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Abstract— Hyperspectral image (HSI) classification is extensively used in Earth science and is important for remote sensing. Many deep learning 

techniques have been developed recently for HSI classification; nevertheless, difficulties are frequently encountered with high-dimensional and 

complex data, making it challenging for relationships between various data elements to be captured. To address this, a novel method, dubbed 

"SpectralDiff," is proposed, which employs diffusion models for HSI classification. In this approach, noise in the data is repeatedly reduced, 

creating a clearer representation of the data's structure, thereby facilitating the handling of redundant and high-dimensional data. The framework 

consists of two major components: 

Spectral-Spatial Diffusion Module: The establishment of connections between data samples is facilitated by the spectral-spatial diffusion module, 

without requiring prior knowledge of the structure. Spatial (position-related) and spectral (color-related) information from the HSI data is 

extracted. Attention-Based Classification Module: The features gleaned from the diffusion module are then used to classify each pixel in the 

image. This approach, which emphasizes the connections between multiple samples, enables better classification. Tests conducted on three publicly 

available datasets demonstrate that SpectralDiff achieves superior performance compared to other state-of-the-art techniques. 

Key Words— Diffusion Models, Feature Extraction, Deep generative model, Deep Neural Network (DNN), spectral-spatial diffusion, Hyperspectral 

Image (HSI) Classification. 

 

I. INTRODUCTION 

Hyperspectral imaging (HSI) is an advanced technology designed to capture high-resolution spectral information from various 

objects. Through the integration of spatial and spectral reflectance data, each pixel in an HSI corresponds to a unique spectral 

curve, offering detailed insights into material differentiation and identification. This technology surpasses human visual 

capabilities by covering a broader spectral detection range, thereby facilitating a comprehensive understanding of natural 

phenomena. HSI has found  considerable applications across diverse fields, including environmental management, agriculture, 

ecology, geology, urban planning, and oceanography. One of its most critical applications is the classification of HSI, which 

assigns pixels to specific land-cover categories such as soil or vegetation. This process is essential to many hyperspectral imaging 

tasks. 

The challenge posed by the high dimensionality of HSI data complicates accurate pixel classification. Given the hundreds of 

spectral bands and the vast amounts of data involved, identifying relevant features is complex. To address this, several feature 

extraction methods have been developed to map spectral vectors from high-dimensional space to lower-dimensional feature spaces, 

including classic statistical techniques like principal component analysis (PCA), minimum noise fraction (MNF), local preserving 

projection (LPP), linear discriminant analysis (LDA), independent component analysis (ICA), and sparse preserving projection 

(SPP). However, these methods are limited by the spatial heterogeneity and homogeneity inherent to HSIs, which makes extracting 

spectral features alone insufficient for optimal utilization. 

To improve feature extraction, methods that jointly capture spatial and spectral features have been proposed, such as the extended 

morphological profile (EMP) and the extended attribute profile (EAP). The introduction and rapid development of deep neural 

networks (DNNs) have further enhanced the accuracy of HSI classification by automatically learning complex features. DNN-

based methods have yielded significant improvements in image classification, segmentation, and object detection, among other 

areas. Several techniques, including stacked autoencoders, deep fully convolutional networks, and deep prototypical networks, 

have been applied to HSI classification, effectively leveraging the spatial-spectral nature of hyperspectral data. 

Despite these advancements, DNN-based methods struggle to effectively model spectral-spatial relationships across samples. 

Current approaches primarily rely on graph neural networks (GNNs) to model these relationships, but designing graph structures 

or neighborhood information adds complexity and introduces subjectivity into the process. GNNs also fail to fully capture the 

spectral-spatial distribution of HSI data, limiting their perceptiveness toward contextual features. 

To address this limitation, a generative framework based on diffusion models, named SpectralDiff, has been proposed. This 

framework reconstructs the data generation process through iterative denoising, capturing spectral-spatial distribution information 

more effectively. SpectralDiff consists of two key modules: the spectral-spatial diffusion module and the attention-based 

classification module. The former employs a Markov process to construct a distribution of hyperspectral cube data, adding 
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Gaussian noise in the forward process and removing it in the reverse process through a spectral-spatial denoising network. The 

relationships between samples are constructed using the hidden variables generated in this diffusion process. The attention-based 

classification module then uses the extracted features to generate per-pixel classification results, improving cross-sample 

perception and overall classification performance. 

The innovative aspect of this approach lies in adopting a generative perspective for constructing sample relationships. By 

modeling the sample generation process, the proposed framework avoids the need for predefined graph structures or neighborhood 

information, making it adaptable and independent for future developments. Experimental results demonstrate the superiority of 

this method compared to existing state-of-the-art techniques, and ablation experiments confirm the effectiveness of the spectral-

spatial diffusion features. 

                           II. LITERATURE SURVEY 

The study [1] examines the impact of Principal Component Analysis (PCA) on feature discrimination for pattern classification, 

particularly in hyperspectral data, through both theoretical and experimental approaches. It evaluates PCA as a standalone 

dimensionality reduction tool and as a preprocessing step in subspace Linear Discriminant Analysis (LDA). The study provides a 

comprehensive theoretical foundation and empirical validation of the limitations associated with PCA and subspace LDA in 

hyperspectral target recognition. It highlights the necessity for alternative methods to address small-sample-size issues in high-

dimensional spaces. However, the research primarily focuses on hyperspectral data, which may limit the generalizability of the 

findings to other data types. Additionally, the experimental evidence may not encompass all potential use cases or variations in 

hyperspectral imaging scenarios, potentially overlooking contexts where PCA might still be effective. 

This work [2] applies a two-step process combining Minimum Noise Fractions (MNF) for dimensionality reduction with Fast and 

Adaptive Bidimensional Empirical Mode Decomposition (FABEMD) as a low-pass filter to denoise hyperspectral images. The 

informative components are then classified using a Support Vector Machine (SVM). 

The approach effectively removes noise and enhances classification accuracy, achieving up to 98.14%, while demonstrating stable 

performance across varying settings and spectral information extraction. However, it faces limitations due to its high complexity, 

necessitating an exhaustive key search to identify the optimal number of components (BIMFs) to remove, along with a lack of 

automation in selecting the best BIMFs.  

The methodology [3] focuses on the automatic construction of Extended Attribute Profiles (EAP) based on the standard deviation 

attribute, utilizing statistics from training samples to guide filter parameters. This approach combines unsupervised and supervised 

feature reduction techniques, such as PCA, KPCA, NWFE, and DBFE, for hyperspectral image classification. The proposed MNF-

FABEMD process effectively eliminates noise and enhances classification accuracy, achieving up to 98.14% overall accuracy while 

maintaining stable performance without the need for parameter tuning. However, the two-step process adds complexity, as 

determining the optimal number of BIMFs to remove currently necessitates an exhaustive search, indicating a potential area for 

automation. 

  The paper [4] introduces a Geometric-Spectral Reconstruction Learning (GSRL) method for open-set classification of remote 

sensing images, leveraging hyperspectral (HSI) and LiDAR data. This method consists of two primary modules: a geometric-

spectral reconstruction module that learns and reconstructs geometric-spectral features, and a geometric-spectral open-set 

adaptation module that employs extreme value analysis to identify unknown classes by comparing reconstructed and original 

feature matrices. The GSRL method effectively distinguishes between known and unknown classes, thereby enhancing its practical 

application in real-world scenarios. However, it faces challenges in complex environments with highly diverse unknown classes, 

and its effectiveness may be limited when extreme value analysis is inadequate for accurately differentiating known from unknown 

classes. 

    The authors [5] enhanced Denoising Diffusion Probabilistic Models (DDPMs) by learning reverse process variances through a 

reparameterization technique and a hybrid learning objective that combines the Variational Lower Bound (VLB) with the 

simplified objective proposed by Ho et al. (2020). This approach effectively reduces gradient noise, improves log-likelihood, and 

facilitates faster sampling. Notably, it significantly reduces the number of sampling steps, making the models more practical for 

real-world applications, while also enhancing mode coverage compared to Generative Adversarial Networks (GANs), as evidenced 

by higher recall in precision-recall metrics. However, the method requires substantial computational resources for training, 

especially on high-diversity datasets like ImageNet, and incorporating learned variances and hybrid objectives can introduce additional 

complexity in training, particularly concerning gradient noise 

    The method [6] uses Adaptive Spatial Pyramid Constraint (ASPC) for classifying hyperspectral images (HSIs) by first 

measuring image complexity through edge detection. It then segments the image into various scales using a spatial pyramid 

structure. For classification, the method applies different loss functions to labeled and unlabeled regions, enhancing accuracy even 
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when only a few labeled samples are available. The ASPC approach improves model performance by leveraging spatial-spectral 

correlations and adapts segmentation scales based on image complexity, ensuring efficient utilization of spatial information. 

However, its effectiveness is contingent upon the accuracy of edge detection for complexity evaluation, which may vary depending 

on image quality. 

 

This work [7] introduces SpectralFormer, a transformer-based backbone network designed for hyperspectral image (HSI) 

classification. The model incorporates two innovative modules: Groupwise Spectral Embedding (GSE), which learns local spectral 

representations, and Cross-layer Adaptive Fusion (CAF), which transfers memory-like information between layers. Extensive 

experiments on three HSI datasets demonstrate that SpectralFormer significantly improves classification accuracy, achieving around 

10% higher overall accuracy (OA) compared to CNNs, RNNs, and traditional transformers. It is also flexible for both pixel-wise and 

patch-wise inputs. However, transformers may still struggle to capture fine local context as effectively as CNNs, and the cross-layer 

skip connections may introduce added complexity without fully addressing the loss of local context. 

 

     The Context-Aware Dynamic Graph Convolutional Network (CAD-GCN) [8] for hyperspectral image (HSI) classification 

models pixel relationships through graph-based structures, enabling it to capture long-range connections between image regions and 

dynamically update these connections to enhance classification accuracy. This approach allows CAD-GCN to effectively capture 

contextual relations, which is particularly beneficial in complex or inhomogeneous regions, leading to improved classification 

performance. However, the dynamic graph updating process increases computational complexity, potentially resulting in longer 

training times. 

    The Spectral Spatial Graph Attention Network (SSGAT) method [9] for hyperspectral image (HSI) classification constructs a 

graph where each HSI sample is a node, with neighboring nodes connected based on spectral and spatial information. By computing 

attention between nodes, SSGAT aggregates essential features, enhancing classification accuracy. Leveraging semi-supervised 

learning, it combines labeled and unlabeled data, effectively addressing scenarios with limited labeled samples. Tested on public 

datasets, SSGAT demonstrates superior performance compared to other methods. While it improves classification by combining 

spectral and spatial information, the method’s reliance on constructing large neighborhood graphs may increase computational 

complexity, and its performance can be sensitive to the neighborhood size. 

    This methodology [10] introduces a Modified Locality-preserving Projection (MLPP) for hyperspectral image classification, 

which adaptively selects a varying number of nearest neighbors for each data point to maximize the distance between non-nearest 

neighbors, enhancing class separability. A parameter-free weighted graph is utilized to preserve local structures while boosting class 

discrimination, increasing robustness and flexibility without user-defined parameters However, the adaptive neighbor selection may 

add computational complexity, particularly for large datasets, and the method's testing on only two datasets limits its generalizability 

assessment. 

 

Summary of Literature: 

1. Dimensionality Reduction with PCA and LDA: Studies have explored Principal Component Analysis (PCA) as a 

dimensionality reduction technique, both as a standalone tool and as a preprocessing step for Linear Discriminant Analysis (LDA). 

Although effective in reducing dimensions, PCA struggles with small-sample-size issues in high- dimensional data typical of HSI, 

highlighting the need for alternative approachesoise Reduction and Feature Extraction: A combination of Minimum Noise 

Fractions (MNF) and Fast Adaptive Bidimensional Empirical Mode Decomposition (FABEMD) has proven effective for denoising 

HSIs, achieving a high classification accuracy. However, this two-step process is computationally complex and lacks automation in 

selecting optimal components for noise removal . 

 

2.Reconstruction: For open-set classification, a method called Geometric-Spectral Reconstruction Learning (GSRL) 

combines HSI and LiDAR data, effectively identifying unknown classes. However, the method struggles with diverse unknown 

classes, especially when extreme value analysis fails to differentiate well between known and unknown classes . 

 
      3.Transformer-Based : SpectralFormer is a transformer-based model that incorporates modules like Groupwise Spectral 

Embedding (GSE) and Cross-layer Adaptive Fusion (CAF) for local spectral representation and memory-like cross-layer 

information transfer. Despite achieving higher classification accuracy than CNNs and traditional transformers, it still faces 

limitations in capturing fine local context . 
 

4.Graph-Based Networks: Con Dynamic Graph Convolutional Network (CAD-GCN) and Spectral Spatial Graph Attention 

Network (SSGAT) employ graph-based methods to capture spatial and spectral relationships between pixels. CAD-GCN dynamically 

updates connections for enhanced contextual relations, while SSGAT uses semi-supervised learning to combine labeled and 

unlabeled data. Both methods improve classification accuracy, though they are computationally intensive due to the need for large 

neighborhood graphs and dynamic updates . 
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5.Locality-Preserving Projection: Areserving Projection (MLPP) adaptively selects nearest neighbors for each data point, 

enhancing class separability. It shows improved robustness and flexibility but adds complexity due to adaptive neighbor selection 

and has limited testing across datasets . 

 
Best Spectral-Spatial Denoising Network : Among the denois, networks that combine spectral and spatial information like the 

Spectral Spatial Graph Attention Network (SSGAT) demonstrate strong performance by utilizing semi-supervised learning, 

which benefits situations with limited labeled data. SSGAT's use of attention mechanisms enhances feature aggregation from both 

spectral and spatial domains, effectively balancing denoising and classification accuracy. Additionally, CAD-GCN and 

SpectralFormer are strong candidates, given their effective handling of spatial context and spectral representation, though they 

involve high computational demands. Ultimately, SSGAT could be considered a top choice for spectral-spatial denoising in HSI 

classification when allows.  

III. PROPOSED SYSTEM 

 
Hyperspectral image (HSI) classification has become an essential tool for various remote sensing applications in Earth 
sciences, including environmental monitoring, agriculture, and urban planning. The classification process involves 

assigning each pixel within an HSI to a specific land-cover class based on its spectral and spatial features. However, the 
high dimensionality and redundancy inherent in HSI data present challenges for conventional classification methods. To 
address these 

 
                      Fig : Poposed System 

 

challenges, we propose a novel system called "SpectralDiff," which uses diffusion models to enhance the accuracy and robustness 

of HSI classification. This system comprises two primary modules: the Spectral-Spatial Diffusion Module and the Attention-Based 

Classification Module. 

 

1. Data Input and Preprocessing 

 
The system begins with the Data Input stage, where raw HSI data is collected. Hyperspectral data typically includes hundreds of 

contiguous spectral bands for each pixel, capturing detailed information about the materials present in each spatial location. 

However, the high dimensionality of HSI data introduces redundancy and noise, making direct classification challenging. 

Therefore, preprocessing steps like normalization and data augmentation are applied to prepare the data for further processing. This 

preprocessing ensures that the model can handle the variations in lighting, sensor conditions, and other environmental factors. 

 
2. Spectral-Spatial Diffusion Module 

 
The Spectral-Spatial Diffusion Module is the core of the SpectralDiff approach and addresses one of the main limitations of 

traditional HSI classification methods: capturing spatial-spectral relationships without relying on predefined graph structures. 

Unlike graph-based methods, which depend on manually designed structures that introduce complexity and subjectivity, the 

Spectral-Spatial Diffusion Module adopts a generative framework based on diffusion models. This approach is inspired by recent 

advances in deep generative models, which can effectively model complex data distributions through iterative denoising. 

• Diffusion Process: The diffusion model operates through a forward and reverse process. In the forward process, 

Gaussian noise is incrementally added to the HSI data, simulating a random walk away from the original data distribution. 

This noisy data serves as an input to the reverse reverse diffusion process, where a spectral-spatial denoising network 

removes the noise step-by-step. Each denoising step reveals increasingly refined features, gradually reconstructing the 

original data's spectral-spatial structure. 

• Feature Extraction Through Denoising: As the diffusion model denoises the data, it captures underlying structures in 

the HSI data, which correspond to spatial and spectral relationships between different pixels. These relationships are 

represented by hidden variables generated during the diffusion process, forming a basis for effective feature extraction. 
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By leveraging these denoised features, the Spectral-Spatial Diffusion Module highlights both spectral characteristics 

(such as material composition) and spatial context (such as texture and spatial patterns) in the data. 

• The output of this module is a set of spectral-spatial features that significantly reduce the data’s dimensionality while preserving 

essential information. This data transformation helps alleviate the challenges posed by the high dimensionality of HSI data, 

resulting in features that are both informative and compact. 

 

3. Feature Extraction 

 
Following the diffusion-based denoising process, the Feature Extraction stage further refines the spectral-spatial features for 

effective classification. Feature extraction techniques in HSI data aim to transform raw high-dimensional data into a lower-

dimensional feature space that retains meaningful characteristics for classification. 

 
• Dimensionality Reduction and Spectral-Spatial Representation: Dimensionality reduction methods, such as 

principal component analysis (PCA) or autoencoder-based methods, can be used here to condense the features extracted 

by the diffusion process. This helps eliminate any residual redundancy in the data, ensuring that only the most significant 

spectral and spatial information is retained. 

• Enhanced Spatial Context: This stage ensures that the features maintain a balance between spectral precision and 

spatial context, addressing the limitation of traditional pixel-based approaches that overlook spatial correlations. 

 
By the end of this step, each pixel is represented by a set of spectral-spatial features that are well-suited for classification tasks, 

providing a robust foundation for the next module. 

 

4. Attention-Based Classification Module 

 
The Attention-Based Classification Module is designed to classify each pixel within the HSI by focusing on the most relevant 

features extracted from the diffusion module. Traditional classification models often struggle to prioritize important features, 

especially when handling high-dimensional HSI data. The attention mechanism addresses this limitation by selectively weighting 

features that contribute most to accurate classification. 

 

 

• Self-Attention Mechanism: The attention mechanism emphasizes significant features by assigning higher weights to 

them, enhancing the model’s focus on critical spatial-spectral relationships. This is particularly useful in hyperspectral 

data, where subtle variations in spectral values can signify important differences in material composition. 

• Cross-Sample Perception: The attention module enables cross-sample perception by dynamically adjusting feature 

weights based on the context of neighboring pixels. This context-aware classification approach enhances the model’s 

ability to identify land-cover classes with high precision, even when neighboring pixels have similar spectral signatures but 

belong to different classes. 

 

The attention-based classifier outputs per-pixel classification results, where each pixel is assigned a category label. This pixel-wise 

classification allows for precise mapping of different land-cover types in the hyperspectral image, supporting applications that 

require detailed spatial analysis, such as environmental monitoring and urban planning. 

 
5. Classified Hyperspectral Image Output 

 
The Classified Hyperspectral Image Output is the final result of the SpectralDiff framework. The system produces an HSI where 

each pixel is classified into categories like vegetation, soil, or urban area. This output enables practitioners to visualize and analyze 

the distribution of various land-cover types across the imaged area. 

 
The proposed SpectralDiff system offers several advantages over traditional HSI classification methods: 

 

• Adaptability: Unlike graph-based methods, SpectralDiff does not rely on manually designed graph structures, 

making it more flexible and adaptable to various datasets. 

• Improved Accuracy: By leveraging a generative model with an attention-based classifier, SpectralDiff 

captures complex spatial-spectral relationships, leading to more accurate classifications. 

• Reduced Complexity: The diffusion process simplifies the feature extraction process by automatically 

modeling sample relationships, reducing the need for complex, predefined structures 
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IV Experimental Settings 

 
1. Datasets: 

             Three hyperspectral datasets were used to evaluate the algorithm: 

▪ Indian Pines (IP): Captured in Indiana, USA, with 145 × 145 pixels and 200 spectral bands. 

▪ Pavia University (PU): Collected in Italy, with 610 × 340 pixels and 103 spectral bands. 

 
▪ Salinas (SA): Collected in California, USA, with 512 × 217 pixels and 224 spectral bands. 

 

2. Evaluation Metrics:The model's effectiveness was measured using Overall Accuracy (OA), Average Accuracy (AA), 

Kappa coefficient (κ), and classification accuracy for each land-cover category. 

Overall Accuracy (OA): 

It's a measure of how often the model makes the correct prediction. 

 

 
 

True Positives (TP): Correctly predicted positive instances. 

True Negatives (TN): Correctly predicted negative instances. 

False Positives (FP): Incorrectly predicted positive instances (also called Type I error). 

False Negatives (FN): Incorrectly predicted negative instances (also called Type II error). 

 

Kappa Coefficient(k): 

                         
po: The observed accuracy  pe: The expected accuracy. 

 

Average Accuracy (AA): 

This is particularly useful when the dataset is imbalanced, i.e., when some classes have more samples than others 

 

 
 

Sum the accuracies of all classes and divide by the number of classes. 

• C is the number of classes. 

• The fraction for each class 𝑖 represents the accuracy within that specific class (i.e., how well the model classified samples 

belonging to that class). 

Hyperspectral images often involve many different land cover types, materials, or objects that may not be evenly distributed, 

average accuracy ensures that smaller or minority classes are not overshadowed by larger classes, which can happen when using 

overall accuracy.  

Average accuracy gives equal importance to all classes, making it a fairer metric in many cases. 

                      

3. Training Setup:The model was trained on a high-performance computing system with an AMD EPYC CPU and dual 

NVIDIA RTX 3090 GPUs.The diffusion model used the Adam optimizer, a learning rate of 1e-4, and a batch size of 

256.The classification model used the Adam optimizer with a learning rate of 1e-3 and a batch size of 64. The model 

converged in under 50 epochs for all datasets. 
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V. RESULTS AND DISCUSSION 
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Performance Analysis 

 
1. Algorithm Comparison:The proposed model was compared with other algorithms (e.g., CNN1D, CNN2D, SSRN, SSFTT) and showed 

improved performance, especially in balancing spatial and spectral data.Traditional models like CNN1D and CNN2D performed less 

effectively due to limited feature extraction, while advanced models like SSRN and SSFTT improved spatial-spectral classification. 

2. Classification Performance:The model achieved better results on the IP and SA datasets in terms of OA, AA, and κ, showing balanced 

performance across different land-cover categories.On the PU dataset, the model performed slightly weaker in balancing classifications 

across subcategories but still maintained high accuracy overall. 

3. Sample Size Impact:Increasing the sample size led to better accuracy across all models. The proposed model outperformed others even with 

smaller sample sizes. 

4. Qualitative Results:Visual results showed that the proposed model produced classification maps with lower noise and better alignment 

with the ground truth compared to other models. 

 
Model Analysis 

 
1. Ablation Study:Using diffusion features as input improved accuracy over using raw features, demonstrating the model's effectiveness 

in capturing spectral-spatial relationships. 

2. Diffusion Model Analysis:The diffusion model successfully reconstructed spectral curves from noisy inputs, showing that it embedded 

relevant spectral information.Experiments showed that smaller timestamps (less denoising steps) and the first layer index yielded 

optimal classification performance. 

3. Inference Time:The proposed two-stage algorithm had longer inference times compared to simpler models but remained comparable 

to complex CNN and Transformer-based algorithms. 

 
VI CONCLUSION 
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In this study, we introduce a groundbreaking approach for hyperspectral imaging (HSI) analysis, leveraging a generative 

perspective to construct the spectral-spatial distribution of HSI data. This novel method, termed SpectralDiff, fundamentally 

redefines the way relationships between samples are established in hyperspectral datasets. By focusing on the spectral-spatial 

diffusion process, SpectralDiff adapts to the intrinsic structure of data without requiring prior knowledge of graph structures or 

neighborhood information. This adaptability allows it to construct inter-sample relationships dynamically, making it a robust tool 

for analyzing complex HSI data. 

The cornerstone of SpectralDiff lies in its ability to capture the data distribution and contextual information embedded within HSI. 

Unlike traditional methods that rely heavily on predefined graph structures or static spatial relationships, SpectralDiff leverages the 

generative paradigm to enable a cross-sample perception mechanism. This mechanism facilitates the diffusion of information across 

spectral and spatial dimensions, effectively modeling the interdependence among samples and providing a more comprehensive 

representation of the HSI data manifold. 

One of the key advantages of SpectralDiff is its generative approach, which captures the underlying spectral-spatial features more 

effectively than state-of-the-art techniques. By modeling the spectral-spatial diffusion process, SpectralDiff adapts to the inherent 

structure of data and uncovers nuanced relationships that static models often overlook. Experimental results validate the superiority 

of SpectralDiff, demonstrating that it consistently outperforms contemporary methods across various HSI classification benchmarks. 

The ability to integrate spectral and spatial information seamlessly leads to significant performance gains, making it a valuable tool 

for advancing HSI research and applications. 

Looking ahead, the potential for diffusion models to address challenges such as out-of-distribution (OOD) generalization and 

detection within HSI is particularly promising. Diffusion models, by virtue of their generative framework, excel at capturing 

underlying data manifolds through iterative diffusion processes. This enables strong generalization capabilities to unseen 

examples outside the training distribution, a critical requirement for real-world HSI applications where training data may not fully 

encompass all possible scenarios. 

Future research in this domain could explore how diffusion models like SpectralDiff can be extended to tackle OOD detection 

problems in HSI. Experimental findings already suggest that diffusion models exhibit strong detection performance for OOD 

samples, indicating their potential to transform anomaly detection and generalization tasks in HSI. 

As diffusion-based methods continue to evolve, they are poised to make substantial contributions to the fields of OOD 

generalization and detection. With ongoing advancements, diffusion models are expected to unlock exciting opportunities in 

analyzing complex HSI data, enabling applications in areas such as environmental monitoring, agriculture, urban planning, and 

beyond. 

In conclusion, SpectralDiff represents a significant leap forward in hyperspectral imaging analysis by leveraging a generative 

perspective to model spectral-spatial diffusion processes. Its ability to adaptively construct inter-sample relationships and capture 

contextual information positions it as a powerful tool for addressing contemporary challenges in HSI. Furthermore, the exploration 

of diffusion models for OOD generalization and detection holds immense potential, paving the way for robust, scalable solutions 

in the analysis of high-dimensional hyperspectral data. 
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