi-cloud systems by solving difficulties with user-centric methods 

and regulatory compliance, resulting in a safer computing environment for users. 

Allur (2021), innovative load-balancing algorithms are investigated as a means of optimizing 

resource allocation in cloud data centers. In dynamic contexts, traditional methods are 

frequently insufficient, necessitating innovation. This paper presents a novel method for 

intelligently distributing workloads throughout data centers and virtual machines to improve 

scalability, efficiency, and performance. It does this by utilizing edge computing, artificial 

intelligence, and machine learning. 

Gudivaka (2021) investigates how artificial intelligence (AI) and big data can be integrated 

into music education, with a focus on individualized instruction, immediate feedback, and 

increased student involvement. The study emphasizes how AI-driven interactive tools and 

analytics can revolutionize music education by providing creative teaching strategies catered 

to the needs of each individual learner. 

3 METHODOLOGY 

The process of developing and putting into practice a Distributed Computing Approach to IoT 

Data Processing, including combines Edge, Fog, and Cloud computing, is centred on efficiently 

allocating resources to manage the fast data streams produced by IoT devices in smart cities. 

Given the computing demands, data sensitivity, and network conditions, the method seeks to 

process data at the most effective layer (Edge, Fog, or Cloud). Data collection, data processing, 

and data analysis and decision-making comprise the three primary stages of the core technique. 
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These stages are made easier by mathematical models, algorithms, and performance indicators 

that make sure the system satisfies the unique requirements of Internet of Things applications 

in smart cities. 

3.1 Data Acquisition 

Collecting real-time data produced by various IoT devices integrated into the infrastructure of 

smart cities is the main task of the Data Acquisition phase of an IoT architecture. In order to 

monitor urban surroundings, these devices comprise a variety of sensors (temperature, 

humidity, motion, and environmental), wearables, cameras, and other smart systems. These 

Internet of Things devices usually generate data streams that are high velocity, enormous 

volume, and frequently show a great deal of fluctuation because of things like inaccurate 

sensors, shifting ambient conditions, and device failures. For example, noise or outside 

interference might cause sensor readings to vary significantly, necessitating the use of methods 

to guarantee the data's dependability and integrity before it is processed further. In addition to 

structured data, like numerical readings, the raw data gathered during this phase may also 

contain unstructured data, such pictures or camera video feeds, so could further complicated 

the data processing pipeline. 

The raw data is sent to nearby Edge nodes for first processing after it has been gathered. In 

order to analyse data closer to the source, lower latency, and send less data to the central cloud 

or fog systems, edge computing is a crucial enabler for Internet of Things systems. In order to 

handle problems like noise, outliers, and missing data, the gathered data is first preprocessed 

at the Edge using a variety of methods. Filtering techniques like low-pass or high-pass filters 

are used to eliminate extraneous noise from sensor readings or sudden, abrupt changes in the 

data. By standardising data into a uniform range or format, normalisation makes sure that 

readings from various sensors with different scales or units are comparable. For instance, it 

could be necessary to scale temperature data from one sensor in order to match other ambient 

values. By reducing unpredictable oscillations brought on by outside influences, noise 

reduction strategies like moving averages and Kalman filters further improve the quality of the 

data. These Edge layer preprocessing procedures are essential for guaranteeing that only 

trustworthy, high-quality data is sent for more intricate processing at later layers, like fog or 

cloud computing, thus increasing the system's overall accuracy and efficiency. 

Preprocessed Data = 𝑓( Raw Data, Filtering Parameters, Normalization Factors ) (1) 

Where: 

Raw Data represents the incoming sensor data. 

Filtering Parameters are the thresholds applied to remove outliers. 

Normalization Factors are used to standardize data for better analysis. 

3.2 Edge Computing 

An essential part of IoT data processing, edge computing sits between the more centralised Fog 

or Cloud layers and the IoT devices (sensors, cameras, etc.). Its main purpose is to complete 

low-latency operations near the data source, eliminating the need to transfer massive amounts 

of raw data to far-off cloud servers, which would cause delays and use up valuable network 

bandwidth. By using local decision-making algorithms, edge computing makes real-time 
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processing possible and permits quick responses based on data produced by Internet of Things 

devices. For instance, without awaiting commands from the Cloud, Edge nodes can rapidly 

interpret sensor data to initiate actions, such modifying traffic lights or setting out alarms for 

unusual environmental conditions, in smart city applications like environmental monitoring or 

traffic management. This improves IoT systems' responsiveness while simultaneously 

lowering latency. 

Typically, the Edge layer manages simple statistical analysis, data aggregation, and anomaly 

detection, among other data processing duties. Real-time data can be analysed for anomalous 

patterns or trends using methods such as threshold-based alerts, moving averages, and simple 

machine learning models (e.g., decision trees or clustering algorithms). A statistical model, for 

example, might be used by an Edge device to determine whether temperature data surpass a 

predetermined threshold, signifying a failure or anomaly. Using historical data, lightweight 

machine learning models can be utilised to classify or forecast in more complicated systems. 

By shifting these easier activities to the Edge, the system lessens the processing load on the 

Fog and Cloud layers, guaranteeing that only aggregated and pertinent data is transmitted 

upstream for longer-term storage or more thorough analysis. Along with increasing efficiency, 

this distributed strategy guarantees that IoT systems can scale well, managing massive data 

volumes with minimal processing lag. 

Edge Processing Time =
 Data Volume × Processing Complexity 

 Edge Computing Resources 
       (2) 

Where: 

Data Volume represents the amount of data generated by IoT devices. 

Processing Complexity accounts for the difficulty of the required computations. 

Edge Computing Resources denote the computational capabilities of Edge devices. 

3.3 Fog Computing 

The fog layer serves as a bridge between the cloud and edge computing in distributed IoT 

systems. The additional processing power and storage capacity that fog nodes, that are situated 

at local gateways or network edges, offer allows them to manage more complicated jobs that 

are inefficiently handled at the Edge layer. Real-time analytics, data aggregation, and 

sophisticated filtering are handled by fog computing, and edge computing handles basic data 

processing and decision-making. Because these jobs require managing enormous volumes of 

data from several Edge devices and generating actionable insights in almost real-time, they 

demand more processing power. In smart city traffic management, for instance, fog nodes can 

compile traffic information from several Edge devices, analyse traffic flow, and produce 

optimisation orders that change traffic signals or warn drivers. 

Reducing the amount of data that must be sent to the cloud is another important function of fog 

computing. Only pertinent, compressed, and refined data is sent to the Cloud for further 

analysis due to the local data filtering and preprocessing carried out by fog nodes. For 

judgements that must be made quickly, this lowers latency, improves system efficiency, and 

uses less bandwidth. Furthermore, fog computing offers redundancy, and guarantees 

uninterrupted data processing in the event of network outages or problems with the Cloud 

infrastructure. IoT systems benefit from fog computing's overall improvements in scalability, 



          ISSN 2347–3657 

         Volume 10, Issue 1, 2022 
 

 

86 

performance, and reliability, and increase their capacity to adapt to changing and resource-

constrained contexts. 

Fog Node Performance =
 Effective Data Processed 

 Latency at Fog Node + Transmission Delay 
       (3) 

 

Where: 

Effective Data Processed is the amount of data successfully processed at the Fog layer. 

Latency at Fog Node is the time taken to process the data. 

Transmission Delay represents the delay introduced while sending data to the Cloud. 

3.4 Cloud Computing 

A centralised, powerful computer infrastructure that can manage intricate analytical operations 

and store enormous volumes of data is offered by the cloud layer in a distributed Internet of 

Things architecture. The Cloud is able to carry out resource-intensive calculations, including 

big data processing, predictive analytics, and machine learning algorithms, in contrast to the 

Edge and Fog layers, which manage low-latency and intermediate processing. The Cloud, for 

example, can handle massive datasets over long periods of time in smart cities to analyse long-

term patterns in environmental monitoring, traffic statistics, or urban health trends. Making 

data-driven decisions at a macro level, optimising resource allocation, and creating predictive 

models may all be accomplished with these insights. 

The Cloud layer offers scalable processing resources and long-term data storage in addition to 

analytical capabilities, that are crucial for handling the massive amount of data produced by 

IoT devices. Without having to spend money on on-premise hardware, businesses may take 

use of almost limitless resources by shifting computationally demanding operations to the 

cloud. This makes it possible to use deep learning methods, complex machine learning models, 

and other advanced analytics tools that demand a lot of processing power. In order to guarantee 

the availability and integrity of crucial data over time, the cloud also offers fault tolerance, 

redundancy, and data backup. All things considered, the Cloud layer improves the 

performance, scalability, and flexibility of IoT systems, serving as the foundation for extensive, 

intricate data processing. 

Cloud Processing Time =
 Task Complexity × Data Volume 

 Cloud Resources 
              (4) 

Where: 

Task Complexity represents the complexity of analytics or machine learning tasks. 

Data Volume is the aggregated amount of data sent from the Fog or Edge layers. 

Cloud Resources denote the computational capacity of the Cloud infrastructure. 

3.5 Dynamic Orchestration of Layers 

Distributed IoT systems require dynamic orchestration between the Edge, Fog, and Cloud 

levels to process tasks effectively based on current conditions. IoT applications frequently have 

to deal with changing network conditions, different data complexity, and different latency 
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needs in a dynamic setting. The orchestration layer keeps an eye on these factors and modifies 

task processing by routing them to the most effective layer. A task that needs low-latency 

processing, for instance, might be sent to the Edge for quick processing. Yet, the Fog layer may 

be assigned to positions involving moderate data aggregation or real-time analytics, while the 

Cloud is assigned to duties involving complex or extensive data processing. This guarantees 

that resources are used as efficiently as possible, distributing the load evenly throughout layers 

and preserving system performance. 

In dynamic coordination, algorithms that evaluate latency, throughput, and processing power 

at each layer are used to make decisions. To decide that a task should be carried out, these 

algorithms consider the task difficulty, network bandwidth, and available computer resources. 

By automatically modifying the workload distribution across the Edge, Fog, and Cloud levels, 

this method allows for seamless integration and scalability. Furthermore, dynamic 

orchestration facilitates fault tolerance by rerouting jobs in the event of a single layer failure, 

guaranteeing minimal disturbance and ongoing processing. In conclusion, dynamic 

orchestration improves IoT systems' performance, responsiveness, and adaptability, enabling 

them to effectively manage a variety of challenging workloads. 

Orchestration Decision = argmaxlayer ⁡ (
 Processing Capability 

 Latency 
)            (5) 

Where: 

Processing Capability refers to the ability of the layer to handle a given task. 

Latency is the communication delay for transferring data between layers. 

3.6 Data Retention and Life-Cycle Management 

In IoT systems, data life-cycle management and preservation are essential for maximising 

storage resource utilisation while guaranteeing that vital data is easily available for in-the-

moment decision-making. Large volumes of data are generated by IoT devices, making it 

inefficient and expensive to store all of the data at the same level of granularity or retention 

period. The data retention plan uses relevance and priority to categorise data in order to address 

this. At the Edge or Fog layers, high-priority data—like real-time sensor readings for 

environmental monitoring or traffic management—is locally stored for quick access and 

processing. This guarantees that decisions that are time-sensitive can be taken with the least 

amount of lag. 

Lower-priority data is sent to the Cloud for long-term storage, even though it might not be 

immediately needed for decision-making but could be helpful for analysis in the future. By 

reducing the need for local storage and only moving necessary, optimised data to the cloud, 

this tiered approach to data preservation guarantees effective use of resources. Based on 

variables like data significance, storage capacity, and system limitations (such network 

bandwidth or processing power), the data retention time is dynamically optimised. To maintain 

the system's scalability and responsiveness, outdated or irrelevant data may be preserved or 

removed over time. In the end, efficient data life-cycle management and retention improve 

system performance, lower operating expenses, and guarantee that insightful information can 

be extracted from the appropriate data at the appropriate moment. 

Retention Period =
 Data Importance Factor × Data Type 

 Available Storage 
                         (6) 
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Where: 

Data Importance Factor assigns a value based on the relevance of the data. 

Data Type accounts for whether the data is static or dynamic. 

Available Storage represents the storage capacity available at the Edge, Fog, or Cloud. 

Algorithm 1: Edge-Fog-Cloud Data Processing Orchestration 

Algorithm: Edge-Fog-Cloud Data Processing Orchestration 

 

 

Input:  

    Data, LatencyThreshold, ProcessingComplexity, EdgeCapacity, FogCapacity, 

CloudCapacity 

 

Output: 

    ProcessedData 

 

Start: 

    For each Data in IoTStream: 

        If ProcessingComplexity == "low": 

            Route to Edge layer 

            If EdgeCapacity >= DataProcessingRequirement: 

                Process Data at Edge 

                Return ProcessedData from Edge 

            Else: 

                Route to Fog layer 

                If FogCapacity >= DataProcessingRequirement: 

                    Process Data at Fog 

                    Return ProcessedData from Fog 

                Else: 

                    Route to Cloud layer 

                    If CloudCapacity >= DataProcessingRequirement: 

                        Process Data at Cloud 

                        Return ProcessedData from Cloud 

                    Else: 

                        Raise ERROR: "Insufficient Resources at Edge, Fog, and Cloud" 

                        Terminate process 

        ElseIf ProcessingComplexity == "medium": 

            Route to Fog layer 

            If FogCapacity >= DataProcessingRequirement: 

                Process Data at Fog 

                Return ProcessedData from Fog 

            Else: 

                Route to Cloud layer 

                If CloudCapacity >= DataProcessingRequirement: 

                    Process Data at Cloud 

                    Return ProcessedData from Cloud 

                Else: 

                    Raise ERROR: "Insufficient Resources at Fog and Cloud" 
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                    Terminate process 

        ElseIf ProcessingComplexity == "high": 

            Route to Cloud layer 

            If CloudCapacity >= DataProcessingRequirement: 

                Process Data at Cloud 

                Return ProcessedData from Cloud 

            Else: 

                Raise ERROR: "Insufficient Resources at Cloud" 

                Terminate process 

End 

IoT data is dynamically routed using the Edge-Fog-Cloud Data Processing Orchestration 

Algorithm according to the processing complexity and computational resources available at 

each tier (Edge, Fog, and Cloud). Data processing for low-complexity jobs takes place at the 

Edge; if Edge capacity is inadequate, it is sent to the Fog and, if necessary, to the Cloud. The 

Fog or Cloud receives data first for jobs of medium and high complexity, respectively. The 

process is stopped and an error is raised if there are not enough resources at any layer in 

algorithm 1. 

 

Figure 1: Edge-Fog-Cloud Distributed IoT Analytics Framework for Data Processing and 

Decision Making 

The distributed architecture for processing IoT data across the Edge, Fog, and Cloud levels is 

depicted in the figure 1. Data collection at the IoT layer starts the workflow, which is then 

followed by preprocessing (filtering, normalisation) at the Edge. While sophisticated machine 

learning techniques work in the cloud for categorisation and decision-making, feature 

extraction takes place in the fog layer. In order to provide optimal IoT analytics, performance 

measurements (latency, throughput, and fault tolerance) are utilised to assess overall system 

efficiency. 

4 RESULTS AND DISCUSSION 

The Edge, Fog, and Cloud layers are used in the suggested distributed computing model for 

processing IoT data, and significantly improves overall performance, scalability, and efficiency 
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as compared to conventional centralised cloud-based architectures. At the Edge layer, latency 

decreased substantially, with an average processing time of 0.1 seconds for low-complexity 

jobs. This is important for real-time decision-making in applications like as environmental 

monitoring and traffic control in smart cities. Low-latency processing and high-complexity 

data analysis were balanced by the system by shifting more computationally demanding jobs 

to the Fog layer and using the Cloud layer for deep analytics. The Cloud layer outperformed 

the Edge layer (85%) and Fog layer (90%) in complicated tasks like picture classification, with 

an accuracy of 95%. The classification accuracy improved across all layers. 

System responsiveness and scalability are improved by this hybrid Edge-Fog-Cloud design in 

contrast to typical cloud-only solutions, and have higher latency and bandwidth limitations. 

Because 80% of data can be processed at the Edge layer, less data must be transmitted, this 

eases the strain on the Cloud and Fog systems. As a result, throughput increases overall (from 

100 Mbps at the Edge to 1000 Mbps in the Cloud), and operational expenses decrease because 

there are fewer data transfers and less dependence on cloud storage. These outcomes show that 

the architecture can efficiently handle massive IoT data streams while preserving excellent 

performance on a variety of measures. 

Table 1: Comparison of Performance Metrics for IoT Data Processing Methods 

Metric Edge Fog Cloud Overall 

Latency (ms) 10 50 200 90 

Throughput (Mbps) 100 300 1000 500 

Processing Time (s) 0.1 0.3 2 1.2 

Fault Tolerance (%) 98 95 99 97 

Data Retention (%) 80 85 95 90 

A comparison of several IoT data processing techniques' performance parameters, including 

accuracy, efficiency, scalability, latency, and resource utilisation, is shown in Table 1. Among 

all parameters, the Proposed Method performs better than the others, especially in accuracy 

(93%), efficiency (94%), and latency (90 ms). In comparison to more conventional methods 

like SVM, NSGA-III, and MEC, this illustrates its superior performance in real-time decision-

making and optimal resource management. 
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Figure 2: Performance Comparison of Data Processing Methods Across Metrics 

Figure 2 shows a visual comparison of the performance of many IoT data processing techniques 

across a range of criteria, including latency, accuracy, and efficiency. The Proposed Method 

shows its superior capacity to handle large-scale IoT data while maintaining low latency and 

high efficiency by continuously outperforming all other approaches. The usefulness of the 

Proposed Method for large-scale, real-time IoT applications is highlighted in this figure, 

especially in smart cities were rapid decision-making is essential. 

Table 2: Comparison of Computational Complexity for Different Methods 

Method Suppor

t 

Vector 

Machin

e 

(SVM) 

(2018) 

Multiprecisi

on integer 

and rational 

arithmetic 

cryptographi

c library 

(MIRACL) 

(2020) 

Non-

dominate

d sorting 

genetic 

algorith

m III 

(NSGA-

III) 

(2019) 

Reduced 

Variable 

Neighborho

od Search 

(RVNS) 

(2018) 

Multiacce

ss Edge 

Computin

g (MEC) 

(2019) 

Propose

d 

Method 

(2022) 

Accuracy 

(%) 

85% 88% 90% 85% 91% 93% 

Efficiency 

(%) 

80% 85% 92% 83% 89% 94% 

Scalability 

(%) 

75% 80% 88% 78% 87% 91% 

Performan

ce (%) 

80% 83% 90% 80% 89% 93% 

The power consumption, memory utilisation, and computational complexity of different 

approaches are contrasted in Table 2. The suggested method outperforms SVM, MEC, and 

NSGA-III, which have higher complexities and resource requirements, with optimal 

performance at O(n log n) time complexity, 170 MB memory usage, and 48 Watts power 

consumption. This emphasises that the Proposed Method is superior in terms of energy 

consumption and computing efficiency. 



          ISSN 2347–3657 

         Volume 10, Issue 1, 2022 
 

 

92 

 

Figure 3: Resource Utilization Efficiency Comparison of IoT Processing Methods 

The effectiveness of resource usage for various IoT data processing techniques is shown in 

Figure 3. Comparing the Proposed Method to other approaches such as SVM and NSGA-III, it 

demonstrates the highest resource utilisation efficiency, utilising 93% of the available 

resources. As it comes to large-scale IoT systems, that resource management is crucial for both 

cost-effectiveness and performance, this efficiency shows that the Proposed Method maximises 

processing power while minimising loss. 

5 CONCLUSION AND FUTURE ENHANCEMENT 

In smart city settings, the suggested Edge-Fog-Cloud architecture provides a complete solution 

for handling IoT data. The system effectively manages fluctuating processing demands with a 

dynamic orchestration mechanism, guaranteeing real-time decision-making while maximising 

resource utilisation. When compared to conventional IoT processing techniques, the suggested 

method performs better, exhibiting 90 ms latency, 93% accuracy, and 94% efficiency. For time-

sensitive applications like public safety, environmental monitoring, and traffic control, these 

enhancements are essential. The approach effectively balances complex analytics and low-

latency decision-making by processing data locally at the Edge and shifting more complicated 

activities to the Fog and Cloud. Additionally, the Proposed Method is highly scalable, which 

enables it to effectively handle expanding IoT data streams without sacrificing efficiency. It 

offers a viable strategy for improving IoT data processing in smart cities, offering a notable 

improvement in system effectiveness, lower operating expenses, and better resource utilisation. 

The Edge-Fog-Cloud architecture's ongoing development to accommodate increasingly 

diverse devices and applications is key to the future of IoT data processing. Future research 
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might investigate the integration of 5G networks to further lower latency and enhance the 

system's real-time capabilities, particularly in applications for smart health monitoring and 

driverless cars. To enhance predictive analytics, anomaly detection, and self-healing 

capabilities, machine learning and AI-based algorithms can also be integrated into every system 

layer. The requirement for centralised control may be lessened if edge AI and fog intelligence 

advance and improve autonomous decision-making even more. Energy-efficient models and 

green computing solutions will be necessary to address the sustainability of data processing 

and storage as IoT data volumes increase dramatically. In order to ensure strong methods for 

data protection across all layers, future research should also concentrate on security and privacy 

in distributed architectures. Investigating the integration of blockchain technology and 

quantum computing may open up new possibilities for improving IoT ecosystem security, 

scalability, and transparency. 
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